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Artificial reproductive techniques are currently responsible for 1.7–4% of the births in devel-
oped countries and intracytoplasmatic sperm injection (ICSI) is the most commonly used,
accounting for 70–80% of the cycles performed. Despite being an invaluable tool for infer-
tile couples, the technique bypasses several biological barriers that naturally select the
gametes to achieve an optimal embryonic and fetal development. In this perspective, ICSI
has been associated with an increased risk for diverse health problems, ranging from pre-
mature births and diverse metabolic disorders in the offspring to more severe complications
such as abortions, congenital malformations, and imprinting disorders. In this review, we
discuss the possible implications of the technique per se on these adverse outcomes and
highlight the importance of several experiments using mammalian models to truthfully test
these implications and to uncover the molecular base that origins these health problems.
We also dissect the specific hazards associated to ICSI and describe some strategies that
have been developed to mimic the gamete selection occurring in natural conception in
order to improve the safety of the procedure.

Keywords: ICSI, ART, IVF, DOHaD, animal models, sperm selection, transgenerational, imprinting

The great advances in artificial reproductive techniques (ART)
over the last decades have fulfilled the dreams of millions of infer-
tile couples. An estimated 3.75 million births have resulted from
assisted conceptions (ESHRE 2010, ART fact sheet) and it has been
estimated that 1.7–4% of all children born today in developed
countries are conceived through the use of these techniques (1).
Intracytoplasmatic sperm injection (ICSI) is currently the most
commonly used ART, accounting to 70–80% of the cycles per-
formed (2), and there is a trend toward an increase of its use
worldwide (3), which highlights the importance of the study of
the potential health risks associated with this technique.

The use of ICSI may pose a risk for the health of the mother
and child. ARTs are considered a risk factor for different pregnancy
complications such as high blood pressure, preeclampsia, growth
retardation, bleeding or even premature births, and intrauterine
death [reviewed in Ref. (4)], particularly, the risk of premature
birth rises between two and three times depending on the study
(5, 6). The health of the assisted-conception children may be also
compromised. A recent consensus opinion review from a group of
diverse experts working at ART clinics (the Evian Annual Repro-
duction Workshop Group) concluded that IVF/ICSI children have
lower birthweights and higher peripheral fat, blood pressure, and
fasting glucose concentrations than controls (7). Furthermore,
multiple reports have associated more severe health problems such
as congenital malformation or the appearance of imprinting dis-
orders with the use of IVF/ICSI. The extensive literature available
about the increased risk for congenital malformation in IVF/ICSI
compared with naturally conceived children has been summarized

in several meta-analyses. An analysis of 19 publications selected
by a quality score based on sample size and appropriateness of
control group observed that major malformation rates ranged
from 0 to 9.5% in IVF, 1.1 to 9.7% for ICSI, and 0 to 6.9% in
naturally conceived children, leading to a statistically significant
overall odd ratio of 1.29 (8). A more recent review of 56 stud-
ies selected based on appropriateness of control group yielded an
estimation for congenital malformations following IVF/ICSI of
1.37 compared with naturally conceived children (9). Large scale
epidemiologic analyses have also observed an increased risk for
congenital malformations following IVF/ICSI. A particularly size-
able study conducted in Israel, where the national insurance policy
covers all IVF procedures for the first two children, reported an
adjusted odd ratio for congenital malformations of 1.45 for the
comparison between the IVF/ICSI population (9,042 live births)
and naturally conceived infants (213,737 live births) (10). The
odd ratio of this study was adjusted for other significant interact-
ing factors such as maternal age or gender of the child, limiting
the chance of spurious relation.

Genomic imprinting is an epigenetic mechanism based on
DNA methylation at imprinting control regions (ICR) that deter-
mines the monoparental expression of a subset of genes. These
methylation marks are established during gametogenesis in a sex-
specific manner and remain unaltered after syngamia, evading
the global demethylation taking place during preimplantation
development (11). However, ART may alter this special protec-
tion resulting into abnormal imprinting patterns that lead to
transcriptional dysregulation of imprinting genes. The altered
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transcriptional patterns of the imprinting genes leads to aberrant
embryonic and placental development, ultimately manifested as
imprinting syndromes in the offspring (12). Several of these syn-
dromes, such as Beckwith–Wiedemann (BWS), Angelman (AS),
Silver–Russel syndrome, and retinoblastoma have been associ-
ated with ART, but others negate this association [reviewed in
Ref. (13)]. One comprehensive meta-analysis suggested that only
three imprinting disorders BWS, AS, and maternal hypomethyla-
tion syndrome, all of which associated with hypomethylation at
different maternal ICRs, have been consistently linked to the use of
ART (14). Later epidemiologic observations regarding BWS and
AS also agree with the notion that an ART-induced hypomethyla-
tion at ICR is responsible for the increased incidence of imprinting
disorders in IVF/ICSI children. BWS and AS may have a genetic
(i.e., mutations in the DNA sequence) or epigenetic (i.e., imprint-
ing defect: alterations in the methylation patterns at ICRs) origin.
It has been observed that 90–100% of the IVF/ICSI children with
BWS had imprinting defects, in contrast with 40–50% of the natu-
rally conceived children with BWS (15). Likewise, whereas only 5%
of the spontaneously conceived children with AS had an epigenetic
origin, 71% of the AS cases in IVF/ICSI children were attributed
to imprinting defects (15). In a similar context, a lower DNA
methylation has been reported in the placenta of children con-
ceived in vitro compared to the control, although the reduction in
CpG methylation affected equally imprinted and non-imprinted
regions (16).

PUT THE BLAME ON ICSI?
Some of the adverse outcomes observed following ART may be
due to the increased risk for health problems in couples pursuing
ART, rather than the ART per se (9, 17, 18). The contribution of
this parental factor to the health problems associated to the ART is
difficult to dissect from the risk derived from the technique itself in
human studies, as the appropriate control group to establish a pos-
sible relation between ICSI and risk of pregnancy complications
or birth defects should be babies naturally conceived by infertile
couples. Also, the rarity of the some of the diseases associated to
ART such as congenital malformations or imprinting disorders
result in a very low statistical power (17). Unfertile couples often
show an increased risk factor for pregnancy disorders. Women are
on average older, which increases the proportion of low quality
oocytes with chromosome abnormalities (19), however, even with
donor oocytes, only 5% of fresh oocytes produce a baby (20). Fur-
thermore, other potential risk factors such as cycle irregularities,
uterine anomalies, or obesity – with mixed effects on oocyte qual-
ity or uterine receptivity (21) – are also more common in these
patients (4). The higher occurrence of multiple pregnancies result-
ing from the transfer of more than one embryo constitutes another
risk factor for pregnancy complications (4). On the paternal side,
the spermatozoa from infertile male have been shown to display
genetic and epigenetic alterations that can be linked to a reduced
embryo development and the appearance of abnormal phenotypes
in their offspring. In subfertile men, a higher incidence of DNA
fragmentation (22, 23) and aberrant DNA methylation at ICRs
(24) have been reported.

On the other hand, it is difficult to discern between the damage
associated to ICSI and other ARTs associated to the procedure.

The assisted reproduction treatment for ICSI is not limited to the
injection of a sperm head into an oocyte. It also involves the hor-
monal induction to achieve supernumerary oocyte production,
in vitro maturation (IVM) of the oocytes retrieved, in vitro cul-
ture (IVC) of the zygotes produced by ICSI, and cryopreservation
of gametes and embryos, all of which may play a role in hampering
optimal embryo development (25, 26) (Figure 1). In this context,
IVF and ICSI share most of the procedures but the sperm injec-
tion, which evades the spermatozoa selection at the zona pellucida
(ZP). The possible differential risk for adverse outcomes between
both procedures remains controversial. Experiments conducted
in animal models have observed several developmental alterations
exclusively attributed to ICSI, as detailed below. Besides, an epi-
demiologic study reported a higher major malformation rate in
babies obtained by ICSI with cryopreserved sperm compared with
IVF (8.4 vs. 4.6%) (27). However, large meta-analyses of a mix
of selected publications using fresh or frozen spermatozoa under
different conditions did not observe a differential risk for birth
defects between ICSI and IVF (8, 9).

NEGATIVE EFFECTS OF ICSI OBSERVED IN MAMMALIAN
MODELS
Mammalian models constitute a valuable tool to study the adverse
outcomes associated with ART. Studies in animal models pro-
vide a proper control group of healthy and fertile animals, reduce
the environmental variations, and provide a pre-set experimental
frame that avoids selective reporting. Furthermore, the molecular
mechanisms behind the phenotypic alterations caused by ART are
shared between mammalian species. A very well-known example
of this is the so called “large offspring syndrome” in ruminants,
caused by suboptimal IVC, remarkably similar in phenotype and
molecular base to the human BWS (28).

Due to practical and technical limitations in ruminants or
pigs, the rodents have been the most frequently used models to
study the long-term effects of ICSI in the health of the offspring.
In rodent models, ICSI has been reported to alter DNA decon-
densation (29) and calcium oscillation (30) in mouse zygotes
compared with IVF, and to impair the active demethylation of
the male pronucleus in rat zygotes (31). ICSI performed with
fresh sperm has been reported to increase the appearance of
abnormal chromosome segregation (ACS) at the first mitotic divi-
sion in mouse (32). Half of these ACS embryos developed into
morphologically normal blastocysts able to implant, but unable
to develop to term, resulting in spontaneous abortions at E7.5
(32). However, less severely impaired, yet abnormal embryos pro-
duced by ICSI may be able to survive through pregnancy, result-
ing in long-term effects on the adult life in the context of the
Developmental Origins of Adult Health and Disease (DOHaD).
In this perspective, several alterations have been described in
the offspring, such as aberrant transcriptional aberrations span-
ning to the neonatal stage (33), alterations in glucose parame-
ters in adult mice (34), and decreased testis weight, abnormal
testicular tubule morphology, and increased testicular apoptosis
(35). These long-term effects are usually manifested in a sex-
specific manner, which can be explained by the widespread epi-
genetic sexual dimorphism observed in preimplantation embryos
(36–38).
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FIGURE 1 | ART associated to ICSI that may play a role in increasing the risk for health problems.

The situation is more severe when DNA-fragmented sper-
matozoa are used for ICSI (DFS-ICSI). The study of DFS-ICSI
effects in animal models is particularly relevant because a sig-
nificant proportion of infertile men have elevated levels of DNA
damage in their ejaculated spermatozoa, which may be morpho-
logically normal and thereby inadvertently used for ICSI (39).
Sperm DNA fragmentation has been reported to affect embryo
post-implantation development in ICSI procedures in humans,
resulting in pregnancy loss (40). Studies in mice using DFS-
ICSI, produced by freeze-thawing without cryoprotectants, have
observed that DFS-ICSI induces epigenetic and genetic alter-
ations in the embryo, resulting in detrimental effects in the off-
spring. On preimplantation mouse embryos, DFS-ICSI has been
observed to delay male pronucleus demethylation, alter blasto-
cyst gene expression, and modify the expression of imprinting
genes (41). These early alterations may result in embryonic death
or in aberrant phenotypes in the offspring, such as aberrant
growth, premature aging, abnormal behavior, and a higher inci-
dence of mesenchymal tumors (41). Furthermore, male offspring
produced by DFS-ICSI has been reported to display a reduced
fertility (42). The same study also observed that the offspring
derived from DFS-ICSI displayed an increased chance for the
appearance of abnormal phenotypes (kinky-tail) in the AxinFu

mouse model of metastable epiallele, suggesting a transgenera-
tional inheritance of the epigenetic alterations generated by DFS-
ICSI (42). However, the heritability of other epigenetic changes
has not been observed in other studies (43), so the transgenera-
tional epigenetic inheritance may depend on the specific epigenetic
alteration.

ICSI-SPECIFIC HAZARDS: BYPASSING NATURAL BARRIERS
While dissecting the ICSI-specific hazards, two are exclusive from
this technique: the injection of the sperm head into the oocyte
and the bypass of the natural spermatozoa selection mechanisms,
which is partly shared with IVF.

The micromanipulation itself may harm the oocyte and the
resulting embryo. Oocyte activation seems to be abnormal, as Ca2+

oscillations differ between mouse IVF and ICSI (30). The injec-
tion of a sperm head that has not undergone acrosome reaction

increases the risk of vacuole formation in the oocyte. Although this
effect, observed in mice, only happened when three or more intact
spermatozoa were injected (44), removal of sperm plasma mem-
brane improved embryo development in mice (45) and selection
for spermatozoa with reacted acrosome improved implantation
rates in humans (46) and mouse (29).

Although a large number of spermatozoa are present in the
ejaculate, only a minority reach the fertilization place. On the
journey of the sperm from the site of deposition to the site of
fertilization, spermatozoa should pass through different barriers
that ensure that only those with normal morphology and vigorous
motility will have chances to fertilize the oocyte forming a healthy
embryo (47, 48). Spermatozoa selection under natural circum-
stances is based on three different steps: (1) the female reproductive
tract microenvironment, (2) the sperm–oviduct interactions at
the caudal isthmus, and (3) the sperm–zone pellucida interaction
(48) (Figure 2). ICSI bypasses this natural selection process of
the fertilizing sperm (49), as it does not allow the sperm–oviduct
interaction and other spermatozoa selection processes including
ZP binding-penetration.

Spermatozoa DNA fragmentation is one of the most studied
spermatozoa alterations generally excluded by these bypassed nat-
ural barriers. Furthermore, membrane altered spermatozoa have
been reported to release endonucleases to the media that could
induce DNA fragmentation in spermatozoa with unaltered mem-
branes (50). Female genital tract seems to act as a selective barrier
against DNA fragmentation. A study in the mouse model showed
that natural mating with males showing an increased percentage
of spermatozoa DNA damage – produced by scrotal heat treat-
ment or irradiation – resulted in different percentages of DNA
fragmentation according to the region of the female reproductive
tract where the sample was collected. Particularly, those spermato-
zoa reaching the oviduct had lower DNA fragmentation compared
with those situated on lower, more distant to the fertilization place,
portions (51). Apart from this selection at the reproductive tract,
the study also pointed spermatozoa binding to the ZP as a second
barrier against DNA-fragmented spermatozoa, as the percentage
of DNA fragmentation was lower for the sperm bound to the ZP
than to the unattached spermatozoa (51).
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FIGURE 2 | Spermatozoa selection barriers bypassed by ICSI: (1) the female reproductive tract microenvironment, including immune cells (2) the
sperm–oviduct interactions at the caudal isthmus, and (3) the sperm–zone pellucida interaction.

Since it is unlikely that uterine or oviductal cells are able to
assess sperm DNA quality per se, the selection needs to be based
on sperm phenotype and function related to DNA integrity (52).
Among the possible candidates, motility is the main selective factor
on the trip (53), but it is not the only one, as other barriers such as
leukocytic/phagocytic responses from the immune cells present in
the uterine mucosa (54) may play a role, and binding to the oviduct
has been correlated with chromatin stability in the pig model (55).
Some studies have found a correlation between DNA integrity
and sperm motility. Thus, a negative correlation was established
between the computer-aided sperm analysis (CASA) percentage of
motile sperms and DNA fragmentation index (DFI) (56). Likewise,
negative correlations were observed between sperm DNA frag-
mentation assayed by TUNEL and sperm motility under natural
conditions (57) or after H2O2 or alpha irradiation-mediated DNA
damage (58). In agreement, the spermatozoa selection method
swim-up, which enriches for motile spermatozoa, reduces the
percentage of apoptotic spermatozoa (59).

On a similar context, the binding of spermatozoa to ZP selects
those with progressive motility, normal morphology, and chro-
matin structure (60). Spermatozoa with single stranded or dena-
tured DNA were reported to bind less or do not bind at all to the
ZP (61). ZP binding may even exclude those with numerical chro-
mosomal aberrations (62), which seem not to display impaired
motility (63).

STRATEGIES FOR A SAFER ICSI
As the bypass of spermatozoa selection seems to be one of the most
critical hazards when performing ICSI, several spermatozoa selec-
tion methods have been proposed. Density gradients commonly
used in IVF are able to separate dead and alive spermatozoa and
other techniques such as Swim-up allow the selection of motile
spermatozoa, less prone to display DNA fragmentation (59). Sim-
ilarly, novel methods for spermatozoa selection based on motility
have been developed in microfluidics platforms, allowing sperm
selection in oligozoospermic samples with high amounts of non-
gamete cell contamination (64), and enriching the sample for

sperm with intact chromatin and DNA integrity (65). High resolu-
tion morphology has also been used to improve implantation rates
(66). In this line, motile sperm organelle morphology examination
(MSOME) allows grading spermatozoa based on the detection
of vacuoles in the sperm heads (67). These vacuoles negatively
affect implantation, pregnancy, and live birth rates following ICSI
(68). However, the beneficial effects of applying morphological
criteria for sperm selection before ICSI on implantation and preg-
nancy rates remain a controversial issue, with contrasting results
obtained by different groups [reviewed in Ref. (69)]. Other tech-
niques such as the use of sperm selection chambers (70), a peptide
ligand based stain capable of binding damaged DNA structures
(71), and Raman microspectroscopy (72) have been proposed to
select spermatozoa with low DNA damage, whereas birefringency
was used to select acrosome reacted spermatozoa (46). In a similar
line, hyaluronic acid sperm selection or ZP binding before ICSI
have been reported to be able to select for mature spermatozoa,
reduce DNA fragmentation rate, and improve embryo quality and
development (73–75). These binding-based techniques have been
suggested to select against immature sperm that has not reached
its final nuclear and cytoplasmic maturation (76).

Oocyte quality is another factor to take into account, as on one
hand the oocyte itself may be the source for genetic or epigenetic
alterations (77, 78) and on the other it may repair the genetic or
epigenetic alterations of the spermatozoa. Oocytes have been sug-
gested to be able to repair sperm DNA when the damage is <8%
(79), but the DNA repair ability depends on oocyte quality and
age (78). Thereby, improvements in IVM or ovarian stimulation
may reduce the adverse effects of ICSI. In this sense, the use of
low hormone doses may help toward a more stringent selection of
oocytes (7).

CONCLUDING REMARKS
The current widespread use of ICSI together with the perspective
of growth in its use urge for an analysis of the possible health risk
associated with this technique. Epidemiologic studies have estab-
lished associations between the use of ICSI and diverse health
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problems, ranging from premature births and metabolic compli-
cations in the offspring to abortions, congenital malformations,
and imprinting disorders. Animal models provide an invaluable
means to experimentally test these associations and to understand
the molecular root behind the adverse outcomes of ICSI in the
offspring, as an initial step to improve the safety of the technique.
ICSI bypasses a series of biological barriers, but novel strategies
based on gamete selection may mimic these barriers, restoring the
natural selection process required for a flawless embryonic and
fetal development.
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