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Background:The area under the receiver operating characteristic curve (AUC) is frequently
used as a performance measure for medical tests. It is a threshold-free measure that is
independent of the disease prevalence rate. We evaluate the utility of the AUC against an
alternate measure called the average positive predictive value (AP), in the setting of many
medical screening programs where the disease has a low prevalence rate.

Methods: We define the two measures using a common notation system and show that
both measures can be expressed as a weighted average of the density function of the
diseased subjects. The weights for the AP include prevalence in some form, but those for
the AUC do not. These measures are compared using two screening test examples under
rare and common disease prevalence rates.

Results: The AP measures the predictive power of a test, which varies when the preva-
lence rate changes, unlike the AUC, which is prevalence independent. The relationship
between the AP and the prevalence rate depends on the underlying screening/diagnostic
test. Therefore, the AP provides relevant information to clinical researchers and regulators
about how a test is likely to perform in a screening population.

Conclusion: The AP is an attractive alternative to the AUC for the evaluation and compari-
son of medical screening tests. It could improve the effectiveness of screening programs
during the planning stage.

Keywords: low prevalence rate, area under the ROC curve, average positive predictive value, biomarker, mammog-
raphy

INTRODUCTION
Screening is an important clinical tool for secondary prevention,
which aims at detecting latent conditions or diseases at an early
asymptomatic stage. The goal of screening is to facilitate inter-
vention and to improve outcomes (1). The clinical validity of a
screening test refers to its ability to detect or predict the clini-
cal disorder of interest (2). That is, for clinicians, the utility of
a screening test is determined by its ability to predict the disor-
der, i.e., the probability that a subject has the disorder given the
screening test result (positive predictive value, PPV). Clinicians
recognize that the PPV of a screening test is an important metric
partially because of the typical low prevalence of the disease in a
screening population (3). However, the current performance met-
rics that evaluate and compare screening tests at the pre-clinical
stage do not reflect the prevalence of a disease.

Some screening tests are simply diagnostic tests used on the
asymptomatic population. For example, mammography is used at
the population-level as a screening test for breast cancers as well as
the first diagnostic imaging test for symptomatic patients. Thus,
it is not surprising that the same metrics for evaluating diagnostic
tests have been adopted for evaluating screening tests. Commonly
used metrics for screening tests include sensitivity, specificity, posi-
tive and negative predictive values, positive and negative diagnostic

likelihood ratios, among others (4). All the aforementioned met-
rics require the underlying test to make a binary decision, that
is, whether the subject is or is not test-positive. Thus, a decision
threshold is needed when the underlying test provides continu-
ous or ordinal measurements. Since different thresholds result in
changing values of these metrics, the receiver operating charac-
teristic (ROC) curve that traces the tradeoff between sensitivity
and specificity as decision thresholds vary is currently the most
popular tool to describe the performance of such tests (4). The
area under the ROC curve (AUC) is arguably the most widely used
threshold-free numeric index of the ROC curve. It summarizes the
performance of a diagnostic test over its full range of values instead
of at a single threshold. To be considered better or adequate and to
be implemented in clinical practice, new tests at the research stage
are often expected to show larger or equivalent AUC values when
compared to the standard test.

Given that the administration of screening tests is in asympto-
matic populations where many screened diseases have low preva-
lence, we sought to evaluate the adequacy of the AUC in this setting
against an alternate metric, a weighted average of positive pre-
dictive values (AP). Like the AUC, the AP is a single numeric
performance metric that does not require a decision threshold;
thus, it evaluates the test over its full range of values. Like the
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Yuan et al. Threshold-free performance measure for screening tests

AUC, the AP is the area under the precision-recall (PR) curve,
which plots precision (same as the PPV) versus recall (same as
sensitivity). PR curves are widely used in information retrieval and
have been used as an alternative to ROC curves for applications to
heavily unbalanced data (5, 6). It has been shown that two retrieval
algorithms comparable in the ROC space can be very different in
the PR space when there are many more observations from one
class than the other (7, 8). Screening tests operating under low
prevalence rates are similar to retrieval algorithms applied to heav-
ily unbalanced data. Mathematically, the following two questions
are equivalent:

1. How effective can a screening test tell if a patient is diseased or
not?

2. How effective can a retrieval algorithm tell if a document is
relevant or not?

The AUC lacks sensitivity in identifying cases (9). Wald and
Bestwick argued that the AUC is an unreliable performance mea-
sure for screening tests (10). By varying the SD and the mean for
the test scores of diseased individuals, they were able to construct
tests having the same AUC but vastly different detection rates at
given false positive levels. Later in this article, we will show that
the AP behaves much better in that situation.

Our objective is to explore (1) the relationship between the two
threshold-free evaluation metrics, the AUC and the AP, and (2) the
possibility of using the AP for improving decision making regard-
ing screening tests. In the following sections, we first contrast the
AP and the AUC for evaluating screening tests using an illustrative
example with hypothetically different prevalence rates. Then, we
define various quantities of interest using a common set of nota-
tions, in order to gain insight into the connection between the AP
and the AUC. We derive an asymptotic variance formula for the
AP in the next section, and demonstrate its usage with a screening
mammography example. Finally, we summarize our findings and
discuss why the AP has advantages over the AUC when evaluating
screening tests as opposed to diagnostic tests.

ILLUSTRATIVE EXAMPLE
Before we give a formal mathematical definition for the AP in the
Section“Definitions”, let us look at the following illustrative exam-
ple that compares the AP with the AUC for identifying possible
biomarkers for screening.

By analyzing serum samples obtained from the Virginia
Prostate Center Tissue and Body Fluid Bank,Adam et al. (11) iden-
tified 779 potential protein biomarkers using a technology called
“surface-enhanced laser desorption/ionization time-of-flight mass
spectrometry” (12). Wang and Chang (13) used this data set to
illustrate the partial AUC. We focused on the late-stage prostate
cancer patients (n1= 83) and the normal individuals (n0= 82)
in the data set, although the original data set also included
patients with early-stage cancer and patients with benign prostate
hyperplasia.

Figure 1 shows the estimated AP versus the estimated AUC
for the top 15 biomarkers as ranked by the estimated AP. Some
biomarkers are ranked similarly on both scales, e.g., according to
both the AP and the AUC, 3896.641 is a top biomarker. Other

FIGURE 1 | Prostate cancer example. Top 15 biomarkers according to the
AP. Biomarkers are not labeled unless they are explicitly mentioned in the
text.

biomarkers are ranked very differently. For example, according to
the AUC, there is little performance difference between 8355.562
and 7819.751 whereas, according to the AP, 8355.562 has better
predictive power. Therefore, it is clear that these two metrics are
measuring different aspects of a test. Our question is: what are the
implications of these differences in the screening setting?

To explore and investigate the implications, we selected two
pairs of biomarkers: pair A (8355.562 and 7819.751), which had
very similar AUC scores but very different AP scores; and pair
B (9149.121 and 5074.164), which scored similarly on the AP-
scale but very differently on the AUC-scale. Figure 2 displays the
histograms of the raw data for the two selected pairs. Figure 3 com-
pares the resulting ROC curves of the two pairs. We can see clearly
from Figure 3 that the two biomarkers in pair A have qualitatively
different ROC curves, yet their AUC values are very similar. For
the two biomarkers in pair B, one can immediately discern that
5074.164 has a larger area under its ROC curve (i.e., larger AUC),
yet their AP-values are similar.

In this example, biomarkers were evaluated under a case–
control design (n1= 83≈ 82= n0), which is typical in clinical
research settings for evaluating biomarkers and tests. Since the
purpose of this case–control study is to identify biomarkers as
future screening tools, the prevalence of the disease is expected to
be much lower. To see how the relative evaluations may change as
measured by the AP and the AUC for the biomarker pairs A and
B, we conducted a simple thought experiment by duplicating the
control subjects to lower the prevalence (Table 1).

The AUC should not change when the disease prevalence
changes because it is independent of prevalence. The differences
observed in the estimated AUCs (Table 1) when the prevalence
is lowered from about 0.5 to 0.09 are due to the way the tied
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Yuan et al. Threshold-free performance measure for screening tests

FIGURE 2 | Prostate cancer example. Histograms for biomarkers that are
ranked differently by the AP and by the AUC. Red and yellow histograms
represent cases and controls, respectively. Pair (A) (8355.562, 7819.751)

scored similarly on the AUC-scale but very differently on the AP-scale.
Pair (B) (9149.121, 5074.164) scored somewhat similarly on the AP-scale but
very differently on the AUC-scale.

scores were handled in estimating the AUC, a minor detail, which
we will not discuss here. We can see that, for pair A (8355.562,
7819.751), while the marker 8355.562 scores slightly higher on the
AP-scale when the prevalence is 0.5, the difference (∆) between the
two markers becomes much more dramatic on the AP-scale when
the prevalence is reduced from 0.5 (∆= 0.05) to 0.09 (∆= 0.23)
and then to 0.01 (∆= 0.5). For pair B (9149.121, 5074.164), even
though the marker 5074.164 has a higher AUC, the estimated AP is
more or less indifferent between the two markers when prevalence
is at 0.5. But when the prevalence is reduced, the AP actually starts
to favor the marker 9149.121. Our experiment shows that, accord-
ing to the AP metric, when the prevalence is low and the goal is

to identify diseased subjects, biomarkers 8355.562 and 9149.121
perform much better than biomarkers 7819.751 and 5074.164,
respectively. Among the four biomarkers, the estimated AP of bio-
marker 8355.562 decreases least drastically as the prevalence rate
decreases from 0.5 to 0.01, showing that its predictive power is
best preserved for identifying diseased subjects as the prevalence
decreases.

DEFINITIONS
In this section, we define various concepts associated with evaluat-
ing the effectiveness of a screening test. Our objective is to formally
define the AUC and the AP so that they can be studied together.
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Yuan et al. Threshold-free performance measure for screening tests

FIGURE 3 | Prostate cancer example. Comparison of ROC curves for
biomarkers that are ranked differently by the AP and by the AUC.
Pair (A) (8355.562, 7819.751), which scored similarly on the AUC-scale but

very differently on the AP-scale, is shown in (A). Pair (B) (9149.121, 5074.164),
which scored somewhat similarly on the AP-scale but very differently on the
AUC-scale, is shown in (B).

Table 1 | Prostate cancer example.

Biomarkers AUC AP

n0×1 (π≈0.5) n0×10 (π≈0.09) n0×100 (π≈0.01) n0×1 (π≈0.5) n0×10 (π≈0.09) n0×100 (π≈0.01)

A 8355.562 0.849 0.783 0.783 0.856 0.606 0.571

7819.751 0.850 0.857 0.857 0.802 0.370 0.062

B 5074.164 0.886 0.869 0.869 0.833 0.306 0.043

9149.121 0.832 0.793 0.793 0.822 0.512 0.225

A simple thought experiment showing changes in the estimated AUC and AP as a result of artificially inflating the number of control subjects (n0) to mimic real-life

screening settings, where the prevalence (π) of disease is low.

In order to do so, it is convenient to start with the so-called hit
function.

POPULATION VERSION AND CONTINUOUS SCORES
Suppose there are a total of N subjects in a target population, N1

of which have the disease of interest and the rest N0=N −N1

of which do not have the disease. For every subject, a screening
test produces a score, x, with which we can rank (or order) the
subjects – e.g., the higher the score (larger xi), the more likely the
subject is to have the disease, and vice versa.

Let i denote the ordered subject index, that is,x1≥ x2≥ . . .≥ xN.
If the threshold is set at xk, then all subjects with scores greater than
or equal to xk are classified as diseased by the test and all those with
scores less than xk are classified to be non-diseased.

Let

• π be the prevalence of the disease in the target population –
mathematically, π≡N 1/N = P(Y = 1) where Y indicates the
disease status, 1 for diseased and 0 for non-diseased;

• d(k) be the number of subjects with scores greater than or equal
to xk – as xk takes on decreasing values from slightly above x1

to xN, d(k) increases from 0 to N ;

• m(k) be the number of truly diseased subjects in those d(k) sub-
jects – as xk takes on decreasing values from slightly above x1 to
xN, m(k) increases from 0 to N 1;

• s be the probability that a subject has a test score greater than or
equal to xk – mathematically,

s ≡ d (k) /N = P (X ≥ xk) ,

and as xk takes on decreasing values from slightly above x1 to
xN, s increases from 0 to 1.

Then, the hit function is

h (s) ≡ m (k) /N ,

i.e., the probability that a subject with a test score greater than or
equal to xk is diseased.

When N is relatively large, it is convenient to think of the hit
function h(s), defined over s ∈ (0,1), as a continuous function. We
further assume that it is differentiable almost everywhere. This
allows the use of calculus to discuss various concepts. The col-
lection of points {s, h(s)}, traces out a so-called hit curve. For
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Yuan et al. Threshold-free performance measure for screening tests

simplicity, the hit function h(s) is also referred to as the hit curve.
Similar to the ROC curve, the hit curve is a signature of the
underlying test’s effectiveness.

The AP is defined as the PPV averaged over the true positive
fractions (TPFs). Using the notations defined above,

PPV(s) =
h(s)

s
=

m(k)

d(k)
,

TPF(s) =
h(s)

π
=

m(k)

N1
,

and

AP ≡

∫ 1

0
PPV(s)dTPF(s) =

1

π

∫ 1

0

h(s)

s
dh(s). (1)

The ROC curve refers to the collection of points {FPF(s),
TPF(s)}, where “FPF” stands for the false positive fraction – in
particular,

FPF(s) =
s − h(s)

1− π
=

d(k)−m(k)

N − N1
.

Thus, the AUC is given by

AUC ≡

∫ 1

0
TPF(s)dFPF(s) =

1

π (1– π)

[∫ 1

0
h(s)ds−

π2

2

]
.

(2)
The derivations for the last equality in both Eqs 1 and 2 are

given in Supplementary Material.
For those not familiar with either of these concepts, they are

often abstract at first sight and a few examples are warranted. For
those already comfortable with the ideas, the next two subsections
can be skipped.

A random test
If a test is random, then h(s)=πs. That is, the true positive rate
stays constant at π, the overall proportion of diseased subjects. By
Eqs 1 and 2, we have

AP(Random) =
1

π

∫ 1

0

πs

s
dπs = π,

AUC(Random) =
1

π (1– π)

[∫ 1

0
πsds –

π2

2

]
=

1

2
.

A perfect test
If a test is perfect, then

h(s) =

{
s, when s ≤ π;

π, when s > π.

That is, the positive predictive rate is 100% until all diseased
subjects have been identified, after which the positive predictive
rate necessarily stays at zero.

By Eqs 1 and 2, we have

AP(Perfect) =
1

π

∫ π

0

s

s
ds+

∫ 1

π

π

s
× 0× ds = 1,

AUC(Perfect) =
1

π (1– π )

[∫ π

0
sds+

∫ 1

π

πds−
π2

2

]
= 1.

SAMPLE VERSION AND DISCRETE SCORES
Conceptually, it is convenient to think of h(s) as a smooth con-
tinuous curve, and it makes sense for a hypothetical population
where N can be infinitely large and the test score is of a con-
tinuous nature. In practice, however, we are often dealing with
data obtained from a sample that gives discrete test scores, or data
from an ordinal scored test, giving rise to a “ragged” hit curve.
In this section, we describe the discrete set-up and derive explicit
expressions for the AUC and the AP under this set-up.

Suppose that a screening test gives K distinct scores for a sam-
ple of n subjects. When K < n, it means that some subjects’ scores
are tied. The case of “no ties” corresponds to the special case of
K= n. With K distinct scores, the subjects are partitioned into K
groups. Within each group, some are diseased and the others are
non-diseased, but they cannot be distinguished by the test score.
We use r1 to denote the set of all subjects receiving the top score,
r2 to denote the set of all subjects receiving the next top score, and
so on for r3, . . ., rK. Furthermore, let

Sk= total number of subjects in rk,
Zk= total number of diseased subjects in rk,
Z̄k = Sk − Zk , total number of non-diseased subjects in rk.

Table 2 summarizes the set-up and these notations. Under the
typical set-up (Table 2), if we threshold the scores at xk, then all
those in partitions r1, r2, . . ., rk will be declared diseased, and the
rest declared non-diseased. Therefore, we have

d(k) =
∑
k′≤k

Sk′ and m(k) =
∑
k′≤k

Zk′

As a result, the AP, as expressed by Eq. 1 as an integral, can be
approximated with a summation, and the summands can be fur-
ther rearranged, so that overall the AP is expressed as a weighted
density function of the diseased subjects, where the weights are the

Table 2 | A screening test partitions a sample of n subjects into K

groups (K distinct scores).

Score x1 > x2 > . . . > xk > xk+1 > . . . > xK Total

Partition r1 r2 . . . r k -- r k+1 . . . r k

Diseased Z 1 Z 2 . . . Z k -- Z k+1 . . . Z k n1

Non-diseased Z̄1 Z̄2 · · · Z̄k -- Z̄k+1 · · · Z̄k N0

Total S1 S2 . . . Sk -- Sk+1 . . . Sk n

The broken bars ( --) illustrates the case where all those with scores ≥xk (left) are

predicted to be diseased, while all those with scores <xk (right) are predicted to

be non-diseased.
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positive predicted values, PPV(k), denoted by wk in the following
equation:

ÂP =
1

n1/n

K∑
k=1

m (k)

d (k)
·
∆m (k)

n

=
1

n1

K∑
k=1

m (k)

d (k)
Zk

=

[
Z1

S1

]
︸ ︷︷ ︸

w1

[
Z1

n1

]
+

[
Z1 + Z2

S1 + S2

]
︸ ︷︷ ︸

w2

[
Z2

n1

]
+ · · ·

+

[
Z1 + Z2 + · · · + ZK

S1 + S2 + · · · + SK

]
︸ ︷︷ ︸

wK

[
ZK

n1

]

=

∑
k=1

wk

[
Zk

n1

]
. (3)

Likewise, the AUC, as expressed by Eq. 2 as an integral, can also
be approximated as a summation, and its summands can also be
further rearranged, so that overall the AUC is also expressed as a
weighted density function of the diseased subjects, a form similar
to the final expression of Eq. 3:

ÂUC =
1

(n1/n)(n0/n)

{
K∑

k=1

[
m (k)

n

] [
∆d (k)

n

]
−

1

2

(n1

n

)2
}

=
n

n0

{
K∑

k=1

[
m (k)

n1

] [
∆d (k)

n

]}
−

1

2

n1

n0
,

where the term inside the curly brackets is

K∑
k=1

[
m (k)

n1

] [
∆d (k)

n

]

=

[
Z1

n1

] [
S1

n

]
+

[
Z1 + Z2

n1

] [
S2

n

]
+ · · ·

+

[
Z1 + Z2 + · · · + ZK

n1

] [
SK

n

]
=

[
S1 + S2 + · · · + SK

n

]
︸ ︷︷ ︸

w ′1

[
Z1

n1

]

+

[
S2 + · · · + SK

n

]
︸ ︷︷ ︸

w ′2

[
Z2

n1

]
+ · · · +

[
SK

n

]
︸ ︷︷ ︸

w ′k

[
ZK

n1

]

=

∑
k=1

w ′k

[
Zk

n1

]
. (4)

Equations 3 and 4 give convenient and explicit expressions for
estimating the AP (and the AUC) in practice. They also reveal that
both the AP and AUC can be expressed as weighted averages of Z 1,
Z 2, . . ., Z K, except that they use different weights: wk for the AP
and w’k for the AUC.

CONNECTIONS BETWEEN AP AND AUC
The expressions in Eqs 3 and 4 indicate that the AP places more
emphasis on initial true positives than does the AUC. To see this,
let us look at the weights wk and w’k, which differentiate the two
measures. The difference between these two weights can be seen
most clearly in the case of “no ties,” i.e., K = n. Under such cir-
cumstances, each rk contains just one subject, so Sk= 1 for all k,
and each Z k is either zero or one.

Then, from Eq. 3, wk for the AP is given by[∑k

i=1
Zi

]/[∑k

i=1
Si

]
,

where Zi= 1 or 0 and Si= 1 for i= 1, . . ., k. So

k∑
i=1

Zi = number of true positive up to k = m(k)

and
∑k

i=1 Si = k. Thus

wk =

∑k
1 Zi∑k
1 Si

=
m(k)

k

=
number of true positives up to k

k
≡ PPV(k). (5)

Similarly, from Eq. 4, w ′k for the AUC is given by
∑k

i=k Si/n. Since

Si= 1 for i= k, k + 1, . . ., n, we have
∑k

i=k Si = n − (k − 1), and

w ′k =

∑k
i=k Si

n
=

n − (k − 1)

n
. (6)

It is clear from Eqs 5 and 6 that the weights used by AUC (w’k)
are independent of, whereas the ones used by the AP (wk) are
adaptive to, the predictive performance of the test itself.

Suppose that we are comparing two tests, A and B, and a dis-
eased subject is ranked at k (i.e., Z k= 1) by both tests. When
estimating the AUC for the two different tests, the diseased subject
will receive a fixed weight (n− k+ 1)/n, in both tests A and B.
When estimating the AP, however, the weight the subject receives
will depend on the strength of the test itself. In particular, if test A
identified more diseased subjects before k than did test B, the rel-
ative weight on Zk would be bigger for test A than for test B. This
shows that the AP places more emphasis on early true positives
than does the AUC.

ASYMPTOTIC VARIANCE
To use the AP as a performance metric in practice, we derived an
asymptotic variance formula for the estimated AP so that infer-
ences can be made. Supplementary Material contains the detailed
derivations. Here, we illustrate the finite sample property of our
asymptotic variance formula using data from the Digital Mam-
mographic Imaging Screening Trial (14), which compared digital
versus film mammography for breast cancer screening.

Over 42,000 women were enrolled in the trial and underwent
both digital and film mammography. Using a seven-point malig-
nancy scale, each pair of mammograms was rated separately by
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Table 3 | Diagnostic accuracy of digital and film mammography using

a seven-point malignancy scale after 455 days of follow-up [adapted

fromTable 3 of Pisano et al.(14)].

Malignancy score 7 6 5 4 3 2 1 Total

Digital Category

total

11 29 69 1061 2224 6588 32588 42570

Cancers 10 18 25 85 49 25 122 334

Film Category

total

17 29 70 942 2291 6910 32486 42745

Cancers 13 24 25 74 35 33 131 335

Table 4 | Breast cancer example (see Asymptotic Variance).

Mammography

type

AUC AP SE of AP

Asymptotic P-bootstrap NP-

bootstrap

Digital 0.753 0.144 0.0197 0.0197 0.0194

Film 0.735 0.166 0.0219 0.0216 0.0215

Film versus digital mammography. P-bootstrap, parametric bootstrap; NP-

bootstrap, non-parametric bootstrap. A total of 5000 bootstrap samples were

generated for each bootstrap method.

two independent radiologists. At 15-month follow-up, a total of
335 breast cancers were confirmed in the final cohort, and the
question was: which type of mammography is better at detecting
these cases of cancer?

We analyzed the data reported in Table 3 by Pisano et al. (14),
which is shown below. The estimated AUC and AP for the two tech-
nologies are given in Table 4, together with several SE estimates
of the AP. Here, we can see that the asymptotic estimates of SEs
do agree closely with standard bootstrap estimates (15), indicating
that our variance formula performs well on finite samples.

Overall, digital mammography fared slightly better than film
mammography on the AUC-scale, but the AP favored film mam-
mography slightly over digital mammography. The difference in
the AP (or the AUC) between the two types of mammography was
relatively small and there is likely no clinically significant difference
between the two tests.

DISCUSSION
In this paper, we derived explicit expressions for and examined
the connections between the AUC and the AP (see Definitions and
Connections Between AP and AUC). We compared these metrics
in two screening settings: the prostate cancer biomarker (Figure 2)
is an example of a test with continuous scores; and the breast can-
cer mammogram (Table 3) is an example of a test with ordinal
scores. We also derived an asymptotic variance formula for the
estimated AP.

Our objective is to show that the AP has advantages over the
AUC when evaluating screening tests as opposed to diagnostic tests
at the pre-clinical stage, when possibly many different candidate

tests (or biomarkers) are considered. It is well known that the
AUC measures the discriminative ability (the separation of two
probability density functions) of the test scores for diseased and
non-diseased subjects, and that the AUC has a conditional prob-
ability interpretation – given a randomly selected pair of diseased
and non-disease subjects, the AUC is the probability that the test
assigns a higher risk score to the diseased subject. However, we can
think of five issues important to evaluating a screening test that
are not properly addressed by the AUC metric:

(1) When prevalence is low, the false positive rate needs to be
low for a useful screening test to be acceptable (10). A larger
AUC does not guarantee this as shown by the prostate cancer
biomarker example (see Illustrative Example).

(2) If we randomly sampled two individuals from the population
when prevalence is low, it is unlikely that we would obtain
a pair consisting of a diseased individual and a non-diseased
one. Therefore, the conditional probability interpretation of
the AUC is not directly relevant to the screening task per se.

(3) Hypothetically, for two respective populations with high and
low prevalence rates of the same disease, the best screening
test to use in each case could be different. However, the AUC
will choose one single test for both populations regardless of
the prevalence, which may not be the best screening test for
either population.

(4) While the PPV of a test is of considerable clinical interest, the
AUC does not contain information about the PPV.

(5) For patients, the ability of the screening test to predict their
disease status (i.e., the PPV) is an idea easier to understand and
relate to than the idea of diagnostic accuracy. The predicted
risk facilitates shared medical decision making (16), which is
a core concept for patient-centered care.

The AP, on the other hand, takes into account not only the
separation of the two density curves but also how they separate,
and the prevalence of the specific disease. It directly addresses the
aforementioned issues (3–5), and indirectly addresses the issue
(1). The last point can be vividly illustrated with an example from
Wald and Bestwick (10).

By fixing the test scores of non-diseased individuals to be nor-
mally distributed with mean 0 and SD 1, and varying the mean
and SD for the diseased individuals, Wald and Bestwick (10) were
able to construct tests having the same AUC but vastly different
detection rates (DRs) at given false positive levels, and vice versa.
We took the example given in their Figure 2 and estimated the
AP using the same three prevalence rates, 0.5, 0.09, and 0.01, as
we did in Table 1. The results are shown in Table 5. First, we can
see that the AP distinguishes the performance of the three tests
and ranks the three tests in the same order as the DR and FPF do.
Moreover, on the AP-scale, the advantage of the best test becomes
more prominent as the prevalence rate decreases. The DR and FPF,
however, remain the same and so does the AUC, because they are
independent of the prevalence rate.

As a weighted average of PPV, the AP measures the overall pos-
itive predictive power of a screening test, which is used to predict
disease status for individual patients in a target population with a
specific prevalence rate. Typically, the disease prevalence rate is low
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Table 5 | AUC, AP, DR, and FPF for three tests from Wald and Bestwick

[(10), Figure 2].

AUCa AP DR at

FPF 0.05a

FPF at

DR 50%a

π=0.5 π≈0.09 π≈0.01

SDA=SDU 0.75 0.74 0.26 0.04 0.24 0.17

SDA=1.5SDU 0.75 0.79 0.42 0.16 0.39 0.11

SDA=2SDU 0.75 0.81 0.51 0.29 0.47 0.07

aNumbers are fromTables 1–3 of Wald and Bestwick (10) for AUC= 0.75, a setting

illustrated further in their Figure 2. DR, detection rate, the proportion of diseased

individual identified at a given threshold. FPF, False positive fraction, the pro-

portion of non-diseased individual identified at a given threshold. The APs are

averages over 1000 simulations, using n=10000 for non-diseased subjects, and

n=100 (π≈0.01), 1000 (π≈0.09), and 10000 (π=0.5) for diseased subjects,

respectively. SDA =SD of affected (diseased) individuals; SDU =SD of unaffected

(non-diseased) individuals.

for a screening test, and we naturally would like to avoid raising
too many red flags, but for the precious few flags that we do raise
(i.e., the top-ranked subjects), we would like to detect as many true
positives as possible. In our opinion, the AP is better aligned than
the AUC is with the goal of assessing the positive predictive ability
of a screening test1.

Taking breast cancer screening and diagnostic tests as an exam-
ple, the screening and diagnostic mammography are exactly the
same technology; the only difference is their respective target pop-
ulations – without or with suspicion of breast cancer. In the clinical
trial example (see Asymptotic Variance), the disease was diagnosed
in 0.78% of the screening population at 15 months post-screening
(0.59% at 12 month post-screening). Radiologists do explicitly
consider the very low prevalence rate when assigning malignancy
scores to avoid too many false positives (17). In other words, the
predictive value of a screening test is of clinical interest, and clin-
icians may very well prefer a screening test that is favored by the
AP to one favored by the AUC.

Consider again the prostate cancer biomarker example (see
Illustrative Example). For pair B (9149.121, 5074.164), when the
“prevalence rate” was artificially set at 50% (by virtue of the
case–control design), the marker 5074.164 scored higher on the
AUC-scale; but on the AP-scale the two biomarkers were simi-
lar. However, when the prevalence was reduced to better mimic
the screening setting in real life, the AP started to favor the other
marker, 9149.121, by a substantial margin, thus supporting the
use of marker 9149.121 as a screening tool over marker 5074.164.
For assessing screening (as opposed to diagnostic) tests, therefore,
a performance metric that emphasizes the test’s overall predictive
ability for individual patients in the targeted screening population,
such as the AP, could improve decision making.

1The negative predictive value (NPV) is usually high in a screening setting due to
the low disease prevalence rate. For example, for a disease with 1% prevalence rate,
a random screening would give a 1% PPV but a 99% NPV. In practice, any useful
test is better than a random one and would always give a higher PPV and NPV than
the random test.

One may argue that the partial AUC addresses the very concern
that not all parts of the ROC curve are relevant, so a new metric
such as the AP is not needed. We think that, in order to use the
partial AUC, a subjective threshold is still needed that typically
incorporates additional information such as the prevalence and
relative costs of false positives and false negatives. These relative
costs are hard to assess in practice, and often arbitrary and subjec-
tive. In addition, with the partial AUC, the appealing probability
interpretation of the AUC is also lost. We have observed that, in
clinical research, the partial AUC has not been used as often as it
should have been. To this effect, we think that the threshold-free
AP metric offers an attractive alternative to the partial AUC.

Finally, we think that the AP is useful not only for medical
screening tests but also for the risk prediction of low probability
events in general. Often, models are constructed and covariates are
selected in order to predict some future event in a specific pop-
ulation, e.g., the risk of having a cardiovascular event in the next
10 years, or the risk of having a secondary neoplasm in the next
10 years for cancer survivors. One of the main objectives is to iden-
tify patients who have a high risk of developing these conditions.
Since many of these events have low probabilities, the AP may be a
useful performance measure for reasons similar to those discussed
above. Currently, however, prediction models and competing risk
factors are almost exclusively assessed by ROC curves and more
specifically, by the AUC (18).
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