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INTRODUCTION

Fractional anisotropy (FA), a scalar measure derived from diffu-
sion tensor imaging (DTI), indexes the degree of anisotropy of
water diffusion in brain tissue. In normal white matter (WM),
water diffusion is highly constrained to predominantly move par-
allel to the long axis of axon bundles, or nerve fibers. High FA
is thus characteristic of normal WM and may be an indicator of
its health. Low FA, on the other hand, can reflect loss of WM
microstructural elements in tissues, which normally have high FA
and may be an indicator of disease. Low WM FA is associated with
demyelinating disease, dementia, traumatic brain injury (TBI),
and normal aging.

Inter-subject variability of WM microstructure has been
reported with normal subjects as well as patients with various
neurodegenerative diseases (1-6). Neurodegeneration is also a fea-
ture of normal aging and WM effects of aging disrupt cerebral
connectivity, leading to cognitive dysfunction (7, 8). Commonly
applied statistical analyses, e.g., t-tests at each voxel, may be inher-
ently insensitive to disease pathology due to inter-subject spatial
variation (2—4, 9). A whole brain (or whole WM) histogram
approach has been used in some studies to address this limita-
tion (10, 11). For example, Benson et al. (10) estimated kurtosis,
skewness, peak height, and mean from histograms of WM FA
in TBI patients and normals. They aggregated these measures to
test for group differences in the shapes of the individuals’ his-
tograms. This analysis demonstrated that the FA distribution of

Neuroimaging signal intensity measures underlying physiology at each voxel unit. The brain-
wide distribution of signal intensities may be used to assess gross brain abnormality. To
compare distributions of brain image data between groups, t-tests are widely applied. This
approach, however, only compares group means and fails to consider the shapes of the
distributions. We propose a simple approach for estimating both subject- and group-level
density functions based on the framework of Gaussian mixture modeling, with mixture
probabilities that are testable between groups. We demonstrate this approach by applica-
tion to the analysis of fractional anisotropy image data for assessment of aging effects in
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TBI patients exhibited higher kurtosis, higher peak height, and
greater skew toward higher FA, but lower mean, compared to
those derived from controls. Although this approach used standard
statistical summary measures, differences among the shapes of dis-
tributions between groups are not easily understood using these
summary measures. In addition, these summary measures are not
proper for description of multimodal distributions, a special case,
which could result from a mixture of multiple distributions (12).
Therefore, we propose that estimation and comparison of den-
sity functions between groups based on a mixture distribution
approach will be more relevant to brain imaging data, which can
exhibit unusual distributions.

In this study, we propose a simple approach to estimate subject-
level density functions. The technique is based on a Gaussian
mixture model (GMM), which assigns subject-specific mixing
probabilities to latent underlying Gaussian densities a posteriori
to characterize an overall distribution of each subject. Estimation
of group-level density functions will be based on the estimated
subject-level density functions. Differences between groups there-
fore only depend on the composition of mixture probabilities to
underlying Gaussian densities, which lead to an easy and intu-
itive comparison between groups. For instance, in a simple GMM
assuming two Gaussian density components with equal variance
constraint, a mixture density function with higher mixing proba-
bility to the Gaussian components with lower mean is character-
ized as a distribution with lower mean and positive skew, while
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the opposite is characterized as a distribution with higher mean
and negative skew. Additionally, the mixture density function with
mixing probabilities (1/2, 1/2) is a symmetric distribution with
the highest variance in the data. We apply the proposed method
to normal control subjects, to examine the effects of aging on the
brain-wide distribution of FA.

GENERAL GMM

A general form of a GMM with m components can be expressed
as follows:

m

Fzi0) =Y t(k) o (i), (1)

k=1

where Zj; is FA measurement of the j-th voxel (j=1, ..., N)
observed from the i-th subject (i=1, ..., n). The density func-
tion f{.) is assumed to be a convex combination of m latent
Gaussian densities (d)k(Zij) =¢ (ch;kuk> Jk=1,..., m) with
corresponding m mixing probabilities [t(k), k=1, ..., m], where
¢(.) is the standard normal density function, and = (jL, o}, and
T k=1, ..., m). The likelihood function based on model (1) is
expressed as follows:

n N m
L(z0) = ]_[ 1_[ [Z (k) Ok (Zij):|~

i=1j=1 Lk=1

We assume that the variances are the same across the m-
Gaussian densities, i.e., 61 =.. .0, =0, which reduces ¢} (k=1,
Com) 1o 0k(Z) = b (@
densities then differ only by their centers. We order the centers
of the m-Gaussian densities as ] < ... < \ty. This parameteriza-
tion gives easy interpretation of results for comparison of density
functions across subgroups. For example, a density function with
higher mixing probabilities for low order Gaussian densities will
have a smaller mean than that with higher mixing probabilities for
higher order Gaussian densities; a density with mixing probability
of 1/2 to each of the two Gaussian densities (lowest, highest) will
have the largest variance than any other combination of mixture
probabilities.

To estimate the parameters 0 of the general GMM with equal
variance constraint, we applied an expectation maximization (EM)
algorithm (13); of note, a Bayesian mixture modeling approach
(14, 15) is an alternative approach. Specifically, the EM algorithm
treats the mixture model in Eq. (1) as an incomplete likelihood
function with missing membership information for each obser-
vation. In each iteration of the EM algorithm, expectation-step
(E-step) computes expectation of complete specification of log-
likelihood function with respect to membership values with given
data and estimated parameters, and maximization-step (M-step)
computes maximum likelihood estimates of parameters speci-
fied in the likelihood function with the expected membership
values (16). The applied EM algorithm is provided in Table 1.
The total number of parameters with equal variance condition
for m-Gaussian densities is 2m [=m (means) + m — 1 (mixing
probabilities) + 1 (variance)]. To determine the optimal number

) in Eq. 1. The m latent Gaussian

Table 1 | EM algorithm adopted for this study.
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A variable noted with (t) is the estimated value for the variable at the t-th iteration.

of the latent Gaussian densities, ¢i’s (k=1, ..., m), we used
the Akaike information criterion (AIC), which is expressed as

n n N m “
2d—2log lik(z|0) =2d—2)_ > log (Z T (k) dx(2) ]. So that
i=1j=1 k=1
the optimal number of Gaussian densities () is associated with a
minimum AIC value.

ESTIMATION OF SUBJECT- AND GROUP-LEVEL DENSITY FUNCTIONS
In this section, we propose a method to estimate subject- and
group-level density functions and their associated mixing proba-
bilities. This approach fits the general GMM of Eq. 1 to the full
dataset (Zj;, i=1, ..., nj=1, ..., N), all voxels from all sub-
jects, and estimates subject- and group-level density functions a
posteriori.

Under the general GMM, the membership probability of z;
to k-th Gaussian density, denoted by t;;(k), is obtained based on
Bayes theorem as follows:

SPLCLC 2)

> t(D) & (zij)

=1

which resultsin )" 1;(k) = 1.
k=1

The estimated_subject—level density function f; for the i-th
subject can be expressed as follows:

fizi0) = Y itk) ¢k (z), (3)

k=1

with ¢x(z;j) (k=1, ..., m) estimated from the general GMM Eq.
(1) using all voxel data from all subjects. The parameter t;(k) in
Eq. 3 is the mixing probability of the k-th Gaussian density for
the i-th subject, which we estimate as an average of membership
probabilities of Z;; (j=1, ..., N) as follows:

| N
Ti(k) = N Z Tij (k),
=1
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where 1;(k) was estimated based on Eq. 2. Similarly, the esti-
mated group-level density function fe« for the g-th group can be
expressed as follows:

for(zip) = ) 1o (k) bk (2, (4)

k=1

where g+ (k) in Eq. 4 is the mixing probability of the k-th Gauss-
ian density for the g-th group, which we estimate as an average of
T;(k) of the subjects in the g-th group as follows:

N
> >,

i€ Gy j=1

1 1
Tex(k) = — (k) = —
¢ (k) ng‘Zw) Y
i€ Gy
where g is the number of subjects in the g-th group.

EXAMPLE

SUBJECTS

The Albert Einstein College of Medicine Institutional Review
Board (IRB) approved and monitored this study. Twenty-eight
normal subjects without history of head injury, cardiovascular
or cerebrovascular disease, diabetes, or neurological or psychiatric
disease were recruited between August 2006 and May 2010 through
advertisements. Demographic data for the 28 normal subjects are
summarized in Table 2.

DIFFUSION TENSOR IMAGE ACQUISITION AND IMAGE DATA
PREPROCESSING

Imaging was performed using a 3.0 T MRI scanner (Achieva;
Philips Medical Systems, Best, The Netherlands) with an eight-
channel head coil (Sense Head Coil; Philips Medical Systems).
T1-weighted whole-head structural imaging was performed using
sagittal three-dimensional magnetization-prepared rapid acqui-
sition gradient echo (MP-RAGE; TR/TE=9.9/4.6 ms; field of
view, 240 mm?; matrix, 240 x 240; and section thickness, 1 mm).
T2-weighted whole-head imaging was performed using axial
two-dimensional turbo spin-echo (TR/TE =4000/100 ms; field
of view, 240 mm?; matrix, 384 x 512; and section thickness,
45mm). DTI was performed using single-shot echo-planar
imaging (TR/TE =3800/88 ms; field of view, 240 mm?; matrix,
112 x 89; section thickness, 4.5 mm; independent diffusion sen-
sitizing directions, 32; and b=800s/mm?). The images were
preprocessed as described previously (4, 9).

DEMONSTRATION OF THE PROPOSED METHODS USING EXAMPLE FA
IMAGE DATA
Fractional anisotropy datasets were normalized prior to fitting
the proposed models. The normalization was necessary because it
is well-known that FA is heterogeneous across brain regions; for
example, higher FA is characteristic of deep WM such as the corpus
callosum, and lower FA is typical of peripheral WM. Specifically,
xij;xj with mean
(&j) and standard deviation (sj) of n subjects (i=1, ..., n) at each
voxel (j=1,...,N).

Subjects were divided into four age groups: 20-29, 30-39, 40—
49, and 50-59 years. Each age group consisted of seven subjects

we normalized each FA measurement x;; by z;; =

Table 2 | Subjects’ demographic characteristics.

Gender Number Mean years Minimum Maximum
of of education years of years of
subjects (SD) education education

All ages All genders 28 13.6 (1.6) 12 18

Female 16 13.9 (1.8) 12 18

Male 12 13.2 (1.3) 12 16

20-29 Al 7 14.1 (1.7) 12 16
Female 4 14.3 (1.7) 12 16
Male 3 14.0 (2.0) 12 16
30-39 Al 7 12.9 (1.0) 12 14
Female 12.8 (1.0) 12 14
Male 3 13.0 (1.0) 12 14
40-49 Al 7 13.4 (1.6) 12 16
Female 14.3 (1.7) 12 16
Male 3 12.3(0.6) 12 13
50-69 Al 7 13.9 (2.0 12 18
Female 14.3 (2.6) 12 18
Male 3 13.3 (1.2) 12 14

(four women and three men). Age groups were matched for years
of education, differing by no more than 2 years; no significant
difference in years of education was detected among age groups
(p=10.76). Two Gaussian densities were required for the approach
based on the AIC.

In Figure 1, estimated density functions across the entire con-
trol group (n=28) and each of the four age groups are presented
(f (2),fgx (2),8 = 1,2,3, 4). Inference on the difference in shapes
of FA distribution across age groups was performed by estimating
mixing probabilities from the proposed estimation method; these
results are shown in Table 3 and Figure 2. We order estimated
Gaussian densities (¢g) by their centers, in ascending manner;
thus, we identify ¢, as the Gaussian density with the lowest center.

Mixing probabilities of the two Gaussian densities, k =1 and
k=2, show opposite patterns of change across age groups. As
age increases the mixing probability of the first Gaussian den-
sity (k=1) increases while that of the second Gaussian density
(k=2) decreases. Box plots describing distributions of subject-
level estimated mixing probabilities to the second Gaussian density
[ti(k=2),i=1,...,n] are provided for all age groups in Figure 2.
While mixing probabilities to the second Gaussian density (k =2)
were lower for older age group in that lower mean FA for older
age group, higher between-subject variance is noted in Figure 2. A
Kruskal-Wallis test was performed to compare subject-level mix-
ing probabilities between Group = 1and Group =g (g =2,3,4).A
significant difference in the mixing probability was found between
Groups 1 (20-29 years) and 4 (50-59 years) with p =0.048 with
degrees of freedom (1, 12). This significantly lower mean mixing
probability to the Gaussian density with a greater mean implies
that FA declines significantly over the age of 50 years. This pattern
also implies lower intra-subject variance in FA distribution for the
age group (50-59 years) because of higher mixing probability to
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FIGURE 1 | Estimated age group-wise density functions. Estimated density function for all and each age group is demonstrated; (A) from all subjects,
(B) from subjects aged 20-29, (C) from subjects aged 30-39, (D) from subjects aged 40-49, and (E) from subjects aged 50-59.

the first Gaussian density (k=1). While all age groups showed
positively skewed FA distributions (Table 3), the youngest group,
aged 20-29 years, showed the greatest skewness to the right. How-
ever, the Kruskal-Wallis test, which compares all four groups was
not significant (p = 0.141, df = 3, 24).

DISCUSSION

The proposed approach for subgroup density estimation with
GMM allows group comparison based on shape parameters rep-
resented by the relative mixing probabilities of the latent Gaussian
densities. Since Gaussian densities are estimated based on the
measurements from all voxels of all subjects, estimated individual
densities will differ only by their own mixing probabilities. Indi-
vidual densities are thus characterized by comparing the estimated
mixing probabilities. Although kernel density estimation (KDE)

Table 3 | Estimated mixing probabilities for each age group.

Age g+ (k=1) (s.e.) g+ (k=2)(s.e.)
All 0.7488 (0.0076) 0.2512 (0.0076)
20-29 0.7277 (0.0086) 0.2723 (0.0086)
30-39 0.7337 (0.0075) 0.2663 (0.0075)
40-49 0.7481 (0.0150) 0.2519 (0.0150)
50-59 0.7873 (0.0184)2 0.2127 (0.0184)2

“Two-sided p-value < 0.05. Each Gaussian density is specified as w, =—0.26,
w,=0.78 and o= 0.87

(17) is a widely applied statistical approach for density estima-
tion, a density function estimated by KDE does not provide shape
parameters for comparison between groups because the parameter

Frontiers in Public Health | Epidemiology

April 2014 | Volume 2 | Article 32 | 4


http://www.frontiersin.org/Epidemiology
http://www.frontiersin.org/Epidemiology/archive

Kim et al. A GMM for estimating subgroup density function

0.32 |- + —
0.3 |- _ —
0.28 |- —
0.26 |- —

[ ]

£ 0 i |

e O
0.22 |- —
0.2 |- —
0.18 |- —
0.16 |- —

FIGURE 2 | Box plots of subject-wise mixing probabilities by each age
group (G=1, 2, 3, 4). Subject-level estimated mixing probability to the
second Gaussian density [ti(k=2), i=1, ..., nl is demonstrated for each of

Group

the age groups (G=1, 2, 3, 4). Outliers in each box plot, marked with red +
signs, are defined as values that are more than 1.5 times the interquartile
range away from the top or bottom of the box.

determining the shape of a density function by KDE is only the
bandwidth for the chosen kernel function. In contrast, mixing
probabilities estimated in the present study enable comparison of
shapes between groups, which we have demonstrated with a real
FA data set.

The GMM approach proposed herein was designed to discrim-
inate density functions across different subgroups. This approach
implicitly assumes that the density function derived from all vox-
els will represent a mixture of at least two Gaussian components.
Testing for differences in the shapes of the density functions
from different groups is then possible by testing the means of
mixing rates assigned to m-Gaussian densities (where m > 2)
between groups. However, if one Gaussian density function (i.e.,
m=1) is sufficient to fit the entire distribution, discrimination
of density functions between different subgroups is not available
with the proposed approach. Additionally, the proposed GMM
is a highly parsimonious approach in that it does not incor-
porate any subject- or group-specific shape parameters in the

likelihood function; further improvement may be achieved by their
inclusion.

A GMM with unequal variance assumption resulted in little
difference in fitting performance compared with the proposed
approach with equal variance assumption (data not shown).
Nevertheless, application of non-Gaussian mixtures could be
employed, study of which is beyond the scope of the present paper
and should serve as a future study.

Initial application of the method to human FA datasets revealed
that the distribution of FA differs significantly between subjects
aged 20-29 years and those aged 50-59 years. Age-related change
in FA distribution was found in mean, variance (intra-subject,
between-subject), and skew. Since aging is a feature of neurodegen-
eration, this finding may have an implication to other neurodegen-
erative diseases, e.g., dementia and Alzheimer’s disease. Since the
present demonstration is based on a small sample, further exami-
nations with larger samples are warranted to fully characterize the
utility of this approach and the age effects it has revealed.
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