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We review and compare multiple hypothesis testing procedures used in clinical trials and
those in genomic studies. Clinical trials often employ global tests, which draw an overall
conclusion for all the hypotheses, such as SUM test, Two-Step test, Approximate Likeli-
hood Ratio test (ALRT), Intersection-UnionTest (IUT), and MAX test.The SUM andTwo-Step
tests are most powerful under homogeneous treatment effects, while the ALRT and MAX
test are robust in cases with non-homogeneous treatment effects. Furthermore, the ALRT
is robust to unequal sample sizes in testing different hypotheses. In genomic studies,
stepwise procedures are used to draw marker-specific conclusions and control family wise
error rate (FWER) or false discovery rate (FDR). FDR refers to the percent of false positives
among all significant results and is preferred over FWER in screening high-dimensional
genomic markers due to its interpretability. In cases where correlations between test
statistics cannot be ignored, Westfall-Young resampling method generates the joint dis-
tribution of P -values under the null and maintains their correlation structure. Finally, the
GWAS data from a clinical trial searching for SNPs associated with nephropathy among
Type 1 diabetic patients are used to illustrate various procedures.

Keywords: false discovery rate, family wise error rate, global test, multiple hypotheses testing, resampling method,
stepwise procedure

1. INTRODUCTION
When more than one hypotheses are tested at the same time, it is
well known that the family wise type I error rate (FWER), that is,
the probability of reporting at least one significant finding when
the null hypotheses are true, will be inflated. Take J independent
test statistics as an example. When each test controls its type I error
rate at α level, the FWER is 1− (1−α)J. Table 1 lists the FWERs
for different combinations of J and α. When J = 10 and α= 0.05,
FWER goes up to 0.401. In cases of 100 or more simultaneous
tests, it is almost sure to get false positive results.

Multiple hypotheses testing arises frequently both in clinical
trials and in genomic studies. The different goals in these two set-
tings result in different strategies. First, the hypotheses in clinical
trials are often considered as a whole while those in genomic stud-
ies are more independent from each other. In clinic trials, multiple
hypotheses are often considered jointly with a coherent theme. A
few examples are given as follows. The symptoms of a complex
disease often show up in different parts of the body or in differ-
ent forms, such as different types of cancer. Multiple laboratory
measurements monitor the underlying disease process, such as
the viral loads and CD4 cell counts in HIV positive subjects. A
treatment might have different responses in different patient sub-
populations. On the other hand, multiple hypotheses in genomic
studies arise because a large number of candidate markers are
tested at the same time. Based on the number of tests carried out in
the procedure, the multiple testing adjustment approaches can be
grouped into global tests and stepwise procedures (1). Global tests
summarize information from all endpoints/measurements/strata
in one test statistic, while stepwise procedures carry out one test for

each hypothesis. Therefore global tests are employed frequently in
clinical trials while genomic studies almost always employ stepwise
procedures. Second, the hypotheses in clinical trials are usually
more specific with abundant prior information. In testing a spe-
cific treatment, with knowledge on the direction of the effects,
directional tests with higher power can be employed. On the other
hand, the genomic, epigenomic, transcriptomic, and proteomic
network is much more complicated and often researchers screen
for any signal, without knowing its direction or relationship to
other markers. Third, the numbers of hypothesis in clinical trials
are on a much smaller scale compared to the numbers in genomic
studies – the numbers in clinical trials are usually less than ten,
while the numbers of potential markers in genomic studies are
sometimes over a million. In this manuscript, common procedures
of multiple hypotheses adjustment in the two different settings are
reviewed and compared.

The effects of interests are usually inferred from regression coef-
ficients. In linear regression for normally distributed outcomes, the
coefficient represents the difference in the outcome values between
the groups being compared. In generalized linear models with logit
link for binary outcomes, the coefficient equals the logarithm of
the odds ratio of the outcome in the treatment group relative to the
control group. In Cox proportional hazards models for partially
censored failure time data, the exponentiated coefficient represents
the hazards ratio. This review focuses on the choice of proper mul-
tiple testing adjustment method after the estimation procedures.
Hence, we assume that appropriate models are chosen for differ-
ent data configurations and parameters and covariance matrix are
consistently estimated. Suppose there are J hypotheses in total.
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Table 1 | FWER versus number of tests and the size of individual tests.

α J FWER

0.01 2 0.020

0.01 5 0.049

0.01 10 0.096

0.01 100 0.634

0.01 1000 1.000

0.05 2 0.098

0.05 5 0.226

0.05 10 0.401

0.05 100 0.994

0.05 1000 1.000

Let β and β̂ denote the two J× 1 vectors of regression coefficients
and their estimates, respectively, one element for each hypothe-
sis. Furthermore, β j= 0 corresponds to the jth null hypothesis,
j= 1, . . ., J.

2. MULTIPLE TESTING PROCEDURES IN CLINICAL TRIALS
2.1. SUM TEST
O’Brien (2) proposed a test derived from the generalized least
squares principle

√
nJ′6−1β̂,

where J is an J × 1 vector of 1’s and 6 is the covariance matrix
of β̂. When elements of β̂ are independent from each other, the
O’Brien test statistic reduces to a linear combination of β̂ j where

each β̂ j is weighted by inverse of its variances. Tests employing lin-

ear combinations of β̂ j with different weights have been proposed
(3–6), among which the SUM test is especially popular (7). The
SUM test statistic has a simple sum form

SUM =
J∑

j=1

β̂
j

.

Under the null hypothesis β1 = · · · = βj = 0, E(SUM )= 0.
The SUM test is found to maximize the minimum power (maxmin
test) for alternatives where all elements of β have the same
sign (8, 9).

2.2. TWO-STEP
When homogeneous effects are of interests, a two-step procedure is
commonly used. In the first step, we test H0 : β1 = β2 = · · · = βj

versus Ha: at least one pair βj 6= β
′

j for j 6= j ′ through Breslow-Day

test or likelihood ratio test (LRT) (10, 11). Under the null, the LRT
test statistic follows a Chi-square distribution with J− 1 degree
of freedom asymptotically. If the null hypothesis of homogeneous
treatment effects is not rejected, we proceed to the second step
where data from different endpoints are pooled and an overall
treatment effect is estimated and tested against zero with a Wald
test. The second test is carried out conditionally on the acceptance
of the null in the first step. When the type I error rates in the two
steps, α1 and α2, both equal 0.05, the marginal probability that

the Two-Step procedure concludes homogeneous non-zero treat-
ment effects under H 0 is 95%× 5% = 4.75%, while the probability
of concluding non-zero treatment effect in at least one endpoint
under H 0 is 95%× 5%+ 5%= 9.75%. Lachin and Wei (12) pro-
posed to adjust α1 and α2 so that the overall type I error rate is
α1+α2(1−α1)= 0.05.

2.3. APPROXIMATE LIKELIHOOD RATIO TEST
The Hotelling’s T test examines whether the vector β is a vector of
zero

nβ̂6−1β̂,

Here n is the sample size in testing each hypothesis. Under H 0,
the Hotelling’s T test statistic has an asymptotic Chi-square distri-
bution. Follmann (13) modified Hotelling’s T test for one-sided
alternatives. His procedure rejects the null when the p-value of the
Hotelling’s T test is less than twice its nominal level and the sum
of the treatment effects is in the desired direction (positive or neg-
ative). Tang et al. (14) proposed an approximate likelihood ratio
test (ALRT) for one-sided alternative hypotheses. A J × J matrix
A which satisfies A′A=6−1 and A6A′= I is calculated, where I
denotes the identity matrix. Define z =

√
nAβ̂ where the vector

β̂ is mapped into a new vector z with independent components
zj, j= 1, . . ., J. For Ha: at least one β j> 0, the ALRT statistic is
calculated as

ALRT =
J∑

j=1

max (zj , 0)2,

where negative zj values contribute zero. Hence the absolute mag-
nitude of negative zj has no impact on ALRT. The ALRT statistic
follows a mixed Chi-square distribution under H 0.

2.4. MAX TEST
Another type of global tests employ the maximum of the
standardized test statistics (15). The test statistic goes as follows

MAX = max

(
| β̂1 |

SD(β̂1)
,
| β̂2 |

SD(β̂2)
, . . . ,

| β̂J |

SD(β̂J )

)
,

where SD(β̂ j) is the standard deviation of β̂ j . Given the one-to-

one relationship between
| β̂ j |

SD(β̂ j )
and its p-value, an equivalent test

statistic is the minimum of the P-values. The MAX test is powerful
to detect alternatives where the treatment effects are non-zero in
at least one endpoint/measurement/stratum.

2.5. INTERSECTION-UNION TEST
Establishment of bioequivalency is required by the U.S. Food
and Drug Administration (FDA) in approving generic drugs. The
brand-name drug and its generic version are considered indifferent
for the jth outcome if βj ∈ (−εj , εj), where the indifferent range
εj is decided clinically. FDA is interested in whether the generic
drug is superior in at least one aspect while non-inferior in all
aspects. Therefore, the alternative of interest goes as follows Ha:
{max(β1,β2, . . .,βk)> 0}∩ {min(β1+ε1,β2+ε2, . . .,βk+εk)> 0}
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Table 2 | Comparison of five global test statistics.

Test Test statistic

SUM SUM =
∑J

j=1 β̂ j

Two-step: step one LRT = −2(L0 − La)

Two-step: step two β̂

ALRT ALRT =
∑J

j=1 max (Zj , 0)2

IUT ALRT, Tj =
β̂ j +εj

SD(β̂ j )
j =1, . . ., J

MAX MAX = max
(

β̂1
SD(β̂1)

, β̂2
SD(β̂2)

, . . . , β̂J
SD(β̂J )

)
L0 and La represent the maximum log likelihood under H0 and Ha respectively.

And β̂ is the coefficient estimates from the pooled data.

where ∩ denotes intersection. The intersection-union test (IUT)
(16–18) is most frequently used in these settings. It is a closed pro-
cedure which rejects the overall null hypothesis if and only if all
null hypotheses included in the procedure are rejected. The ALRT
is used to test against the alternative max (β1,β2, . . .,βk)> 0.
Non-inferiority in the jth endpoint is tested by

β̂ j +εj

SD(β̂ j)
for j = 1, . . . , J .

Because the overall rejection region is the intersection of all
rejection regions, the overall type I error will not exceed α if the
type I error rates of individual tests are set at α. Although more
than one tests are carried out in IUT, it is included in the cat-
egory of global tests because it draws an overall conclusion, not
multiple hypothesis-specific conclusions. The five global tests are
summarized in Table 2.

2.6. COMPARISON OF REJECTION REGIONS OF THE GLOBAL TESTS
We take the special example with two coefficient estimates(
β̂1, β̂2

)
, which are are bivariate normal with mean (0, 0), vari-

ance 1 and 2 respectively, and correlation coefficient 0.3. The
null and alternative hypotheses are H 0: (β1= 0)∩ (β2= 0) versus
Ha: (β1> 0)∩ (β2> 0). The rejection regions of the five global
tests are shown in Figure 1, when α= 0.05 in each individual
test. The five rejection regions imply that each test has optimal
power against different alternatives. The Wei-Lachin SUM test
rejects

(
β̂1, β̂2

)
outside a straight line with slope –1 which rep-

resents a constant sum. The rejection region of the Two-Step test
can be viewed as removing two sides from the rejection region
of the SUM test. The MAX test and ALRT reject points with
a large positive value in at least one dimension. The rejection
region of the IUT eliminates points with negative or close to
zero values in any endpoint compared to the rejection region of
ALRT.

3. SIMULATION STUDIES
We simulate binary data following a logistic model to illustrate
the global tests. Two different scenarios are examined – correlated
multiple outcomes and independent stratified data. For correlated
outcomes, each subject i has two endpoints. The independent

data are from two strata. Two independent covariates are gener-
ated: a binomial variable X 1ij with equal probability to be zero
or one and a normal variable X 2ij with mean 0 and standard
deviation 5. The outcomes Yij follow Bernoulli distribution spec-
ified by logit {p(Yij= 1)}= ηj+β jX 1ij+ θX 2ij. Note the effects of
the treatment X 1ij is reflected by two endpoint-specific regression
coefficients, β1 and β2. Correlated binary outcomes are generated
following Park, Park, and Shin method (19). The intercepts for
endpoint 1 and 2 are η1= 0.5, η2= 0.2, and the coefficient for
X 2ij is θ = 0.1 for both endpoints. In simulating the independent
binary data, θ = 0.02. In case of unequal sample sizes in the two
endpoints,observations in the endpoint with less subjects are miss-
ing completely at random. Maximum likelihood estimator for β1

and β2, as well as the covariance matrix
∑(

β̂1, β̂2

)
are calculated

through generalized estimating equations (20). One-sided alterna-
tives Ha: (β1> 0)∩(β2> 0) are tested. Test statistics are calculated
using β̂1, β̂2. Each setup is repeated 1000 times. In each iteration,
all the test statistics are calculated using the same dataset. We exam-
ine and compare the powers and Type I error rates of all five tests
for different true values (Table 3), different levels of correlations
(Table 4), and different sample sizes at each endpoint (Table 5).

The powers and Type I error rates for different (β1, β2) values
are listed in Table 3. The correlation between Yi1 and Yi2 is set
to be 0.4 and each endpoint has 100 observations. All tests except
the IUT maintain the Type I error rates close to the nominal level
0.05. Without prior knowledge of the indifference range, we set
the most restrictive indifference range where εj= 0 for every end-
point which is equivalent to requiring all treatment effects to be
positive, leading to low overall type I error rate and power. IUT
tends to be more conservative than other methods because FDA is
more concerned with false positives and only approves new treat-
ment when there is significant evidence supporting its superiority.
The procedures can be divided into two groups according to how
the power changes when the difference between β1 and β2 gets
larger. The first group includes Wei-Lachin SUM and Two-Step.
They are more powerful than the other group when β1=β2, but
sensitive to non-homogeneous treatment effects. The power of the
Wei-Lachin SUM test drops from 52 to 21% when β2 drops from
0.6 to 0 while β1 remains 0.6. The decreasing trend is even more
obvious with the Two-Step. The second group includes ALRT and
the MAX test. They are robust to non-homogeneous treatment
effects.

In Table 4, 100 correlated pairs (Yi1, Yi2) are generated with
various correlation coefficients. All the methods incorporate infor-
mation from both endpoints. When two outcomes are highly
correlated, the treatment effects estimated from both endpoints,
β̂1 and β̂2, tend to be similar and provide less information com-
pared to the independent case, hence lower power. However, the
IUT has a reversed pattern because with higher positive correla-
tion, the non-inferiority tests on the two endpoints tend to agree
more, leading to higher overall rejection rates.

Table 5 lists the different performance of the tests with unequal
sample sizes for the two endpoints. When sample sizes are not bal-
anced between the two endpoints, most tests have reduced power
because the test statistics combine information from all endpoints
and a large variance in one endpoint leads to large variance of the
overall test statistic. ALRT is robust to unequal sample sizes. If
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FIGURE 1 | Comparison of rejection regions of five global tests.
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Table 3 | Simulation results: size and power (%) with different true

value positions.

True values ρ Testing procedure

β1 β2 SUM Two-step IUT ALRT MAX

0 0 0.4 4.9 4.7 0.7 4.4 4.5

0.3 0.3 0.4 21 20 5 18 18

0.6 0.6 0.4 52 50 23 48 46

0.6 0.3 0.4 35 33 11 35 36

0.6 0 0.4 21 17 3 32 33

0.6 −0.3 0.4 11 7 1 33 29

The Type I error 4.7% for Two-Step refers to cases rejected in Step Two. The Type

I error for the three tests in IUT are 4.3%, 5.1%, and 4.4%, respectively. The

intersection of the three rejection regions gives the overall Type I error rate.

Table 4 | Simulation results: power (%) under different correlation

between outcomes.

True values ρ Testing procedure

β1 β2 SUM Two-step IUT ALRT MAX

0.6 0.6 0 63 61 18 58 52

0.6 0.6 0.4 52 50 23 48 46

0.6 0.6 0.8 42 40 27 37 41

0.6 0.3 0 44 42 7 40 38

0.6 0.3 0.4 35 33 11 35 36

0.6 0.3 0.8 26 24 12 28 30

ρ Represents the correlation coefficient between the outcomes, not the correla-

tion between the estimated regression coefficient.

treatment effects are equal in both endpoints (β1=β2= 0.6), the
power of ALRT does not change with the distribution of samples
into each two endpoints as long as the total sample size remains
the same. When the treatment effects differ in the two endpoint
(β1= 0.6, β2= 0.3), the power of ALRT could either increase or
decrease depending on which endpoint has more subjects. If the
endpoint with a larger treatment effects has a larger sample size,
ALRT has higher power. If the endpoint with a smaller treatment
effect gets more samples, the power decreases.

4. CONTROLLING FWER/FDR IN GENOMIC STUDIES
4.1. STEPWISE PROCEDURES AND FDR
Stepwise procedures are classified into one-step procedures and
multi-step procedures. One-step procedures set a uniform thresh-
old for all the unadjusted P-values while multi-step procedures
set different thresholds for different hypotheses depending on the
order of the unadjusted P-values. Multi-step procedures can be
carried out step-down or step-up (21, 22). In step-down proce-
dures, the hypothesis with the smallest P-value is tested first. And
as long as one hypothesis fails to be rejected, all the hypotheses
with larger unadjusted P-values will fail to be rejected. On the
contrary, step-up procedures start from the largest unadjusted P-
value and reject all smaller unadjusted P-values after the first one
is rejected.

Table 5 | Simulation results: power (%) with different sample sizes.

True values Sample size ρ Testing procedure

β1 β2 n1 n2 SUM Two-step IUT ALRT MAX

0.6 0.6 100 100 0.4 52 50 23 48 46

0.6 0.6 50 150 0.4 41 37 15 49 30

0.6 0.6 25 175 0.4 30 26 5 51 16

0.6 0.3 100 100 0.4 35 33 11 35 36

0.6 0.3 50 150 0.4 27 26 7 23 21

0.6 0.3 25 175 0.4 18 18 3 23 9

0.6 0.6 100 100 0 63 61 18 58 52

0.6 0.6 50 150 0 55 50 14 55 37

0.6 0.6 25 175 0 36 34 9 54 17

0.6 0.3 100 100 0 44 42 7 40 38

0.6 0.3 150 50 0 37 33 7 47 24

0.6 0.3 175 25 0 24 22 5 48 10

In this manuscript, the FWER is preserved at nominal level in a
strong sense, that is, FWER is no larger than the nominal level for
testing any subset of the hypotheses set. Given the large number of
hypotheses, researchers are often more interested in a more inter-
pretable quantity, the FDR (23). FDR is the rate that the rejected
or significant features are truly null. The numbers of true and false
positives can be calculated directly from FDR. FDR helps to avoid
a flood of false positives when most of the hypotheses are truly
null or missing out significant features when the number of true
alternative hypotheses is large. FDR can be estimated as

FDR =
π0mt∑J

j=1 I (Pj ≤ t )
,

where m is the total number of hypotheses being tested, π0 is
the percent of true null among them, I is the indicator for a true
statement in the bracket, and t is the cutoff value of p-values to
call a feature significant. Although π0 is unknown, it can be esti-
mated from the distribution of P-values. Benjamini and Hochberg
(24) developed a step-up procedure to control FDR at level q*. For
ordered unadjusted P-values P(1), P(2), . . ., P(J), we reject the first

j hypotheses with the smallest j P-values if P(j) ≤
jq∗

J .

4.2. RESAMPLING METHOD
Westfall and Young (25) and Troendle (26) developed resampling
procedures which simulate the joint distributions of the P-values
under the null while maintaining their correlation structure. The
procedure starts with bootstrap or permutation under the null
from the original sample. Then hypothesis-specific pivotal test
statistics and the corresponding P-values are calculated on the
simulated data. The steps are repeated a large number of times
to achieve an empirical distribution of (P1, P2, . . ., PJ) under the
null which maintains the correlation structure. The unadjusted P-
values for the jth hypothesis is the percent of times the jth imputed
test statistic is larger than or equal to the jth test statistic from the
original data. Step-down or step-up procedures can be carried out
on the unadjusted P-values based on resampling. There is a resam-
pling option in SAS“multtest”procedure for several tests including

www.frontiersin.org December 2013 | Volume 1 | Article 63 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Epidemiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pan Multiple testing in clinical trials and genomics

Table 6 | Real data analysis: association between log(GFR) and 14

SNPs.

SNP Minor Raw Bonferroni Sidak Hochberg FDR

rs307806 A 0.01071 0.1499 0.1399 0.1499 0.1499

rs2279622 T 0.03383 0.4736 0.3823 0.4398 0.1939

rs4693614 G 0.06319 0.8846 0.5990 0.6924 0.1939

rs11715496 A 0.06702 0.9382 0.6214 0.6924 0.1939

rs8042694 G 0.06924 0.9693 0.6338 0.6924 0.1939

rs2259458 T 0.22639 1.0000 0.9725 0.9791 0.4245

rs3824935 T 0.23555 1.0000 0.9767 0.9791 0.4245

rs2027440 C 0.24256 1.0000 0.9795 0.9791 0.4245

rs2276768 T 0.30994 1.0000 0.9944 0.9791 0.4821

rs10497435 C 0.44626 1.0000 0.9997 0.9791 0.6248

rs3814995 T 0.52058 1.0000 1.0000 0.9791 0.6626

rs2705897 T 0.61445 1.0000 1.0000 0.9791 0.7169

rs7844961 T 0.73593 1.0000 1.0000 0.9791 0.7925

rs4900312 A 0.97914 1.0000 1.0000 0.9791 0.9791

the two-sample t -test, Cochran-Armitage test and Fisher’s exact
test. However, this procedure does not allow covariate adjustments
and can not be used in multiple comparisons in regressions.

4.3. BONFERRONI ADJUSTMENT
The Bonferroni adjustment is a one-step procedure which rejects
the jth null hypothesis H0j when the p-value in testing the jth
hypothesis Pj ≤

α
J . The FWER in the Bonferroni procedure is

conserved at α level because

Pr(Reject any H0j |H0) = Pr


J⋃

j=1

(Pj ≤
α

J
)|H0


≤

J∑
j=1

Pr(Pj ≤
α

J
|H0)

=

J∑
j=1

α

J

= α,

where ∪ denotes union. Alternatively, researchers may compute
adjusted P-values as P∗j = Pj × J and compare P∗j to the nominal

level α. The Bonferroni adjustment is computationally straight
forward because the threshold for significant P-values in each
hypothesis is just the FWER divided by the number of hypotheses.
However, Bonferroni procedure is conservative with low power.

Wiens (27) and Huque and Alosh (28) modified the Bonfer-
roni procedure with fixed testing sequence procedure. It allo-
cates the overall Type I error rate sequentially and controls
FWER at the nominal level. Let the sequence of hypotheses be

H (1)
0 , H (2)

0 , . . . , H (J )
0 . Assign type I error rate αj to each of the

null hypothesis such that
∑J

j=1 αj = α. Furthermore, if the first

hypothesis is not rejected, its portion of the type I error α1 will
be passed onto the second hypothesis. That is, the type I error
rate for the second hypothesis becomes α1+α2 conditional on

that H (1)
0 fails to be rejected. On the contrary, if H (1)

0 is rejected,

the type I error rate of H (2)
0 remains α2. In summary, the type I

error rates of unrejected hypotheses accumulate and are passed
onto the next hypotheses until a hypothesis is rejected or the last

hypothesis H (J )
0 .

4.4. HOLM, SIDAK, AND SIMES PROCEDURES
Holm method is a step-down procedure (29). First, it ranks all
the observed p-values from smallest to largest P(1), P(2), . . ., P(J)

Compare each Pj to α
J+1−j starting from the smallest P(1). Let

the first occurrence of P(j) > α
J+1−j be the kth ordered p-

value. Then hypotheses corresponding to the first k − 1 p-values
P(1), . . ., P(k−1) will be rejected and the hypotheses from the
kth one on corresponding to P(k), . . ., P(J) will not be rejected.
Alternatively, researchers can also compute the Holm’s adjusted p-
values and compare them to α. The adjusted p-values is based on
the ordered p-values P(1), P(2), . . ., P(J) and P∗(j) = maxi≤j{(J−i+

1)P∗(i)∧ 1}where∧ denotes taking the minimum. The adjusted p-
values are capped at 1 by taking the minimum of (J−i+1)P∗(i) and
1. Besides, the jth adjusted p-value is the maximum in the first j
values, resulting in non-decreasing sequence of adjusted P-values.

The Sidak (30) correction assumes that the J test statistics are
mutually independent and replaces the element-wise p-value cut-

off α/J by 1− (1− α)
1
J . It is less conservative than the Bonferroni

correction because 1 − (1− α)
1
J ≥

α
J for n≥ 1. Another set of

thresholds combining the Holm threshold and Sidak correction,

1− (1− α)
1
J , 1− (1− α)

1
J−1 , . . . , 1− (1− α)

1
1 , also maintains

FWER at α.
Simes (31) procedure is also a step down procedure that rejects

H 0j when P(j) ≤
jα
J . Here P(1), P(2), . . ., P(J) are the ordered

P-values from smallest to largest. Hochberg and Liberman (32)
extended the Simes procedure by allocating different weights to
the P-values depending on prior information on each hypothesis.

5. A REAL CASE: GENOMIC STUDIES BASED ON
A CLINICAL TRIAL

We illustrate the stepwise procedures using the Genome Wide
Association Study (GWAS) from the Diabetes Control and Com-
plications Trial (DCCT) and Epidemiology of Diabetes Interven-
tion and Complication (EDIC) trial. DCCT and EDIC are two
clinical trials based on the same type 1 diabetes cohort in different
time periods. The survival rate and life expectancy of type 1 dia-
betic patients have been improved greatly in recent years. However,
chronic hyperglycemia status leads to deleterious changes in blood
vessels. Cardiovascular diseases and microvascular complications
are major threats to the long-term quality of life of type 1 dia-
betic patients. This study focuses on microvascular complications
among type 1 diabetic patients. In EDIC, 1441 Type 1 diabetic
patients enrolled from 1983 to 1989. They were randomized to
either the intensive or conventional therapies, where participants
in the intensive group monitored and regulated their blood glucose
level constantly. DCCT ended in 1993 when significant reduction
in the risk of microvascluar complications was found in the inten-
sive therapy group (33). Of the 1441 DCCT participants, 1394
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continued to the EDIC trial, where everyone receives the intensive
therapy.

The abnormalities in the capillaries lead to symptoms in differ-
ent parts of the body – nephropathy, retinopathy, and neuropathy.
The goal of this analysis is to validate fourteen SNPs associated
with severe nephropathy and persistent microalbuminuria in Al-
Kateb et al. (34). Urine glomerular filtration rates (GFR), which
is an important clinical index of diabetic nephropathy, have been
recorded annually in the DCCT/EDIC cohort. Log-transformed
GFR values are employed as our main outcome. Linear regres-
sions of the last GFR observation versus each of the fourteen SNPs
are fitted, adjusting for age at randomization, gender and duration
of diabetes at enrollment, stratified by the treatment group. Differ-
ent SNP coefficients are assumed in the intensive and conventional
treatment groups because patients under the two treatments were
in quite different biophysical and metabolic statuses and the inten-
sive control of the glucose level might suppress or activate SNP
effects. Among the global tests for SNP effects in different strata,
the SUM test is employed as the effects for each SNP are expected
to be in the same direction across the two strata and the SUM test
is the maxmin test under such conditions.

Fourteen raw P-values are generated from the SUM tests, one
for each SNP. To maintain the family wise Type I error rate or false
discovery rate, four different stepwise procedures are performed –
Bonferroni, Sidak, Hochberg, and FDR. All four procedures are
directly available in SAS package “multtest.” P-values of various
procedures are listed in Table 6. We can see that although some
raw P-values are <0.05, none of the adjusted P-values remain
significant. That is, after FWER is controlled, the seemingly sig-
nificant results are not actually significant any more. Among
the procedures controlling FWER, the Sidak and Hochberg pro-
cedures give smaller adjusted P-values and therefore are more
powerful than the Bonferroni adjustment. Although researchers
usually require the FWER no larger than 0.05, they might set
higher cutoff value of FDR depending on the context of the
research problem.

6. DISCUSSION
This manuscript reviews methods for the multiple hypothesis test-
ing problem. Five global tests widely used in clinical trials are
reviewed: SUM test, Two-Step test, ALRT, IUT, and the MAX
Test. The plots of the rejection regions illustrate the different
alternatives to which the tests are directed. The SUM and Two-
Step tests are powerful for alternatives with homogeneous effects.
Two-Step test can be viewed as a modification of the SUM test
that incorporates information on how different the treatment
effects are and thus more sensitive to non-homogeneous treat-
ment effects. ALRT is robust to not only unequal treatment effects
but also unequal sample sizes from the endpoints. MAX test is
also robust for non-homogeneous treatment effects. IUT provides
information about the overall superiority and individual non-
inferiority. In genomic studies, specific conclusions on individual
hypotheses are desired and stepwise procedures are commonly
used to control FWER or FDR. The Westfall and Young’s resam-
pling method generates the joint distribution of P-values under
the null and maintains the correlation structure between them.

A selected SNP dataset from a clinical trial is used to illustrate
the stepwise procedures. Finally, among the hundreds of papers
on multiple hypothesis testing topic, only a selected few com-
monly used multiple hypothesis testing adjustment methods are
reviewed here. Our goal is to introduce the classical methods
and present the ideas behind them. They serve as the basis on
which researchers may choose and develop their own method
with careful consideration of the particular research setup and
clinical questions.
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