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Longitudinal data on aging, health, and longevity provide a wealth of information to inves-
tigate different aspects of the processes of aging and development of diseases leading to
death. Statistical methods aimed at analyses of time-to-event data jointly with longitudinal
measurements became known as the “joint models” (JM). An important point to consider
in analyses of such data in the context of studies on aging, health, and longevity is how to
incorporate knowledge and theories about mechanisms and regularities of aging-related
changes that accumulate in the research field into respective analytic approaches. In the
absence of specific observations of longitudinal dynamics of relevant biomarkers manifest-
ing such mechanisms and regularities, traditional approaches have a rather limited utility to
estimate respective parameters that can be meaningfully interpreted from the biological
point of view. A conceptual analytic framework for these purposes, the stochastic process
model of aging (SPM), has been recently developed in the biodemographic literature. It
incorporates available knowledge about mechanisms of aging-related changes, which may
be hidden in the individual longitudinal trajectories of physiological variables and this allows
for analyzing their indirect impact on risks of diseases and death. Despite, essentially, serv-
ing similar purposes, JM and SPM developed in parallel in different disciplines with very
limited cross-referencing. Although there were several publications separately reviewing
these two approaches, there were no publications presenting both these approaches in
some detail. Here, we overview both approaches jointly and provide some new modifica-
tions of SPM.We discuss the use of stochastic processes to capture biological variation and
heterogeneity in longitudinal patterns and important and promising (but still largely under-
used) applications of JM and SPM to predictions of individual and population mortality and
health-related outcomes.

Keywords: forecasting, mortality, health, joint model, stochastic process model, aging, trajectory

INTRODUCTION
Longitudinal data on aging, health, and longevity provide a wealth
of information to investigate different aspects of the processes of
aging and development of diseases leading to death. There is a
growing interest to analyses of such data not only in epidemi-
ology but also in demographic studies. This interest is based on
an increasing number of available large-scale studies that collect
various biomarkers, which can be incorporated into demographic
analyses (1–3). The rapid pace of advances in genetics provides
additional opportunities and challenges for demographic and
biodemographic applications and the need to integrate the prin-
ciples of genetics and genomics into such analyses is recognized
(4, 5). The ongoing efforts to incorporate genetic information
into longitudinal studies is considered potentially “the most revo-
lutionary element of the addition of biological data in large-scale
surveys”(6) having far-reaching impact on the related fields of epi-
demiology and demography investigating interactions of genetic,
biological, social, economic, and demographic characteristics (3).

Longitudinal observations of various biomarkers or physio-
logical variables measured at different ages in the same indi-
vidual allow for investigating the relationship of the dynamics
of these variables and mortality or morbidity risks and getting
insights about possible mechanisms and dynamics of aging-related
processes. There is evidence in the literature that average age
trajectories of physiological variables in short-lived individuals
markedly deviate from those in long-lived individuals [see, e.g.,
Ref. (7, 8)]. Similar effect was also observed for average trajecto-
ries among individuals with long and short healthy lifespan (8) as
well as among long- and short-lived carriers of different genetic
variants, e.g., carriers/non-carriers of the APOE e4 allele (9). It
was also observed that the dynamic characteristics of trajectories of
biomarkers at middle and old ages (such as the rate of change, vari-
ability, the rate of decline after reaching the maximum) influence
mortality risk differentiating the survival chances at older ages (8,
10, 11). These studies illustrate the importance of including longi-
tudinal dynamics in predictive models for mortality and incidence
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of aging-related diseases as they provide additional information on
the outcome of interest compared to baseline measurements.

Joint analysis of such longitudinal measurements and time-
to-event outcomes requires a special consideration of analytical
approaches. Biomarkers are collected in longitudinal studies inter-
mittently at examination times, which may be sparse and typically
biomarkers are not observed at the event times. Also, many bio-
markers are subject to random biological variability. As known
in the statistical literature, ignoring measurement errors and bio-
logical variation in such variables and using their “raw” values as
time-dependent covariates in the Cox model may lead to biased
estimates (12, 13). Statistical methods aimed at analyses of time-
to-event data jointly with such longitudinal measurements became
known as the “joint models (JM) for longitudinal and time-to-
event data” or simply the “JM.” This is a very active area in bio-
statistics with a broad range of methodological developments and
possible applications, see recent reviews (14–17) and a book (18).

An important point to consider in analyses of longitudinal data
on aging, health, and longevity is how to incorporate knowledge
and theories about mechanisms and regularities of aging-related
changes that accumulate in the research field into respective
analytic approaches. In the absence of specific observations of
longitudinal dynamics of relevant biomarkers manifesting such
mechanisms and regularities (which is a typical situation in a
contemporary longitudinal studies), traditional approaches have
a rather limited utility to estimate respective parameters that can
be meaningfully interpreted from the biological point of view. A
conceptual analytic framework that incorporates available knowl-
edge about mechanisms of aging-related changes, which may be
hidden in the individual longitudinal trajectories of physiologi-
cal variables and that allows for analyzing their indirect impact
on the risks of diseases and death has been recently developed
in the biodemographic literature. This approach, the stochastic
process model of aging (SPM), has its roots in the random-walk
model by Woodbury and Manton (19). The original version of this
model has been extended in various ways and applied in different
contexts. These include incorporation of the notions of physiolog-
ical norm, allostatic adaptation, measures of stress resistance, and
adaptive capacity (20), as well as applications to analyses of age tra-
jectories of different physiological variables (such as blood glucose,
body mass index, cholesterol, diastolic blood pressure, hematocrit,
pulse pressure, and pulse rate) in relation to mortality/morbidity
risks (7, 8, 21, 22); applications to “indices of cumulative deficits”
(23, 24); analyses of trajectories of medical costs in relation to
mortality risks (25); and applications to evaluate genetic compo-
nent in aging-related processes using data on candidate genes (9)
and selected single-nucleotide polymorphism (SNP) alleles eval-
uated in genome-wide association studies (GWAS) of longevity
(26). Further extensions of the basic model include the version for
dependent competing risks (27); the model with hidden hetero-
geneity (latent classes) in longitudinal data (28); and the genetic
stochastic process model for joint analyses of genotyped and non-
genotyped participants of longitudinal studies (29). Yashin et al.
(30) presented a comprehensive model of human aging, health,
and mortality for joint analyses of data on individual health his-
tories, age trajectories of physiological or biological variables,
and mortality. This version has both jumping and continuous

components that jointly have the Markov property. The jump-
ing component represents fast changes in health status, and the
continuous component describes slower individual physiological
aging. The important practical value of this approach is that it pro-
vides the possibility to jointly analyze data with different structures
within the same methodological framework (31, 32). Some recent
developments in stochastic process models are summarized in a
review paper (33).

Despite, essentially, serving similar purposes (i.e., joint analyses
of longitudinal age trajectories of biomarkers and time-to-event
data), these two methodologies developed in parallel in differ-
ent disciplines (biostatistics and (bio)demography) with very
limited cross-referencing (34, 35). Although there were several
publications separately reviewing these two approaches (see pre-
vious paragraphs), there were no publications presenting both
these approaches in some detail. Here, we overview both these
approaches jointly as well as provide some new modifications of
the SPM. We emphasize two particular aspects of these models.
First, we discuss the use of stochastic processes to capture biolog-
ical variation and heterogeneity in longitudinal patterns in JM.
Second, we discuss important and promising (but still largely
underused) applications of these approaches to predictions of
individual and population mortality and health-related outcomes.

APPROACHES TO JOINT ANALYSES OF LONGITUDINAL AND
TIME-TO-EVENT DATA
JOINT MODELS
The JM typically consist of two sub-models representing the
dynamics of longitudinal (the “longitudinal sub-model”) and
time-to-event, e.g., survival, data (the “survival sub-model”). It
is postulated in this class of models that the observed longitudinal
data are values of a “true” (unobserved) process collected inter-
mittently and subject to measurement errors. For example, the
standard model for continuous longitudinal data can be formu-
lated using a linear mixed-effects model with normally distributed
errors and random effects (18, 36–38):

Yi(t ) = X T
i (t )β+ Z T

i (t )bi + εi(t ) (1)

where Y i(t ) denotes the longitudinal outcome for individual i
at age (or time) t, X T

i (t ) and Z T
i (t ) are design vectors of fixed

effects β and random effects bi, correspondingly (“T ” denotes
transposition; here and below we will use column vectors if not
stated otherwise), and εi(t ) represents the measurement error
term (error terms are assumed independent and normally dis-
tributed, εi(t ) ∼ N (0, σ2)). Random effects bi are assumed to be
independent of εi(t ) and also normally distributed, bi ~ N (0, B).

The survival sub-model specifies the expression for hazard of
an event as a function of the “true” (unobserved) longitudinal
outcome, e.g., using the Cox proportional hazards model:

µi(t |Y i(t ), wi) = µ0(t ) exp
{

wT
i γ+ αY i(t )

}
, (2)

where µ0(t ) is the baseline hazard, w i is a vector of baseline covari-
ates and γ and α are the respective regression coefficients. Note
that in Eq. 2, the hazard depends not on the observed value of
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a biomarker Y i(t ) (as in the usual Cox model) but on the “true”
(unobserved) value of the longitudinal outcome Y i(t ):

Y i(t ) = X T
i (t )β+ Z T

i (t )bi (3)

Various generalizations of such basic joint model (1–3) were
suggested in the biostatistical literature during the last decades.
These developments involve differences in characteristics of lon-
gitudinal and time-to-event sub-models such as specification of
trajectories, distribution of random effects, type of longitudi-
nal data (continuous or categorical), alternative expressions for
hazard rates, etc. [see, e.g., recent reviews in Ref. (14–16, 18)].
Below, we will discuss in more detail particular modifications,
which are especially relevant in applications to research on aging
to capture effects of dynamic characteristics of individual trajec-
tories on time-to-event outcome, to take into account biological
variation and heterogeneity in longitudinal patterns of physiolog-
ical variables as well as to perform predictions of individual and
population mortality and health-related outcomes.

The standard JM assumes that the risks of events and longi-
tudinal trajectories follow similar patterns for all individuals in
a population (for example, a biomarker changes linearly with
age for all individuals). In general, however, a population may
consist of subpopulations with distinct patterns of longitudinal
trajectories of biomarkers, which can also have different effects
on the time-to-event outcome in each subpopulation. Also, in
general, the observed covariates do not entirely capture hetero-
geneity in the outcomes and the population may consist of “latent
subpopulations” defined by some unobserved characteristics. A
special class of models, the joint latent class models, accounts
for such hidden heterogeneity in the population, see review in
Proust-Lima et al. (17). The joint latent class models have three
components. First, the latent class indicator represents the prob-
ability of belonging to the latent class (subpopulation) specified
using a multinomial logistic regression to accommodate observed
covariates. The other two components are the usual longitudinal
and survival sub-models but it is assumed here that individuals
from different latent classes can have different patterns of lon-
gitudinal trajectories of biomarkers and different risks of event
(i.e., the expressions in Eqs 1 and 2 are class-specific). The joint
latent class models are more computationally feasible than the
standard JM (1–3) because they do not require numerical inte-
gration in the likelihood function. These models can be efficiently
used as dynamic prognostic tools that can be updated according
to the observed values of the longitudinal outcome as we will dis-
cuss later in Section “Software Implementation, Limitations, and
Applications to Epidemiological Studies.”

The specification of the survival sub-model (2) assumes that
the hazard rate depends on the current “true” value of the longi-
tudinal outcome. This is a reasonable assumption; however, it is
evident from the literature that dynamic characteristics of the lon-
gitudinal trajectory can also affect in the risk of death or onset of a
disease at a specific age. For example, such dynamic characteristics
of individual trajectories as slopes, variability, or the rate of decline
after reaching the maximum are related to mortality risk and risk
of onset of major aging-related diseases (8, 11) and they can be
better predictors of the time-to-event outcomes than the current

level of the biomarker. These observations signify the importance
of extensions of the JM that would allow for analyzing the depen-
dence of the risk of an event on such dynamic characteristics of the
longitudinal trajectory. Several such models have been suggested
recently (39–43). Rizopoulos and Ghosh (43) presented a model
with very flexible parameterization that, in particular, includes
derivatives of the longitudinal profile functions. Such specifica-
tion implies that the risk for an event can depend not only on the
current “true” value of the longitudinal outcome but also on the
dynamic characteristics (such as the slope and the curvature) of
the longitudinal trajectory. Importantly, this specification, along
with other generalizations, has been implemented in the R package
JM (44) and extensive discussion and examples of applications are
provided in the book by Rizopoulos (18). This facilitates practical
applications of this approach in different research areas.

An important point to consider in applications of models is
how to integrate available biological knowledge about the under-
lying processes and mechanisms into statistical methods. One
aspect of this concerning JM is related to specifications of the lon-
gitudinal sub-model. The simpler specifications (e.g., the linear
mixed-effects model) provide a convenient approximation from a
computational point of view and they can be relevant in various
settings. However, they may have a rather limited utility in terms
of the ability to estimate parameters that can be meaningfully
interpreted from the biological point of view. For example, they
ignore the biological variability of individual trajectories over time
and such simplification may be biologically implausible in specific
applications. One possibility to capture biological variation and
heterogeneity in individual longitudinal trajectories is to use sto-
chastic processes in the longitudinal sub-model. In this case Eq
1 includes an additional term representing a stochastic process
modeling the correlation between individual measurements (note
that this process is distinct from measurement errors εi(t ) given
by the i.i.d. random variables):

Yi(t ) = X T
i (t )β+ Z T

i (t )bi +Wi(t )+ εi(t ) (4)

where W i(t ) is a mean zero stochastic process independent of εi(t )
and bi.

The specific choice of the process W i(t ) can differ in applica-
tions. One particular type of stochastic processes, the Ornstein–
Uhlenbeck (OU) process and its generalizations, appears to be
especially relevant in epidemiological and medical applications
studying mortality and morbidity risks in relation to age trajecto-
ries of biomarkers. This is because it has some appealing properties
allowing for clear biological interpretation. Specifically, it has a so-
called “mean reverting property,” which means that, in a long run,
the OU process tends to drift toward its long-term mean. That is,
the current value of the process specifies the direction of the drift:
if it is less than the long-term mean value then the drift is posi-
tive (i.e., toward the mean) but if the current value is greater than
this mean then the drift is negative (i.e., again, toward the mean).
Such behavior of the process represents homeostatic regulation
which is a fundamental property of living organisms that tend to
maintain stability and return to an “equilibrium state” in case of
various external and internal disturbances. Therefore, this makes
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the OU process (and its generalizations) a logical choice for mod-
eling longitudinal age trajectories of biomarkers. Although there
are some applications of the generalized OU process in biostatisti-
cal literature on JM (45), major developments of an approach that
incorporates the underlying biological knowledge into the frame-
work of statistical modeling appeared in the biodemographic and
gerontological literature. We will present such methodology, which
became known as the stochastic process models (or, alternatively,
as the quadratic hazard models) in the next section.

STOCHASTIC PROCESS MODELS
Basic model
Longitudinal studies that collect measurements of biomarkers in
the same individual at different ages along with health and/or
survival status are especially valuable for analyzing dynamics of
physiological state, which may be associated with the process
of aging leading to onset of aging-related diseases and death.
However, such analyses require a conceptual analytic framework
that would incorporate available knowledge about mechanisms
of aging-related changes hidden in individual trajectories of bio-
markers to analyze their indirect impact on mortality and morbid-
ity risks. Although some JM are based on sound biological theories
relevant to specific applications (e.g., in cancer or HIV studies),
they typically lack specific parameters or components that could
be interpreted in the context of aging-related mechanisms. As dis-
cussed above, one possibility to bring biological background to the
statistical models is to use appropriate stochastic processes, such
as the (generalized) OU process, to represent underlying biologi-
cal mechanisms. Such specification allows estimating parameters
that can be meaningfully interpreted from the biological point
of view and thus such models are more appropriate for under-
standing respective biological mechanisms indirectly affecting the
outcomes of interest.

The stochastic process models (20, 33) represent the age
dynamics of a vector of longitudinal outcomes (e.g., physiological
variables) Yt (t is age) by a diffusion type stochastic differential
equation:

dYt = a(t , X)(Yt − f1(t , X))dt + B(t , X)dWt (5)

with initial condition Y 0. Here, Wt is a vector Wiener process with
independent components that models exogenous effects on the
outcomes Yt. This process Wt is assumed to be independent of the
initial vector Y 0 and a vector of (time-independent) covariates X.
The strength of effects of Wt is characterized by a matrix of dif-
fusion coefficients B(t, X). The vector-function f1(t, X) represents
the trajectory that the outcome Yt tends to follow (see discussion
on the mean reverting property of the OU process above). Such
behavior of Yt is forced by the negative feedback mechanism rep-
resented by the matrix a(t, X). This is an essential property of
Eq. 5 because in the absence of such negative feedback mecha-
nism the trajectories of Yt would deviate from f1(t, X) indefinitely,
which is not plausible from the biological point of view if we deal
with modeling living organisms subject to homeostatic regula-
tion. The presence of f1(t, X) and a(t, X) in the description of
the longitudinal dynamics of Yt allows for estimating two impor-
tant aging-related mechanisms: the effect of allostatic adaptation

[see, e.g., discussion on the concept of allostasis in Ref. (46)] and
decline in the adaptive capacity [see, e.g., Ref. (47)]. Taking into
account the effect of allostatic adaptation is essential when infor-
mation on external disturbances or stresses affecting organisms
during the life course is very limited if available at all (which is a
typical situation in modern longitudinal data). Usually, the effect
of decline in the adaptive capacity [i.e., in the rate of the adaptive
response for deviations of Yt from the average “allostatic” trajecto-
ries f1(t, X)] cannot be measured directly in longitudinal studies
due to the lack of appropriate biomarkers in the data. Thus, such
indirect approach to analysis of this important feature of aging
in the model is an important advantage for the studies on aging.
More details on implementation of the concepts of allostasis and
decline in adaptive capacity in the stochastic process models can
be found in Ref. (20, 33).

The second equation of the model specifies the survival sub-
model in the form of the risk of death (or onset of a disease) at age
t given the value of the longitudinal outcome at that age (Yt) and a
vector of time-independent observed covariates X. This function
is assumed to be a quadratic function of the longitudinal outcome
which is based on the evidence from different studies that observed
U- or J-shapes of the risks as functions of various physiological
variables [see, e.g., Ref. (48–55)]:

µ (t , Yt, X) = µ0(t , X)

+ (Yt − f0(t , X))T Q(t , X)(Yt − f0(t , X)). (6)

Here µ0(t, Y t) is the baseline hazard, i.e., the mortality (or
incidence) rate that would remain if the outcome Yt followed the
optimal trajectory f0(t, X) and Q(t, X) is a non-negative-definite
symmetric matrix of respective dimension.

The function f0(t, X) minimizes the risk at respective age and
hence it can be interpreted as the (age-dependent) “physiological
norm.” Note that, in general, this norm can be different from the
“allostatic trajectories” f1(t, X) because the organisms function
under unfavorable conditions and many such conditions affect
set-points of physiological homeostasis changing physiological
balance from the “normal” to “abnormal” state (56, 57). The dif-
ference between these two functions provides the measure of the
allostatic load (58, 59) so the approach permits evaluating these
characteristics from longitudinal data.

The component Q(t, X) can also be interpreted in terms of
aging-related processes. It is related to stress resistance associated
with deviations of the outcome Yt from respective norms f0(t, X)
[see more details explaining how stress resistance is implemented
in the model in Ref. (20, 22)]. Modeling stress resistance is essen-
tial in applications to the studies on aging because the literature
provides compelling evidence on connections among stress resis-
tance, aging, and longevity (60–62). It is important also that the
model assumes that this component can change with age thus
allowing for indirect evaluation of decline in stress resistance with
age. Such indirect approach to estimate this important manifesta-
tion of aging is especially valuable when data on age dynamics of
relevant biomarkers related to stress resistance are not available in
longitudinal studies.

Summing up, the stochastic process model consists of the
longitudinal sub-model represented by the stochastic differential
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equation specifying the dynamics of a vector of longitudinal out-
comes and the survival (time-to-event) sub-model representing
mortality (or incidence) rate as a quadratic function of the lon-
gitudinal outcomes. This model provides a conceptual analytic
framework that incorporates several concepts and mechanisms
relevant to research on aging such as homeostatic regulation, age-
specific physiological norms, allostasis and allostatic load, decline
in adaptive capacity, and stress resistance. Respective character-
istics can be indirectly estimated from available information on
individual age trajectories of physiological variables and follow-up
information on mortality or incidence of diseases collected in lon-
gitudinal studies on aging. The basic model (5–6) can be extended
in different directions, e.g., the model including hidden hetero-
geneity (i.e., latent subpopulations) in longitudinal data (28), the
model for analyses of genetic data (29), the model for dependent
competing risks (27), the model for joint analyses of individual
health histories, physiological state and survival (30), and the mod-
els for joint analyses of data collected using different observational
plans (31). Below, we present two modifications of the basic model,
the latent class SPM and genetic SPM, with the prototype versions
formulated in Yashin et al. (28) and Arbeev et al. (29).

Latent class SPM
The original version of the SPM that includes hidden heterogeneity
(latent classes) was suggested in Yashin et al. (28). Here, we present
its modification that models the latent class membership in line
with recent developments in the latent class JM [see recent review
in Ref. (17)]. The latent class SPM assumes that a population
consists of a finite number of latent classes (subpopulations). Indi-
viduals in these homogeneous latent classes are characterized by
similar patterns of longitudinal dynamics of biomarkers and their
relation to the survival outcome. In different classes, however, the
longitudinal patterns as well as their effect on the risk outcome can
differ. Such dependence of components of the model on the latent
class essentially means that all respective aging-related mecha-
nisms may work differently in these latent subpopulations. Ignor-
ing such hidden population structure and application of the origi-
nal model can result in incorrect conclusions as the resulting effects
can remain masked in the total population (28). The latent class
SPM is thus a valuable tool to perform sensitivity analyses revealing
the presence of such hidden population structure in the data.

Let the random variable Z denotes the latent class membership,
that is, Z = k if an individual belongs to the class k = 1, . . ., K. The
probabilities of the latent class membership, pk, conditional on a
vector of covariates X0 observed at baseline, can be specified using,
e.g., a multinomial logistic regression [as in the literature on the
latent class JM, see in Ref. (17, 63–65)]:

pk = P(Z = k|X 0) =
eβ0k+βT

1kX 0

1+
K−1∑
c=1

eβ0c+βT
1cX 0

, (7)

for k= 1, . . ., K− 1, and

pK = P(Z = K |X 0) =
1

1+
K−1∑
c=1

eβ0c+βT
1cX 0

. (8)

In each latent class k, the age dynamics of a vector of biomark-
ers Y t is given by a stochastic differential equation similar to Eq. 5
but it is assumed that all components are latent class-specific:

dYt = ak(t , X)(Yt − f k
1 (t , X))dt + Bk(t , X)dWt, (9)

with initial condition Yt0 . Here, X is the vector of covariates
observed at baseline that can contain some elements from X 0.

The expression for the hazard rate is also similar to Eq. 6 but
again with latent class-specific components:

µk(t , Yt, X) = µk
0(t , X)

+ (Yt − f k
0 (t , X))

T
Qk(t , X)(Yt − f k

0 (t , X)).
(10)

The likelihood function of the latent class SPM (8–10) is a
straightforward generalization of that in the model by Yashin et al.
(28) and we omit the likelihood estimation procedure here for
conciseness.

Genetic SPM
The “genetic SPM” suggested in Arbeev et al. (29) is the ver-
sion of the stochastic process model aimed at applications to
longitudinal studies in which a sub-sample of participants was
genotyped. This version performs joint analyses of data on geno-
typed and non-genotyped participants of a longitudinal study that
improves power compared to analyses of non-genotyped partici-
pants alone. The model is also applicable to any other (discrete)
partially observed covariate. The original version (29) can also be
modified to include the dependence of the model’s components
on the vector of observed (time-independent) covariates available
at baseline as outlined below.

Let k, k = 1, . . ., K, denotes the presence of allele or genotype
k in the genome of an individual. Similarly to expressions (7–8)
for the latent class SPM, we can specify the probabilities of having
this allele or genotype, pk, conditional on some vector of time-
independent covariates X 0 observed at baseline. The paradigm of
this approach is that the presence of a specific allele or genotype
can affect the dynamics of a vector of biomarkers Y t as well as the
hazard rate. For example, one can specify the expressions for age
trajectories of biomarkers and hazard rate for carriers of the allele
or genotype k as in Eqs (9–10).

Note that, although this specification looks identical to the
latent class SPM, the construction of the likelihood function is
different because in the latent class SPM the latent classes are not
known for any individual whereas genetic data (i.e., the values k)
are available for genotyped participants. The likelihood function
for this modification of the genetic SPM is a straightforward gen-
eralization of the likelihood function for the original model in
Arbeev et al. (29) and is omitted here. The likelihood function
contains the same parameters in the parts for the genotyped and
non-genotyped sub-samples. Thus, the addition of available infor-
mation for the non-genotyped participants (i.e., the longitudinal
measurements of biomarkers and time-to-event data) provides an
opportunity for improving power compared to analyses based on
the genotyped individuals alone. The advantage of the genetic SPM

www.frontiersin.org November 2014 | Volume 2 | Article 228 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Epidemiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arbeev et al. Longitudinal and time-to-event data

in applications to research on aging is that it has different compo-
nents representing specific biological concepts and aging-related
mechanisms for which the respective parameters have clear bio-
logical interpretations. This allows for testing different hypotheses
on the presence of genetic effect of the alleles/genotypes on respec-
tive aging-related characteristics (such as stress resistance, adaptive
capacity, age-dependent physiological norms, etc.), which is not
possible in the traditional analyses.

SOFTWARE IMPLEMENTATION, LIMITATIONS, AND APPLICATIONS TO
EPIDEMIOLOGICAL STUDIES
Both JM and SPM are computationally intensive and require spe-
cial software implementing the parameter estimation procedures.
Different research groups contributed to development of various
specifications of JM. Respectively, there has been a variety of differ-
ent implementations of specific variants of the models in software
packages of the authors’ preference. This includes implementa-
tions in SAS [see, e.g., Ref. (39, 66–70)], Mplus (71), WinBUGS
[see, e.g., Ref. (13, 42, 43, 66, 72, 73)], aML (74), and R [e.g.,
Ref. (44)]. Some authors provided software codes for the estima-
tion algorithms in the publications. A recent book (18) is a useful
source of practical information on the R packages (JM and lcmm)
designed to fit a broad class of JM.

The general (continuous-time) SPM involves solution of the
systems of ordinary differential equations (ODE) at each step of
the likelihood optimization procedure. Respective computations
can be performed using modern statistical and technical software
such as MATLAB’s Optimization Toolbox and ODE solvers, or
SAS/OR PROC OPTMODEL, implementing different optimiza-
tion algorithms and methods for the ODE solution. The likelihood
optimization algorithms for both continuous-time and discrete-
time versions of SPM are currently implemented using MATLAB
and SAS. These routines (available by request from the first author
of this paper) perform parameter estimation for different para-
metric specifications of the models as well as allow for testing var-
ious relevant hypotheses using the likelihood ratio test for nested
models and the Akaike information criterion for non-nested mod-
els. The software codes are available for the original SPM, all its
modifications published in the literature, and also for the versions
presented in this paper. An R package implementing the original
SPM and its modifications is currently being developed.

Computational complexity of the methods (both JM and SPM)
may be a limitation in certain applications. For example, GWAS
data collected in longitudinal studies may contain millions of SNPs
for thousands of participants. For such data, computational bur-
den of the methods may prohibit their routine application to each
SNP in the dataset, especially in high-dimensional cases. Currently,
a more feasible approach in such applications is to work with
pre-selected sets of SNPs (26).

Several specific computational challenges should be taken into
account in practical implementations of the latent class and genetic
SPMs introduced in this paper. The latent class SPM and the joint
latent class models have many things in common so these chal-
lenges are similar to those discussed in the literature on the joint
latent class models (17, 75). We highlight here two such challenges.
First, it is known from the mixture models literature that the like-
lihood functions may have local maxima, which is the case for the

latent class models. The recommendation is to run the estima-
tion algorithm starting from different initial values to safeguard
against convergence to a local maximum. Second, the number of
latent classes is generally not known in advance in the latent class
models. Therefore, it is necessary to perform sensitivity analyses
with different numbers of latent classes. Also, both the latent class
SPM and the genetic SPM are parametric models. Therefore, as any
parametric model, they rely on the description of its components
as specific parametric functions. Although the basic components
of the model are all based on the solid biological theories that jus-
tify their presence in the model, their specific parametric forms
are unknown and generally they cannot be empirically evaluated
from the real data to guess their parametric form. Therefore, it is
advisable to perform sensitivity analysis with different parametric
specifications of the components of the models. Also, the specific
type of genetic influence on the hidden components of aging is not
known a priori. Thus, versions of the genetic SPM with different
types of genetic influence (such as dominant, recessive, or additive
form of action of the minor allele on respective characteristics)
should be tested in applications. Summing up this paragraph, we
note that the advanced models reviewed in this paper should never
be used as a “black box” taking some data as input and producing
some p-values as output. The failure to take into account the tech-
nical details mentioned above can result in the misinterpretation
of findings and erroneous conclusions.

Another important consideration is data requirements for
application of such models. These methods deal with joint analy-
ses of longitudinal measurements and time-to-event outcomes.
Therefore, they are not applicable to epidemiological studies that
do not collect longitudinal measurements. It is also advisable
to consider the number and frequency of available longitudinal
observations before trying to apply the methods to epidemiolog-
ical studies collecting both follow-up information on events and
longitudinal measurements. There are no universal requirements
on how often the biomarkers should be measured for the models
to be applicable and the models can handle temporarily sparse
data or studies with biomarkers collected in a few time points. If
the dynamics of the biomarker is predictive of the time-to-event
outcome then inclusion of even a limited number of measure-
ments can potentially be advantageous compared to analyses of
the baseline measurements, especially for a longer follow-up peri-
ods. However, some practical considerations need to be taken
into account when specifying the models. Some biomarkers have
a complex non-linear age dynamics (8, 76). For such biomark-
ers, more observations can be necessary to estimate that complex
dynamics from the data than for those with simpler, e.g., linear,
age patterns. Also, biomarkers may have different rate of change
at different ages. For example, a biomarker can be relatively sta-
ble at middle ages so that even a couple of sparse observations at
those ages can be representative of the dynamics in the model
whereas at the old ages, when the aging-related deterioration
steadily progresses (and also a substantial attrition due to mortal-
ity happens), a more frequent collection of measurements could
be highly beneficial for such dynamic analyses.

In general, models for joint analyses of longitudinal and time-
to-event outcomes provide more efficient estimates of the effect
of a covariate (such as treatment) on time-to-event outcome in
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case when there is also an effect of the covariate on the trajectory
of a biomarker (77). Thus, such models may require smaller sam-
ple sizes to achieve the power comparable to analyses based on
time-to-event data alone. There is also an additional possibility to
increase the power when some covariate (e.g., genetic marker) is
available for a sub-sample of participants of a longitudinal study.
For example, the genetic SPM (29) combines data from genotyped
and non-genotyped participants of the longitudinal study thus
increasing the power compared to analyses of genotyped partici-
pants alone. That said, we need to note that sample size and power
calculations in these models is a largely underdeveloped area. For
JM, Chen et al. (77) derived a closed-form sample size formula
for estimating the effect of the longitudinal process, and extended
Schoenfeld’s sample size formula to the joint-modeling setting
for estimating the overall treatment effect. They investigated the
impact of the within-subject variability on the power and data col-
lection strategies, such as spacing and frequency of measurements,
and found that different data collection strategies can substan-
tially influence the power when the within-subject variability is
large. The authors also found that optimal frequency of measure-
ments depends on the complexity of the trajectory of biomarkers
so that higher polynomial trajectories and larger measurement
errors require more frequent measurements. Arbeev et al. (29) per-
formed power calculations for the genetic SPM and showed how
power increased in joint analyses of genotyped and non-genotyped
participants compared to analyses of genotyped individuals alone
in different scenarios. These two papers provide important con-
tribution to this area. However, additional studies are necessary
to investigate the power and sample size requirements in different
settings relevant to various applications.

JOINT MODELS AS A TOOL FOR INDIVIDUAL PREDICTIONS OF
LONGITUDINAL AND TIME-TO-EVENT OUTCOMES
Available evidence in epidemiological literature suggests that the
dynamic characteristics of trajectories of biomarkers observed at
middle and old ages differentiate the survival chances at older ages
[see, e.g., Ref. (8, 10, 11)]. It is also recognized that the longitudinal
trajectories of biomarkers provide important additional informa-
tion on risk of death and development of diseases compared to the
baseline or current values of biomarkers. Thus, the entire trajec-
tories of biomarkers can be used to make better predictions of the
respective time-to-event and longitudinal outcomes. JM provide
a framework for performing individual predictions of such out-
comes. Importantly, such predictions are “dynamic” in the sense
that, when additional information becomes available for the indi-
vidual, the predictions can be updated taking into account this new
observation. Development and application of such dynamic pre-
dictive tools is an active research area in the JM literature in recent
years (13, 40, 65, 78–86). The methods predict the probability of
an event in some future time period as well as the expected future
value of the longitudinal outcome for an individual with available
baseline information as well as observations of the longitudinal
outcome. The latent class JM are more computationally attrac-
tive for these purposes than the standard JM because the former
ones involve summing over latent classes whereas the latter inte-
grate over the random effects distribution [see recent review in
Ref. (17)].

Such individualized predictive tools based on JM are valuable
in clinical settings for patient monitoring and decision making
because such predictions can be dynamically updated accord-
ing to the observations of biomarkers (83, 85, 86). Availability
of free software (18, 44) and a web-based calculator (86) imple-
menting such algorithms should facilitate the growing use of this
methodology in practical applications. Such predictive tools that
utilize all available information (not only that available at baseline)
provide an opportunity for making more informed predictions
about individual’s health; however, expectations about a “perfect
individualized health forecasting” might still be unrealistic in the
foreseeable future (87).

STOCHASTIC PROCESS MODELS: APPLICATIONS FOR FORECASTING
HEALTH AND MORTALITY
Modeling and forecasting mortality in human populations is per-
formed in different related disciplines such as demography, actu-
arial science, epidemiology, and statistics. Respective approaches
reflect different focus of these disciplines related to specific
research questions being studied. Recent reviews of available meth-
ods for projecting mortality can be found elsewhere (88–90).
Demographic methods for mortality projections evolved com-
monly within the time-series framework working mostly with age-
and year-specific death rates, e.g., the widely applied Lee-Carter
model and its extensions (91). Such models usually do not include
any information on risk factors found in epidemiological studies.
Availability of large-scale studies collecting longitudinal data on
relevant aging-related biomarkers highlights an important aspect
concerning their use in such models. Specifically, one needs to take
into account age dynamics of risk factors to make more relevant
projections. For example, many physiological variables have com-
plex non-linear changes with age (8, 11) so that failure to include
such dynamics in the model (e.g., using only baseline values) can
lead to incorrect inferences about the effects of the risk factors on
mortality, and, hence, less accurate predictions and less reliable
statements on how specific risk factor interventions affect mortal-
ity. This may be especially important for applications to evaluating
and predicting mortality risks at advanced ages when physiologi-
cal variables change rapidly with age and aging-related processes
(such as decline in stress resistance and adaptive capacity) affecting
risks of death develop at a quick pace.

Another aspect in mortality projections is that mortality risk
is related to individual’s health status. Thus, morbidity projec-
tions are highly relevant for making projections of mortality but
also they provide important insights per se. Several approaches
for health projections have been developed and applied in differ-
ent settings. For example, one of the earlier models, the Coro-
nary Heart Disease Policy Model (92), was designed to simulate
how policy changes and technological developments influence
the incidence, prevalence, and mortality from coronary heart dis-
ease as well as associated changes in medical expenditures. Such
microsimulation models where the modeled unit is an individual
appear to be particularly convenient for evaluating the impact
of different scenarios on the outcomes of interest, incorpora-
tion of data from different sources, and inclusion of assumptions
about distributions of relevant variables. Dynamic microsimula-
tion models construct individual life histories allowing behavioral
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and exposure changes over time. See Kopec et al. (93) and Rutter
et al. (94) for recent discussion on methodological and applied
issues of microsimulation approaches to simulation of diseases
and health outcomes. A broader discussion on health forecasting
can be found in Ref. (95, 96).

One example of dynamic continuous-time microsimulation
model is the Canada’s Population Health Model (POHEM) (97,
98). The model integrates diverse information on different aspects
of population health such as information on risk factors, disease
onset and progression, their effects on health and functional status
and so on. The model creates a “synthetic” longitudinal data set
that represents the entire life of a cohort from birth to death and
produces all relevant statistics from this cohort. The approach has
been developed and applied to assess how different policy inter-
ventions and technological advances affect population health in
Canada. In the US, the Future Elderly Model (FEM) (99, 100)
is the most comprehensive microsimulation model that projects
individuals’ health conditions, functional status, and health care
expenditures based on a nationally representative sample of
elderly individuals from the Medicare Current Beneficiary Survey
(MCBS). Several “what-if” scenarios based on recommendations
of a panel of experts have been considered to explore changes in
the parameters of the models and the projected outcomes cor-
responding to different potential breakthrough technologies and
changes in lifestyle and the health care system. A similar conceptual
framework for using simulation methods combining information
from different sources is used in the California Health Forecast-
ing Model (101). The approach provides a full life-course model
extending the age range to birth. Also, it incorporates the dynamics
of population demographics (e.g., migration), and time-varying
health risk factors such as physical activity and obesity that allow
for better capturing the impact of public health programs and poli-
cies on the health-related outcomes of interest. The three modules
of the model, the core population module, the risk factor/disease
module, and the forecasting module, implement different ele-
ments of the general method, i.e., estimates of demographic and
socioeconomic variables, population dynamics, estimates of expo-
sures, risk factors, their impact on health-related outcomes, and
forecasting future outcomes with or without interventions.

Forecasting approaches can vary in terms of the scope, the
underlying assumptions, the modeled variables, and relationships
between them and in other aspects. They can apply concepts and
findings from several disciplines such as demography, epidemi-
ology, statistics, and medicine. Comprehensive approaches may
include hundreds or even thousands of parameters, for instance,
age- and sex-specific mortality, incidence and birth rates, preva-
lence of various relevant risk factors, effects of demographic vari-
ables on the probability of exposure to these risk factors, effects of
risk factors on the outcomes of interest with possible interactions,
and many more. Therefore, the availability of data allowing one
to estimate the parameters needed in the model as well as the use
of an adequate theoretical basis is of utmost importance for con-
structing a relevant and credible model. The dynamic forecasting
models implementing the longitudinal component require, ideally,
the knowledge on how the dynamics of time-varying risk fac-
tors affects mortality and incidence rates and respective estimates
should be obtained using appropriate methodology. In particular,

the methods for joint analyses of longitudinal and time-to-event
data reviewed here is an appropriate choice if one wishes to incor-
porate the dynamics of relevant biomarkers in the forecasting
model.

Stochastic process models reviewed in this paper originate from
the random-walk model by Woodbury and Manton (19). Theo-
retical developments and applications of different modifications
of this model to forecasting the size, health status, and mortal-
ity of the US population have been performed since the 1980s by
Manton and colleagues (102–110). Yashin et al. (103) considered
how the uncertainty due to exogenous processes combined with
stochasticity intrinsic to physiological aging processes propagates
through time in the stochastic process model. As noted by the
authors, for the purpose of forecasting, it is no longer possible to
work in the framework of the conditional model because of the
uncertainty of the future values of the exogenous factors and one
needs to make some additional assumptions concerning the sto-
chastic evolution of these exogenous factors. The paper considers
an augmented Gaussian stochastic process model with exogenous
factors influencing mortality through direct effects on the hazard
function and/or through indirect effects via their influence on the
evolution of endogenous physiological factors. The uncertainty
of forecasts of future mortality rates is assessed by the derived
expressions for the variances of the individual mortality rate and
the individual survival probability. The corresponding expressions
for the variability of the forecasted cohort parameters, which are
due solely to the uncertainty in the evolution of the exogenous
factors are obtained from these expressions by integrating out
the endogenous physiological variables. Although formulated for
mortality, the model also applies to other time-to-event data such
as the onset of diseases. See further discussion on this approach in
Stallard (109). Manton et al. (104) applied the multidimensional
stochastic process model by Woodbury and Manton to forecast the
size, health status, and survival of the US population. Akushevich
et al. (107) developed a microsimulation strategy for the stochas-
tic process model to forecast the effects of changes in risk factors
on individual physiological changes and the risk of death. This
microsimulation approach was applied to model the intervention
effects of stem cell therapy on adult atherosclerosis (108) and to
project future changes in the structure and health of the U.S. pop-
ulation due to effects of smoking on multiple outcome variables
such as disease prevalence and mortality as well as fertility (110).
The microsimulation approach as in Akushevich et al. (110) aggre-
gates changes in individual event histories to produce population
changes in the outcomes of interest. An important feature of such
forecasting model is the ability to implement different “what-if”
scenarios (similarly to, e.g., FEM).

Population health forecasting is a comprehensive task that
requires rich data as well as understanding of different determi-
nants of health and their interactions to provide an adequate out-
put. An important aspect is that the growing availability of relevant
data (e.g., longitudinal observations of physiological variables)
goes in parallel with development of innovative methodology of
analyzing such data. In particular, recent advances in the stochastic
process model methodology allow for constructing “biologically
based” forecasting models that incorporate knowledge and theo-
ries about mechanisms and regularities of aging-related changes
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accumulated in the literature. Such models contain parameters and
components, which can be meaningfully interpreted in biological
terms relevant to research on aging. Thus, they allow simulat-
ing the effects of interventions aimed at reducing or postpon-
ing aging-related changes on mortality or incidence of diseases.
The approach has a capability to accommodate several additional
sources of information. Genetic data can be implemented either
as separate genetic variants or aggregated “genetic risk scores” that
have been shown to significantly influence mortality risk and age
trajectories of various physiological variables (26, 111, 112). These
data can be analyzed either in the frameworks of the Yashin et al.
(20) model or in the genetic stochastic process model (29). Indices
of cumulative deficits (23, 113) provide an efficient approach to
investigate aging-related processes of health deterioration. Such
indices are shown to better characterize susceptibility to death
in elderly people than phenotypic frailty (114) and they appear
to be a more important determinant of long-term risks of death
and longevity than physiological variables (115). The cumulative
indices can be implemented in the stochastic process model as in
our earlier work (24). An alternative approach to accommodate
the impact of systemic dysregulation in an organism on mortal-
ity risk is to use the recently developed measure of physiological
dysregulation (116) in the stochastic process model (respective
modification of the model will be reported elsewhere).

A recently developed comprehensive approach for joint analy-
ses of data on individual health histories, age trajectories of phys-
iological variables, and mortality has been presented in Yashin
et al. (30). This version of the stochastic process model has both
jumping and continuous components representing fast changes
in health status and slower individual physiological aging respec-
tively. The important practical value of the developed approach
is that it provides the possibility for joint analysis of data with
different structures (e.g., discrete-time observations of continu-
ously changing physiological variables with unobserved changes in
health status, or unmeasured physiological variables but observed
health transitions, or a combination of the above) within the
same methodological framework (31, 32). Such approach com-
bines data from different sources that has an obvious advantage
because separate “incomplete” datasets cannot provide estimates
of all parameters needed, for example, for forecasting models.
This comprehensive model is a unique tool to connect trajec-
tories of physiological variables with data on health status and
mortality that has parameters interpretable in terms relevant to
studies on aging. The most detailed specification of the model can
incorporate diverse information about genetic and non-genetic
factors including pleiotropic, polygenic, and age-specific effects
of genes on health and survival, as well as dynamic mechanisms
of aging-related changes evaluated from longitudinally measured
physiological variables [see review of recent advances in these
research topics relevant for use in forecasting models in (117)].

CONCLUSION
We reviewed recent methodologies relevant for performing joint
analyses of longitudinal and time-to-event data: the JM and the
stochastic process models. These active research areas have a broad
range of recent methodological developments and possible appli-
cations. We presented two new modifications of the stochastic

process models, the latent class and genetic stochastic process
models that generalize previous prototype versions developed in
earlier publications. Among many possible applications of the JM
and the stochastic process models, we focused on applications
to predictions of individual and population mortality and health-
related outcomes. JM provide a flexible framework for performing
individual predictions of such outcomes which is also valuable
in clinical settings for patient monitoring and decision making.
Availability of free software and web-based tools implementing
respective algorithms is valuable for practical applications. Recent
advances in the stochastic process model methodology allow for
constructing“biologically based”forecasting models that incorpo-
rate knowledge and theories about mechanisms and regularities of
aging-related changes accumulated in the literature. Such models
provide a tool to connect trajectories of physiological variables and
data on health status and mortality with parameters interpretable
in terms relevant to studies on aging. The approach also allows for
combining data from different sources with different structures,
which is especially valuable when no single data set contains all
required information to fit such a comprehensive model.
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