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Hemodynamic instability often leads to hypoperfusion, which has a significant impact on
outcome in both medical and surgical patients. Measures to detect and treat tissue hypop-
erfusion early by correcting the imbalance between oxygen delivery and consumption is of
particular importance.There are several studies targeting different hemodynamic endpoints
in order to investigate the effects of goal-directed therapy on outcome. A so-called multi-
modal concept putting several variables in context follows simple logic and may provide
a broader picture. Furthermore, rather than treating population based “normal” values of
certain indices, this concept can be translated into the individualized patient care to reach
adequate oxygen supply and tissue oxygenation in order to avoid under, or over resuscita-
tion, which are equally harmful.The purpose of this review is to give an overview of current
data providing the basis of this a multimodal, individualized approach of hemodynamic
monitoring and treatment.

Keywords: hemodynamic optimization, cardiac output, stroke volume, central venous oxygen saturation, venous
to arterial carbon dioxide gap

INTRODUCTION
Development of multiorgan disorders is often the result of hypop-
erfusion, which severely affects outcome of medical and surgi-
cal patients alike and substantially increases the utilization of
resources and costs (1). Therefore, the use of early and efficient
therapeutic strategies able to detect tissue hypoperfusion and to
treat the imbalance between oxygen consumption and delivery is
of particular importance (2). Traditional endpoints such as heart
rate, blood pressure, mental status, and urine output can be use-
ful in the initial identification of inadequate perfusion, but are
limited in their ability to identify ongoing, compensated shock
(3). Therefore, more detailed assessment of global macrohemody-
namic indices such as cardiac output (CO) and derived variables
and measures of oxygen delivery and uptake, may be necessary
to guide treatment (4, 5). Furthermore, after the optimization of
these parameters, indicators of tissue perfusion should also be
assessed to verify the effectiveness of therapy (6).

PHYSIOLOGICAL ISSUES
The primary goal of the cardiorespiratory system is to deliver
adequate oxygen to the tissues to meet their metabolic require-
ments. The adequacy of tissue oxygenation is determined by the
balance between the rate of oxygen transport to the tissues (oxy-
gen delivery, DO2) and the rate at which the oxygen is used by the
tissues (oxygen consumption, VO2) (7). The standard formulas to
determine oxygen delivery and oxygen consumption is shown in
Figure 1.

In the critically ill and in the perioperative period, there is often
an imbalance between delivery and consumption. Oxygen delivery
can be inadequate if arterial oxygen content (CaO2) and/or CO is
reduced (8, 9). The circulation can compensate to some extent,
and VO2 is usually independent in a wide range of DO2. However,
beyond a critical point any further drop in DO2 will inevitably
result in a decrease in VO2. In other words, after exhausting

compensatory resourcesVO2 becomes dependent on DO2 and aer-
obic metabolism will have to be switched to anaerobic metabolism,
leading to metabolic acidosis and oxygen debt (10).

The principle task of acute care is to avoid or correct oxy-
gen debt by optimization of the oxygen supply and consump-
tion. Furthermore, it is just as important to recognize that
DO2 and tissue perfusion has normalized, therefore any further
measures to increase DO2 may do harm by unnecessary over
resuscitation.

There is also mounting evidence that conventional parameters
such as blood pressure, central venous pressure, heart rate are poor
indicators of cardiac index or oxygen delivery (11, 12), and there
is also increasing evidence that, for example, in high-risk surgery
perioperative care algorithms based on advanced hemodynamic
monitoring are beneficial (13, 14).

GOAL-DIRECTED CONCEPT IN HEMODYNAMIC MONITORING
The multimodal concept in hemodynamic monitoring can be
translated into the individualized use of target endpoints for
hemodynamic stabilization instead of treating “normal” values,
and can help to reach adequate oxygen supply and tissue oxygena-
tion in order to avoid under or over resuscitation, which are equally
harmful. It is important to note, that so-called “normal” values
may be true for a population, but may be false for an individual
patient.

CARDIAC OUTPUT AND DO2 AS RESUSCITATION ENDPOINTS
Several clinical investigations were performed on CO and derived
variables based goals directed hemodynamic support in high-risk
surgery. In two recent meta-analyses, it was found that cardiac
index and DO2 guided treatment resulted in reduced mortality as
compared to high-risk surgical patients receiving standard therapy
(13, 14).
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FIGURE 1 | Oxygen delivery and consumption. DO2, oxygen delivery; SV,
stroke volume; HR, heart rate; Hb, hemoglobin; SaO2, hemoglobin arterial
oxygen saturation; PaO2, arterial oxygen partial pressure; CO, cardiac output;

CaO2, arterial oxygen content, VO2; oxygen consumption, SvO2; hemoglobin
mixed venous oxygen saturation; PvO2, venous oxygen partial pressure;
CvO2, venous oxygen content.

STROKE VOLUME VARIATION AND PULSE PRESSURE VARIATION AS
RESUSCITATION ENDPOINTS
Recently, less invasive devices assessing CO by pulse contour analy-
sis based on the radial artery pressure signal have been introduced.
Although these devices show lower precision compared to the gold
standards of thermodilution, there is some evidence that these
methods can adequately show changes and trends in the hemody-
namic status (15). As pulse pressure variation and stroke volume
variation are well established indicators of fluid responsiveness,
these devices seem to be simple and useful alternatives to invasive
hemodynamic monitoring (16). Furthermore, in recent studies
fluid therapy guided by SVV and PPV proved to be more accurate
than static preload indicators-based approaches and has also been
shown to improve patient outcome, by reducing postoperative
complication rate significantly (17, 18). However, pulse pressure
variation and stroke volume variation are limited to patients
who receive controlled mechanical ventilation with normal sinus
rhythm (19, 20).

VENOUS TO ARTERIAL CO2 GAP AS THERAPEUTIC ENDPOINT
Another easily obtainable blood flow related blood gas parame-
ter is the central venous to arterial carbon dioxide gap (dCO2).
Several authors have reported increased dCO2 in different low
flow states (21–23). In oxygen debt caused anaerobic metab-
olism, hydrogen ions are generated in two ways: (1) hydrol-
ysis of adenosine triphosphate to adenosine diphosphate and
(2) increased production of lactic acid (24). Hydrogen ions are
buffered by bicarbonate presented in the cells, and this process
will generate CO2 production (25). While arterial PaCO2 is vari-
able and dependent on pulmonary gas exchange, central venous
PvCO2 is dependent on the capability of the flow (i.e., CO)
to wash out carbon dioxide from the tissues. The Fick prin-
ciple adapted to carbon dioxide demonstrates the inverse rela-
tionship between the CO and dCO2 (26). This postulate that
increased dCO2 reflects decreased flow was confirmed in several
critically ill conditions such as severe sepsis, heart failure, and
severe hypovolemia (27, 28). Furthermore, adding the dCO2 to
ScvO2 for identifying VO2/DO2 >30%, there was an improve-
ment in specificity, positive predictive, and negative predictive
values (29).

In cases like severe sepsis, when oxygen uptake is insuffi-
cient due to microcirculatory and/or mitochondrial defects, ScvO2

may be elevated (i.e., false negative). Previous studies have sug-
gested that under such circumstances the increased value of dCO2

(>5 mmHg), may help the clinician in detecting inadequate DO2

to tissues, hence the complementary use of ScvO2 and dCO2 is
recommended (30–32).

MEASURES OF OXYGEN DELIVERY AND EXTRACTION
Perhaps the most commonly used methods to assess global
VO2/DO2 are mixed venous oxygen saturation (SvO2) and its
surrogate ScvO2. Central venous oxygen saturation is an easily
obtained parameter via a central venous catheter already in situ
in most critically ill patients and it is often used as a marker of
the balance between oxygen delivery and consumption. Because
of the different positions of the pulmonary artery and central
venous catheters (entire body in the case of SvO2 versus brain
and the upper part of the body in the case of ScvO2) there has
been a considerable debate on the interpretation of ScvO2 values
as compared to SvO2. Most of the studies that have analyzed the
relationship between ScvO2 and SvO2 have shown that ScvO2 is on
an average 5% higher than SvO2 and is considered as a reasonable
surrogate marker in the clinical setting (33–35). However, recent
clinical trials, mainly on septic patients, were unable to show sat-
isfactory agreement between ScvO2 and SvO2. This could in part
be explained by modifications of blood flow distribution and oxy-
gen extraction by brain and splanchnic tissues (36). It seems that
ScvO2 and SvO2 are not numerically equivalent but the changes
usually occur in a parallel manner (37).

The main factors, which influence ScvO2, are hemoglobin,
arterial oxygen saturation of hemoglobin, CO, and oxygen con-
sumption. Theoretically if three of these factors are kept con-
stant, the value of ScvO2 reflects the changes of the latter.
There are multiple physiologic, pathologic, and therapeutic fac-
tors, which influence venous oxygen saturation, such as ane-
mia, hypovolemia, contractility, bleeding, sedation, fever, pain,
etc. (38).

One of the important features of venous saturation is that it can
be pathologic both when it is high and when it is low. In a recent
large cohort of septic patients in the emergency department, it
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was found that mortality was 40% in patients admitted with an
ScvO2 <70% but in patients with an initial ScvO2 of >90%, it
was almost as high 34%. The latter was probably due to impaired
oxygen utilization (39). High ScvO2 values may thus represent an
inability of the cells to extract oxygen or microcirculatory shunt-
ing in sepsis (40). Therefore, additional measures are necessary
to help evaluating high ScvO2 values, such as for example lactate,
central venous to arterial dCO2, and by applying advanced invasive
hemodynamic monitoring.

Lactate, the end product on anaerobic metabolism, has been
thoroughly investigated over the last decades in critical care. It has
good prognostic value in several clinical scenarios such as trauma,
sepsis, and high-risk surgical patients (41). Not just the absolute
value, but its change over time (kinetics: determined by production
and clearance) seems an even better marker of adequate resuscita-
tion and outcome (42). A lactate decrease by 20% or more per 2 h
in the initial resuscitation of critically ill patients resulted shorter
length of stay in the intensive care unit and a lower mortality rate
when adjusted to predefined risk factors (43). However, if lactate
kinetics is assessed every 2–6 h, which can be regarded as far too
long considering that acute resuscitation should be corrected as
soon as possible, it seems that lactate kinetics rather than absolute
values should be followed as resuscitation endpoints. In cases,
when lactate production or elimination is impaired, the evalua-
tion of lactate clearance is difficult to interpret. These pathological
circumstances can be liver failure (44) or seizures (45).

PPV, dCO2, AND STROKE VOLUME GUIDED FLUID RESUSCITATION
In a recent animal experiment, we tested the effect of stroke
volume guided hemorrhage and fluid resuscitation (46). After
baseline measurements (T bsl), animals were bled until stroke vol-
ume index dropped by 50%, then measurements were repeated
(T 0). Thereafter animals were resuscitated with lactated Ringer’s
solution until baseline SVI values were reached, then final mea-
surements were recorded (T end). After bleeding, the SVI decreased
by the planned 50% at T 0 and returned to its initial value by T end

(Table 1). The CI also decreased after bleeding and reached a
higher value by T end as compared to T bsl. Pulse contour analysis
driven SVV and PPV increased from T bsl to T 0 and normalized by
T end. ScvO2 decreased from T bsl to T 0 and although increased
by T end, it remained lower, with a mean difference of 5% as
compared to T bsl.

In these experiments, ScvO2 and dCO2 correlated well with
changes in stroke volume. If the hemodynamic instability is cor-
rected, stroke volume, PPV, SVV, and dCO2 are in the physiological
range, the low ScvO2 can indicate a low hemoglobin level due to
low oxygen delivery. These data also confirm that more parameters
should be taken into account during resuscitation.

CONCLUSION
Early and adequate hemodynamic stabilization of the critically ill
has a significant effect on outcome. Rather than following cer-
tain numbers in protocols or algorithms, a multimodal approach,
of assessing hemodynamic variables together with the balance
between oxygen delivery and consumption, may help to get a
detailed picture about the hemodynamic status of our patients
and also gives a chance for individualized treatment. The latter

Table 1 | Hemodynamic and blood gas changes during stroke volume

based fluid resuscitation.

T bsl T 0 T end

Stroke volume index

(mL/m2)

26.8 ± 4.7 13.4 ± 2.3* 26.6 ± 4.1#

Cardiac index

(L/min/m2)

2.6 ± 0.4 1.8 ± 0.3* 2.9 ± 0.5*,#

Stroke volume

variation (%)

13.6 ± 4.3 22.6 ± 5.6* 12.2 ± 4.3#

Pulse pressure

variation (%)

13.0 ± 4.5 24.5 ± 7.6* 13 ± 4.2#

Venous to arterial

carbon dioxide gap

(mmHg)

5.3 ± 2 9.6 ± 2.3* 5.1 ± 2.6#

Central venous

oxygen saturation (%)

78 ± 7 61 ± 5* 73 ± 9*,#

Hemoglobin (g/dL) 12.05 ± 1.37 11.22 ± 1.39* 8.45 ± 1.1*,#

Data are expressed as mean ± SD; *p < 0.05 significantly different from Tbsl;
#p < 0.05 significantly different from T0.

T0, baseline measurements; T1, measurements following the hemorrhage; Tend,

measurements after the resuscitation. Data are presented as mean ± SD, statis-

tically significant difference was considered p < 0.05.

*Significantly different from T0.
#Significantly different from Tend.

means that the evidence, which proved beneficial for a population
in clinical studies gives the frame what we fine tune for the patient’s
individual needs reflected by changes in this complex picture of
physiology. Despite that this multimodal approach follows simple
logic, it has currently not been completely proven, which renders
the need for further clinical trials.
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