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Lyme borreliosis is an emerging infectious human disease caused by the Borrelia burgdor-
feri sensu lato complex of bacteria with reported cases increasing in many areas of Europe
and North America. To understand the drivers of disease risk and the distribution of symp-
toms, which may improve mitigation and diagnostics, here we characterize the genetics,
distribution, and environmental associations of B. burgdorferi s.l. genospecies across Scot-
land. In Scotland, reported Lyme borreliosis cases have increased almost 10-fold since 2000
but the distribution of B. burgdorferi s.l. is so far unstudied. Using a large survey of over
2200 Ixodes ricinus tick samples collected from birds, mammals, and vegetation across
25 sites we identified four genospecies: Borrelia afzelii (48%), Borrelia garinii (36%), Bor-
relia valaisiana (8%), and B. burgdorferi sensu stricto (7%), and one mixed genospecies
infection. Surprisingly, 90% of the sequence types were novel and, importantly, up to
14% of samples were mixed intra-genospecies co-infections, suggesting tick co-feeding,
feeding on multiple hosts, or multiple infections in hosts. B. garinii (hosted by birds) was
considerably more genetically diverse than B. afzelii (hosted by small mammals), as pre-
dicted since there are more species of birds than small mammals and birds can import
strains from mainland Europe. Higher proportions of samples contained B. garinii and B.
valaisiana in the west, while B. afzelii and B. garinii were significantly more associated
with mixed/deciduous than with coniferous woodlands. This may relate to the abundance
of transmission hosts in different regions and habitats. These data on the genetic hetero-
geneity within and between Borrelia genospecies are a first step to understand pathogen
spread and could help explain the distribution of patient symptoms, which may aid local
diagnosis. Understanding the environmental associations of the pathogens is critical for
rational policy making for disease risk mitigation and land management.
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INTRODUCTION
Lyme borreliosis is the most prevalent tick-borne human dis-
ease in the northern hemisphere, and is growing in incidence in
Europe. For example, Scotland has seen an almost 10-fold increase
in reported cases since 2000 (1). The causative agent of Lyme
borreliosis is Borrelia burgdorferi sensu lato, a complex of related
spirochete bacteria comprising a suite of genospecies, which vary
in pathogenicity and cause different symptoms. The global distri-
bution of the genospecies differs between continents, for example,
Borrelia afzelii and Borrelia garinii are found only in Europe, Borre-
lia carolinensis is found only in North America, and B. burgdorferi
sensu stricto is found on both sides of the Atlantic (2).

There are currently at least 18 proposed and confirmed B.
burgdorferi genospecies globally, which vary in their pathogenicity,
reservoir host associations, and geographic distributions within
and between countries (3–5). Three genospecies (B. burgdorferi
s.s., B. garinii, and B. afzelii) are commonly reported to cause Lyme

borreliosis and B. valaisiana and Borrelia lusitaniae may also be
pathogenic (6–10).

Borrelia burgdorferi s.l. is transmitted by Ixodes ticks and, in
most of Europe, including the UK, the principle vector is Ixodes
ricinus. I. ricinus are generalist ecto-parasites, feeding on most
terrestrial vertebrate species. However, each B. burgdorferi s.l.
genospecies is specialized and associated with a particular host
type. B. garinii and B. valaisiana are commonly found in birds, B.
afzelii is associated with small mammals, and B. burgdorferi s.s. is
associated with both birds and small mammals (11–13). We may
therefore predict that genospecies prevalence varies with the rel-
ative abundance of these host types or, as a proxy, with different
habitats that are associated with these hosts. In addition, within
host types, some species are more effective at pathogen transmis-
sion than others, so we might predict within-genospecies genetic
diversity to vary, for example, we might predict that B. garinii may
have higher genetic diversity than B. afzelii because there are many
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more species of birds than small mammals. In addition, if genetic
variation over space is driven by host movements [e.g., Ref. (14,
15)], we can predict that sequence types within genospecies are
more closely related if they occur in closer geographic proximity;
we can use spatial genetic variation to infer host movement behav-
ior and in turn this helps us identify how each pathogen spreads
over space.

Ixodes ricinus has three active stadia (larvae, nymphs, and
adults), each of which requires a single blood meal. Unfed larvae
are almost always uninfected because vertical transmission of B.
burgdorferi s.l. from adult females to larvae is extremely rare (16).
Despite the host specificity of each genospecies of B. burgdorferi
s.l. and the general assumption that each tick stage feeds on only
one host, co-infections of both “bird” and “mammal” genospecies
can occur within a tick (3), although the frequency of such co-
infections is less than expected (17). Such co-infections might
suggest that the host specificity of genospecies is not absolute,
or a tick stage may occasionally take more than one blood meal
(from more than one host type), or through co-feeding [transmis-
sion from one tick to another without systemic host infection (18,
19)]. This interesting phenomenon warrants further research and
one of our aims is to quantify the frequency and type of mixed
infections in our studied I. ricinus populations.

The molecular characterization of B. burgdorferi genospecies
and strains has been revolutionized by multi-loci sequence typ-
ing (MLST) and in this study we use the system developed by
Margos and others (20) which has been shown to unambiguously
delineate genospecies and establish evolutionary and geographic
relationships. DNA can be directly amplified by polymerase chain
reaction (PCR) from tick extracts and the amplicons sequenced
without need for culture. The B. burgdorferi MLST website1 cur-
rently documents more than 1500 B. burgdorferi strains in the
MLST database, currently comprising 572 sequence types from
sites in Europe, North America, and Asia.

Previous MLST of studies of B. burgdorferi s.l. have been con-
ducted at a continental scale (15, 20, 21) or focused on a single
genospecies (20, 22, 23). Our study differs by employing a dense
stratified survey to genetically and ecologically characterize the full
suite of genospecies at a national scale. Characterizing the vari-
ety, distribution, and abundance of sequence types (i.e., the allelic
profile) of B. burgdorferi s.l. in one country, especially linked to
environmental information, will contribute to our understanding
of the heterogeneous distribution and prevalence of genospecies,
how the pathogens spread, identify the environmental risk factors
and will also have implications for patient symptoms and diagno-
sis. We focused our B. burgdorferi s.l. survey on Scotland, where
reported cases of Lyme borreliosis have increased almost 10-fold
since the turn of the millenium, and where there have been very
few previous studies (and no large-scale systematic surveys) of
B. burgdorferi s.l. genospecies; (24) reported five B. afzelii samples
and seven B. burgdorferi s.s. while (15) genotyped three B. burgdor-
feri samples from one Scottish site and found all to be B. afzelii.

This study therefore aimed to examine the phyloge-
netic population structure of Scottish B. burgdorferi s.l. by
characterizing the genospecies, sequences types, and alleles and

1www.mlst.net

describing their spatial distribution across the country and
identifying environmental and regional associations. This was to
provide the first large-scale fundamental data on the Lyme bor-
reliosis agents across this country and to gain insight into genetic
mixing spatially across Scotland and with other countries (e.g.,
due to host movements). Furthermore, we were particularly inter-
ested in identifying mixed infections (both between genospecies
and between sequence types within genospecies) within individ-
ual ticks, since this has implications both for patient symptoms
and diagnosis and for our understanding of tick feeding behav-
ior. We also aimed to correlate B. burgdorferi s.l. genospecies with
environmental factors, which is of use in understanding the rela-
tionship between host communities and genospecies composition,
and in assessing disease risk and mitigation options in different
environments.

MATERIALS AND METHODS
FIELD COLLECTION OF TICKS
Of the three life stages, nymphs are thought to pose the greatest risk
to humans in terms of transmitting B. burgdorferi s.l.: questing lar-
vae very rarely carry the pathogens (16), while adults are much less
numerous than nymphs and are much larger and therefore more
likely to be noticed and removed quickly. Indeed, (25) estimated
that 82% of human tick bites from a forested area in England were
from nymphs. Therefore, this study concentrated primarily on I.
ricinus nymphs. Questing (host-seeking) nymphs were collected
during blanket dragging surveys at 25 woodland sites across Scot-
land in the springs and summers of 2007–2008 [see Ref. (26)]. A
1 m× 1 m square of blanket material was dragged for 10 m and
all ticks counted and collected. At least 20 drags were conducted
at each site in a semi-random fashion so as to cover the site in a
representative way (26). At least 50 nymphs per site were screened
for B. burgdorferi s.l. (see method below) including at least one
nymph from each drag. Woodland was chosen because it is the
habitat most often associated with high densities of a variety of
tick species, both in Europe and North America [e.g., Ref. (27–30)]
and the habitat most associated with acquiring Lyme borreliosis in
Scotland (31). A broad geographic spread of sites ensured as much
coverage over the country as possible, while collecting ticks from
both semi-natural mixed/deciduous and conifer forests ensured
that the main woodland habitat types (and therefore by proxy a
range of host communities) were sampled. In addition, each site
was associated with known cases of Lyme borreliosis (31).

As well as sampling questing nymphs from the 25 woodland
sites, ticks were also removed from hosts. Passerine birds were
trapped at one of the woodland sites by mist netting, under license
issued by the British Trust for Ornithology during the spring and
summer of 2008 [see Ref. (32)]. Feeding nymphs and larvae was
removed from birds and stored in vials of 70% ethanol. Small
mammals (wood mice Apodemus sylvaticus and bank voles Myodes
glareolus) were trapped using longworth live traps, under license
from Scottish Natural Heritage, at four of the woodland sites dur-
ing the spring and summer of 2007. Ticks were removed and stored
in vials per animal in 70% ethanol.

TICK POOLING FOR ANALYSIS
Questing I. ricinus nymphs collected in 2007 were each
homogenized and amplified individually by PCR. However,
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questing nymphs from 2008 were pooled in groups of five for
processing. Our screening of nymphs collected in 2007 deter-
mined that the mean infection prevalence of B. burgdorferi s.l.
was around 5%, therefore, the probability of more than one pos-
itive tick occurring in a pool of five was only 2.3%. Pooling was
undertaken only for ticks collected at the same site on the same
visit (and in the majority of cases from the same 10 m× 1 m survey
transect).

Feeding nymphal ticks removed from birds were PCR ampli-
fied individually (as feeding nymphs have now fed on two hosts).
Feeding larval ticks removed from small mammals were pooled
per animal. This was because transovarial transmission is thought
to occur at very low frequencies (16) such that any larval ticks col-
lected from one animal should have been exposed to B. burgdorferi
s.l. present in that particular animal only. Between 2 and 28 lar-
vae were removed from each small mammal and pooled for PCR
(nymph ticks from mammals were collected in very small numbers
and not assayed).

BORRELIA BURGDORFERI S.L. SCREENING AND MLST
DNA extraction was performed by mechanical destruction of the
nymph and larval ticks by ammonia extraction (32, 33). A nested
PCR for the 5S-23S rRNA IGS and visualization by agar elec-
trophoresis were used to detect B. burgdorferi s. l. (34). A positive
control of B. lusitaniae (a genospecies not found in northern
Europe) and a negative control were used in all PCRs so that
it was possible to detect any cross contamination or false posi-
tives. MLST, which has been shown to unambiguously delineate
genospecies (20), was used to type all positive samples at eight loci
(clpA, clpX, pepX, pyrG, recG, rplB, and uvrA) (after 20). Positive
controls were also typed and comprised B. afzelii (strain VS461),
B. garinii (20047), B. valaisiana (VS116), B. burgdorferi s.s. (B31),
and B. lusitaniae (Poti B2). PCR products were sequenced in both
directions using an ABI automated DNA sequencer.

Forward and reverse sequences were compared, aligned, and
trimmed using Sequence Editor (version 1.0.3, Macintosh com-
puters) and consensus sequences were assigned an allele number.
New alleles were submitted to the MLST website1.

PHYLOGENETIC ANALYSIS
Phylogenetic trees were drawn using MEGA [Version 4.0.2 (35)],
which was also used to calculate pair-wise genetic distances and
nucleotide differences between sequences. We also used this analy-
sis to test our prediction that B. garinii should have greater genetic
diversity within Scotland than B. afzelii [because there are more
birds than small mammal species in Scotland (and Europe) and
birds can carry mainland European strains into Scotland].

To test our prediction that samples should be more genetically
similar if they are from sites in close proximity (and genetically
dissimilar if they are far apart), we used linear regression analy-
sis to examine the relationship between the geographical distance
(kilometer) between the collection sites and the molecular diver-
sity in B. afzelii and B. garinii samples [as defined by the number of
single nucleotide polymorphism differences, calculated in MEGA
version 4.0.2 (35)]. We compared models that were fit using dis-
tance (distance)2, square root (distance), and log (distance+ 1) in
order to test for both linear and curvilinear relationships. We chose

the best fit based on model outputs of R-squared and F values and
residual fits.

To estimate whether we sampled enough ticks to provide a full
picture of alleles and sequence types over Scotland we used rar-
efaction curves. This is a standard method to gage the extent to
which sampling achieves saturation coverage (i.e., all types of indi-
vidual or species in a population are sampled) (36). By plotting
the number of samples analyzed against the number of sequence
types and alleles found for each of the eight loci, the shape of the
curve indicates whether most of the alleles or sequence types have
been found (i.e., when the curve plateaus because few additional
alleles are being found) or whether there are many more to be
discovered (i.e., the curve is still climbing steeply because more
alleles are being found). Rarefaction curves were drawn in Analyt-
ical Rarefaction 1.3 (University of Georgia), both with data from
this study and with B. burgdorferi s.s. data taken from Ref. (20).

IDENTIFYING MIXED INFECTIONS
To investigate which novel sequence types found may not be real
sequence types but, instead, may be a result of mixed allele infec-
tions, we closely examined each allele combination in relation to
sequence type using only those samples that were successfully ana-
lyzed at eight loci (Table S1 and Figure S1 in Supplementary
Material). It was assumed that sequence types that are repre-
sented by more than one sample or have previously been added
to pubMLST are genuine sequence types. It was also assumed
that single locus variants of a sequence type with more than one
occurrence were also genuine sequence types. In order to estimate
the frequency of intra-genospecies co-infections, we examined B.
afzelii genotypes because B. afzelii was the most frequently found
genospecies (and, as the results show, had a very large proportion
of novel sequence types).

As well as mixed infections, there are alternative hypotheses
for novel and single-occurring sequence types. For example, they
could arise as the result of homoplasy (the independent acquisition
of the same nucleotide polymorphism in an unrelated lineage due
to mutation) or horizontal gene transfer (recombination). We con-
sidered homoplasy to be unlikely if there was more than one single
nucleotide polymorphism. We tested for horizontal gene transfer
by using Clonal Frame (version 1.1) to examine the clonal relation-
ships between sequence types and to estimate the recombination
events, which may have disrupted inheritance (37).

ENVIRONMENTAL ASSOCIATIONS
Associations between genospecies and the environmental factors
(geographical area, woodland type, and deer abundance) at each
tick collection sites were examined. We chose two broad area cat-
egories: the Grampian region, which consists of the Cairngorms,
Speyside, Deeside, and Moray in the northeastern quarter of Scot-
land, and all other sites further west of this region (generally char-
acterized by a warmer and wetter climate than Grampian). Wood-
lands were categorized as either coniferous or mixed/deciduous.
All of the coniferous category were commercial plantations gen-
erally consisting of Scots pine Pinus sylvestris or spruce Picea spp.
with larch Larix decidua, apart from one conifer site, which was
semi-natural old-growth Scots pine. The mixed/deciduous wood-
lands were semi-natural and consisted primarily of mixed birch
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Betula spp., rowan Sorbus aucuparia and sometimes oak Quercus
spp., and beech Fagus sylvatica with occasional Scots pine. The
index of abundance of deer was the number of groups of roe and
red deer dung pellets counted per 10 m× 1 m transect, averaged
for each site (see also Ref. (26)).

To statistically test for associations of area and woodland type
(categorical variables) with genospecies we used chi-square tests
(a separate test each for area and for woodland type). These reveal
differences in habitat and area between the proportions of each
genospecies that make up the total number of samples tested at
each site. To test for associations of deer abundance (continuous
variable) with genospecies, we used a generalized linear mixed
model including site as a random effect to account for multiple
samples per site. Since the response variable was categorical the
default model distribution was multinomial with a cumulative
logit link. All statistical tests were conducted in SAS Version 9.3.

RESULTS
Of the more than 2200 I. ricinus tick samples assayed, 124 tested
positive to B. burgdorferi s.l. and comprised 87 questing nymphs,
25 nymphs removed from birds, and 12 larvae from small mam-
mals (Table 1). Fifty two samples were genotyped at all eight MLST
loci and a phylogram of these sequence types was plotted along
with most sequence types listed in the MLST database1 (Figure S1
in Supplementary Material).

There was no overlap (sharing) of alleles between any
genospecies (either in our data set or in the pubMLST database),
implying that samples could be classified into genospecies level
without having to genotype at all eight loci, and this also means
that identifying mixed genospecies infections is easy. Seventy five
samples were genotyped successfully at fewer loci while still allow-
ing the predominant genospecies to be determined. We were not
able to amplify all loci for all genospecies. For example, in B.

Table 1 | Genospecies grouping of Scottish isolates by sample type

and the number and type of samples processed using MLST at eight

loci.

Genospecies Questing

nymphs, N (%)

Bird

nymphs, N (%)

Mammal

larvae, N (%)

B. afzelii 42 (48) 0 12 (100)

B. garinii 31 (36) 24 (96) 0

B. burgdorferi s. s. 6 (7) 0 0

B. valaisiana 7 (8) 1 (4) 0

B. lusitaniae 0 0 0

B. afzelii +B. garinii 1 (1) 0 0

No. samples

identifiable to

genospecies

87 25 12

No. samples

analyzed at 8 loci

40 (38 pools of

5+2 individuals)

4 individuals 8 pools of

2–28

Percentages show the proportion of all positive samples represented by the

genospecies in question per tick type (questing nymphs, nymphs attached to

birds, and larvae attached to small mammals).

valaisiana isolates, the clpA locus failed to amplify in six out of nine
samples. This is likely attributable to sequence polymorphisms in
the PCR primer oligo nucleotide sequences of these strains.

As defined by deep branching of phylogenetic trees, non-
sharing of alleles and pair-wise genetic differences above the
threshold described in Ref. (20) we identified that, of the total 124
positive tick samples from questing nymphs, nymphs from birds
and larvae from small mammals, 55 (44%) contained B. afzelii, 56
(45%) contained B. garinii, 8 (6%) were B. valaisiana, and 6 (5%)
were B. burgdorferi s.s. Of most importance to Lyme borreliosis
risk in humans, out of the 87 questing nymph samples 43 (49%)
contained B. afzelii, 32 (36%) contained B. garinii, 7 (8%) were B.
valaisiana, and 6 (7%) were B. burgdorferi s.s. (Table 1).

BORRELIA BURGDORFERI S.L. WITHIN-GENOSPECIES DIVERSITY
Of the 52 samples typed at eight loci, there were 35 different
sequence types, of which 28 were newly described to the MLST
database. The most commonly occurring genospecies was B. afzelii
and its sequence type ST263 accounted for 8/52 samples (15%).
The only other sequence types represented more than once in our
study were ST287 (B. afzelii), ST168 (B. afzelii), ST327 (B. afzelii),
and ST93 (B. garinii). All other sequence types were identified
from only single samples in this study, although seven had been
identified in previous studies1: ST24 (B. burgdorferi s.s., found in
France), ST82 (B. garinii, found in France and England), ST86
(B. garinii, found in France, England, Latvia, Russia, Austria, and
Italy), ST88 (B. garinii, found in France and England), ST93 (B.
garinii, found in France, Italy, and England), ST168 (B. afzelii
found in Latvia), and ST205 (B. valaisiana, found in England).

The phylogenetic tree (Figure S1 in Supplementary Material)
shows a greater variety of alleles, and with more branching, in B.
garinii than in B. afzelii. In addition, the extent of nucleotide diver-
gence at the loci was greatest for B. garinii, with B. garinii samples
typically differing by 40–60 bp across the eight loci compared to
B. afzelii isolates which typically differed by only 1–15 bp.

Rarefaction analysis (Figure 1) indicated that for some of the
eight loci, especially for B. afzelii, we detected most of the alleles
in the population in Scotland (the curves plateau) while for other
loci, especially for B. garinii, there are still several more alleles to be
discovered (the curves are still climbing). For both B. afzelii and B.
garinii, the curves for sequence type diversity did not plateau at all;
indeed, for B. garinii the sequence type curve almost followed the
45o line representing a new discovery for every sample analyzed.

There was a significant positive relationship between genetic
and geographic distances for samples within the same genospecies,
i.e., samples were more genetically different if they were collected
further apart geographically, although the proportion of variation
explained by the models (R-squared values) was low (B. afzelii
F 1,407= 22.9, p < 0.001, R2

= 51.0%; B. garinii F 1,209= 15.6,
p < 0.0001, R2

= 6.5%). The best fit models were those with simply
distance (kilometer); those with (distance)2, square root (dis-
tance), or log (distance+ 1) had poorer fit of the residuals and
lower R-squared and F values.

MIXED INFECTIONS
There was evidence of inter-genospecies mixed infections in one
sample that clearly contained alleles originating from B. afzelii
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FIGURE 1 | Rarefaction curves for each of the eight B. burgdorferi s.l.
loci and sequence types (STs) of (A) B. afzelii samples and (B) B. garinii
samples analyzed from Scotland. Each graph also includes the 45° line
(labeled “infinite”) which represents the trajectory that would occur if every
new allele or sequence type found was new.

and B. garinii. This comprises 1.9% of the 52 samples tested across
eight loci or 0.8% of the 124 total samples analyzed (including
those successful at fewer than eight loci) and 1.1% of the 87 total
samples of questing nymphs.

Close examination of the apparent 14 different sequence types
found from the 29 B. afzelii samples (Table S1 in Supplemen-
tary Material) suggested the possible presence of mixed intra-
genospecies infections, deduced as follows. Five sequence types
occurred more than once in the population (representing 20 sam-
ples) and so are plausibly genuine strains, while five sequence
types (from five samples) differed at one of the two loci from
the above and their different loci were the result of one or two
nucleotide differences from the parental genotype so we consid-
ered these also to be plausibly genuine strains (for example ST292
has only one SNP difference in one allele from ST263). How-
ever, the remaining four sequence types (ST286, ST288, ST295,
and ST326) were represented by only a single sample each and
comprised either allele combinations found in other common
sequence types (e.g., ST263) or two common sequence types plus a
single nucleotide mutation in one of the alleles (Figure S1 in Sup-
plementary Material). It can therefore be speculated that out of
29 B. afzelii samples, 25 isolates contained genuine sequence types
while four apparent sequence types may actually be examples of
intra-genospecies co-infection (i.e., harboring alleles from more
than one B. afzelii sequence type). If so, this would represent a 14%
incidence of intra-genospecies co-infection in the Scottish B. afzelii

FIGURE 2 | Distribution and relative abundance of B. burgdorferi s.l.
genospecies across Scotland. Blue=B. afzelii, red=B. garinii, purple=B.
valaisiana, green=B. burgdorferi s.s. The size of the pie charts indicates the
number of samples genotyped at that site (1–5, 6–10, and 11–20 samples
for small, medium, and large pie charts, respectively).

population. However, from only 29 samples, the confidence inter-
vals are wide (upper and lower confidence intervals= 30.6 and
5.5%, respectively).

Homoplasy as a mechanism for the apparent novel sequence
types seems unlikely since only two of the four appeared to contain
a single nucleotide mutation and in only one of the mixed alleles.
There was no evidence that horizontal gene transfer (recombina-
tion) is the explanation for these apparent sequence types because
no recombination events were detected, either using only our Scot-
tish samples or using a combination of Scottish samples and other
sequence types listed in the MSLT database.

ENVIRONMENTAL ASSOCIATIONS
Figure 2 shows the geographical distribution of the genospecies of
the 87 questing nymphs from the 13 (of the original 25) field sites
from which positive B. burgdorferi s.l. samples were successfully
identified to genospecies. Six sites were coniferous and seven semi-
natural mixed or deciduous woodlands. B. afzelii and B. garinii, the
most frequent genospecies, seem to be spread over most of Scot-
land. B. afzelii was detected in 7 of the 13 sites and B. garinii in 11 of
the 13 sites (Table 2). Of the less frequently recorded genospecies,
B. valaisiana had a broad geographic spread and occurred in 5 of
the 13 sites whereas B. burgdorferi s.s. was recorded only in 4 sites,
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Table 2 | Genospecies of B. Burgdorfer i s.l. and sample size of positive samples from questing nymphs at each site.

Site Habitat Deer

index

B. garinii B. afzelii B. valaisiana B. burgdorferi

s.s.

Total

B. burgdorferi s.l.

QC Conifer 0.94 3 (27%) 4 (36%) 1 (9%) 3 (27%) 11

GM Conifer 0 2 (50%) 0 (0%) 2 (50%) 0 (0%) 4

BM Conifer 0.61 1 (33%) 2 (67%) 0 (0%) 0 (0%) 3

CB Conifer 0.35 0 (0%) 3 (100%) 0 (0%) 0 (0%) 3

IR Conifer 0.08 0 (0%) 0 (0%) 0 (0%) 2 (100%) 2

AP Conifer 0 0 (0%) 0 (0%) 1 (100%) 0 (0%) 1

DR Mixed 0.01 7 (35%) 11 (55%) 2 (10%) 0 (0%) 20

FZ Mixed 0 2 (12%) 14 (82%) 0 (0%) 1 (6%) 17

LA Mixed 0 2 (18%) 8 (73%) 1 (9%) 0 (0%) 11

DV Mixed 0.07 8 (89%) 1 (11%) 0 (0%) 0 (0%) 9

SH Mixed 0 3 (50%) 2 (33%) 1 (17%) 0 (0%) 6

TB Mixed 0.11 3 (100%) 0 (0%) 0 (0%) 0 (0%) 3

LV Mixed 0.06 1 (50%) 0 (0%) 0 (0%) 1 (50%) 2

All 32 (35%) 45 (49%) 8 (9%) 7 (8%) 92

Deer index is the number of pellet groups per 10 m×1 m transect averaged per site.

all in north-east Scotland (although with only six samples from
questing nymphs in this study it may yet be recorded elsewhere if
more samples are collected in future studies; Table 2).

There was a significant difference between genospecies and
the two broad area categories (χ2

= 18.8, df= 3, p= 0.0003). B.
garinii and B. valaisiana comprised the highest proportions of
samples in the western half of Scotland while B. burgdorferi s.s.
was most associated with the Grampian region (Figure 3). There
was also a significant difference between genospecies and wood-
land type (χ2

= 13.9, df= 3, p= 0.0031). B. afzelii and B. garinii
were more likely to be found in mixed/deciduous than in conifer
forests and B. burgdorferi s.s., while occurring at only low preva-
lences, had a tendency to be found more frequently in coniferous
forest (Figure 3). There was no evidence for a significant asso-
ciation between genospecies and the deer abundance at each site
(F 1,72= 0.53, p= 0.468).

DISCUSSION
The overall B. burgdorferi s.l. prevalence of 5.6% (range 1–14%)
in questing nymphs [see also Ref. (26)] is similar to that found in a
previous UK study (15) that found 5 and 8% prevalence in 2006–
2007 and 2008–2009, respectively (range 0–12%) in ticks collected
from sites mainly in England. This is a lower prevalence than that
found in many countries in continental Europe [e.g., Ref. (3, 15)].

Of the B. burgdorferi s.l. positive questing nymphs, 49% were
B. afzelii, 36% were B. garinii, 8% were B. valaisiana, and 7% were
B. burgdorferi s.s. The finding that the most common genospecies
in Scotland is B. afzelii [see also Ref. (24) which found that almost
half of its 12 positive I. ricinus from the Scottish highlands carried
B. afzelii] while B. valaisiana is relatively rare is interesting, because
a quite different pattern has been found in England where B. afzelii
is less common while B. garinii and B. valaisiana (the two bird-
associated genospecies) seem to be predominant [e.g., Ref. (38)],

FIGURE 3 |The proportions of Borrelia burgdorferi s.l. genospecies by
area: (A) west and central Scotland and (B) the Grampian Region of
Scotland (the Northeast and the Cairngorms) and by habitat: (C) conifer
forest and (D) mixed/deciduous woodlands, averaged over 13 (6 coniferous,
7 mixed/deciduous) sites across Scotland. Blue=B. afzelii, red=B. garinii,
purple=B. valaisiana, and green=B. burgdorferi s.s.

although Ref. (15) found B. afzelii at around half of their English
sites. The reasons for any difference in genospecies predominance
between Scotland and the rest of the British Isles warrants further
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research. The abundance of B. afzelii in Scotland is more similar to
the situation in continental Europe where it is also common and
often the dominant genospecies [e.g., Ref. (3, 39, 40)].

Corroborating current knowledge of genospecies specificity
[e.g., Ref. (38)], we found that the sole genospecies found in lar-
val ticks removed from small mammals (wood mice and bank
voles) was B. afzelii while, as expected, B. garinii was the domi-
nant genospecies found in nymphs removed from passerine birds
(and one B. valaisiana sample from a bird).

WITHIN-GENOSPECIES DIVERSITY
As we predicted from the concept that the spatial distribution of
genetic relatedness is driven by local host movements, for both
B. afzelii and B. garinii, we found a positive relationship between
geographical distance (kilometer separating field sites) and genetic
distance (single nucleotide polymorphism differences) between
pairs of samples within genospecies, i.e., alleles and sequence types
are more different the further apart they are geographically. How-
ever, the most abundant strain type (B. afzelii ST263) occurs widely
across Scotland (up to 110 km in this study), and could perhaps,
therefore, be an ancestral strain. B. garinii was considerably more
genetically diverse than B. afzelii (that was dominated by ST263).
This is consistent with our predictions based on higher number
of bird species than small mammal species and the higher fre-
quency of non-local alleles being brought into Scotland from other
countries by migrating birds. We found that all (apart from one,
previously identified from Germany) of the B. afzelii sequence
types we identified from Scotland were novel. This helps corrob-
orate the proposal of Ref. (15) (stemming from previous limited
data on Scottish Borrelia burgdorferi s.l.) that there should be a
clear distinction between English and Scottish B. afzelii due to lim-
ited movement of small mammals between England and Scotland
[see Ref. (41)]. In contrast to B. afzelii, several B. garinii sequence
types that we identified in Scotland had previously been identi-
fied from France and England, suggestive of greater host (bird)
movement between these countries. A high degree of diversity in
B. garinii samples has also been noted in Ref. (42), among others,
who attributed this to their bird host’s large migration ranges.

MIXED INFECTIONS
The identification of mixed samples can be influenced by the extent
of horizontal gene transfer events, which will decrease the observed
clonality of the species. In the case of B. burgdorferi s.l., how-
ever, there is no evidence to support horizontal gene transfer of
chromosomal genes and, certainly between genospecies, the deep
branching, and absence of pan-alleles argues against horizontal
gene transfer. We found only one sample clearly exhibiting alle-
les from two genospecies, which is most likely to be a result of
mixed-genospecies infections within a tick. This is a frequency of
1–2% (depending on whether the total number of 124 samples is
used or only those 52 samples analyzed at all eight loci or includ-
ing only questing nymphs). This is much lower than many other
areas: a meta-analysis in Ref. (3) of over 100 articles citing the
infection prevalences in 112,579 questing ticks from 24 countries
across Europe found that the occurrence of inter-genospecies co-
infection in Ixodid nymphs was, overall, 12.1%, while as many as
64% of questing nymphs were co-infected in Denmark (43).

Assuming that transovarial transmission of B. burgdorferi is
absent or rare such that unfed larvae are uninfected (16, 44)
outlined three potential mechanisms for an unfed nymph to be
co-infected with more than one genospecies: (i) through trans-
mission by co-feeding (feeding in close proximity to a tick infected
with a different genospecies to that in the host); (ii) through being
unable to complete a full blood meal from one host (e.g., dislodged
before repletion) and so feeding from a second host containing
a different B. burgdorferi s.l. genospecies; or (iii) through feed-
ing from a single host that carried more than one genospecies,
perhaps because of a compromised immune system. Most mixed
infections in Europe are B. garinii mixed with B. valaisiana (3)
(i.e., the two genospecies associated with birds). It is notewor-
thy, therefore, that our two mixed genospecies samples contained
alleles from B. afzelii and B. garinii, the small mammal- and the
bird-associated genospecies respectively. Therefore, it is unlikely
that our mixed infection resulted from a host infected with both
genospecies. However, it could have resulted from the tick having
an incomplete feed on a B. afzelii infected small mammal followed
by a further feed on a B. garinii infected bird (or vice versa). It could
also have potentially resulted from co-feeding: the tick attached to
a bird or small mammal infected with one pathogen while feeding
in close proximity to a nymph that was infected with the second
pathogen.

While mixed infections of different genospecies are relatively
easy to identify in samples and are now well documented [e.g.,
Ref. (3, 15)], it may be more likely for a tick to be co-infected
with different strains of the same genospecies (each with a differ-
ent sequence type), although it is much less easy to identify. This
phenomenon has been previously reported: 39% of adult Ixodes
scapularis ticks from North America were infected with more than
one genotype of B. burgdorferi s.s. (45). From close examination of
the novel sequence types we found, we estimated that the incidence
of intra-genospecies co-infection is around 14% in the Scottish B.
afzelii population. We also considered the alternative explanations
for these four apparent sequence types. The allele combinations
ruled out vertical inheritance. Homoplasy is unlikely since sev-
eral of the shared alleles harbor more than one single nucleotide
polymorphism compared to the putative ancestral strain in several
cases. In addition, it has been reported as an unlikely event in the
B. burgdorferi s.l. genome and nearly non-existent in the chromo-
some [reviewed in Ref. (46)]. At an environmental scale, there is
no evidence of horizontal gene transfer in the IGS locus, but the
ospC locus showed evidence of intragenic recombination (47). It
would appear that recombination events are possible within the B.
burgdorferi s.l. genome, but they are rare and limited to particu-
lar genes (e.g., ospC). ospC may be subject to recombination in a
way that other genes are not due to its role in the immune system
(unlike the selectively neutral housekeeping genes of MLST) (48).

Our finding of commonly occurring mixed within-genospecies
co-infections is important also because it suggests that the MLST
database may inadvertently contain examples of mixed intra-
genospecies co-infection. Detecting and excluding these samples
could be overcome only by culturing colonies from ticks and
selecting individual colonies or by using detection methods, which
can pick up multiple genospecies in a sample. Unless samples in
the MLST database contain sequence types from individual colony
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cultures (the majority are not, as they are from field collected
whole ticks), then the database may contain many of these intra-
genospecies mixed sequence types and should therefore be treated
with caution.

More work is required to examine this phenomenon of mixed
infections, for example by the cultural separation of samples with
mixed chromatograms or forensic methods such as designing PCR
probes to identify individual genospecies or even specific alleles.
This may also help answer whether intra-genospecies co-infection
is more common within certain genospecies. It perhaps would
be more likely for intra-genospecies co-infection to occur in B.
garinii, as there is more diversity of allele numbers.

ENVIRONMENTAL ASSOCIATIONS
Borrelia afzelii was found relatively evenly throughout Scotland
whereas B. burgdorferi s.s. was found only around the Grampian
region of north east Scotland (albeit detected in only nine sam-
ples). B. garinii and B. valaisiana were widely spread across Scot-
land although, statistically, they occurred at higher proportions
in the warmer and wetter western areas of Scotland. These dis-
tributional differences are likely to be associated with differences
in relative host abundances, which are generally driven by habi-
tat which in turn is affected by both climate and anthropogenic
land management goals. Four of the six (67%) Grampian sites
were coniferous, compared with two of the seven (29%) western
sites but within each of our two very basic woodland categories are
many sub-categories of habitat such as lowland deciduous, upland
birch, Atlantic oak, juniper scrub, ancient pine, and commercial
plantation. While the number of sites we originally sampled was
25, many more would be needed to statistically test genospecies
associations with finer habitat categories. However, using our
two basic woodland types, B. garinii and B. afzelii more likely
to be found in deciduous forests while higher proportions of B.
burgdorferi s.s. were found in coniferous forest. This is likely to
reflect the differences in relative abundance of host types between
habitats: B. garinii and B. afzelii are associated with birds and
small mammals, respectively, and semi-natural mixed or decid-
uous woodlands are generally associated with higher abundance
and biodiversity of both birds and small mammals than are conifer
plantations. However, it is unclear why B. burgdorferi s.s. should
occur more frequently in coniferous woodlands, since previous
studies suggest that the key reservoir hosts for B. burgdorferi s.s.
are, as for B. afzelii, small mammals [e.g., Ref. (49, 50)]. Given
the low number of B. burgdorferi s.s. positive samples we found
in Scotland, this could be a statistical artifact, but further work is
required to identify the key reservoir host for B. burgdorferi s.s. in
Scotland and its relative abundance between habitats. Given that
the spatial distribution of B. burgdorferi s.s. seems to be restricted
to the Grampian Region and Speyside, and there may be an asso-
ciation with coniferous forests, we can speculate that red squirrels
Sciurus vulgaris (that are also more abundant in conifer forests in
this region than many other parts of Scotland) could be important
B. burgdorferi s.s. in Scotland. Indeed, B. burgdorferi s.s. is preva-
lent in red squirrels in Switzerland and red squirrels can transmit
B. burgdorferi s.s. to feeding ticks (51). Similarly, associations have
been found between B. burgdorferi s.s. and western gray squirrels
Sciurus griseus in California (52).

CONCLUSION
This large-scale intensive analysis of more than 2000 I. ricinus tick
samples from over 1200 10 m× 1 m transect surveys, and from
birds and small mammals, at 25 sites has provided the first com-
prehensive analysis of the B. burgdorferi s.l. genospecies present
in Scotland. That the most prevalent genospecies was B. afzelii
was surprising as it has been postulated to be rare in the United
Kingdom (2, 15). We found much lower inter-genospecies co-
infections (1%) than found in other countries but, importantly, we
found frequent intra-genospecies co-infections (14% of B. afzelii),
suggesting co-feeding ticks, ticks feeding on multiple hosts, or
multiple infections within hosts. Our findings that genetic and
geographic distances are positively correlated and the differences
in intra-genospecies genetic diversity can help us understand how,
and from where, each pathogen spreads spatially over time. We
speculate that red squirrels may be an important reservoir host for
B. burgdorferi s.s. in northeastern Scotland, from circumstantial
evidence of its regional and habitat associations, as well as pre-
vious evidence from Switzerland. The association between some
genospecies and geographic area could be useful to practition-
ers in diagnostics, since each genospecies varies in the symptoms
caused, especially if future work can determine the pathogenic-
ity of different local strains. By examining the spatial patterns of
genospecies and strain types in many countries, and linking this to
their pathogenicity, it may become possible to understand the het-
erogeneous spatial distributions of genospecies, disease risk, and
patient symptoms across more globally.
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