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While longitudinal changes in biomarker levels and their impact on health have been 
characterized for individual markers, little is known about how overall marker profiles may 
change during aging and affect mortality risk. We implemented the recently developed 
measure of physiological dysregulation based on the statistical distance of biomarker 
profiles in the framework of the stochastic process model of aging, using data on blood 
pressure, heart rate, cholesterol, glucose, hematocrit, body mass index, and mortality in 
the Framingham original cohort. This allowed us to evaluate how physiological dysregu-
lation is related to different aging-related characteristics such as decline in stress resis-
tance and adaptive capacity (which typically are not observed in the data and thus can 
be analyzed only indirectly), and, ultimately, to estimate how such dynamic relationships 
increase mortality risk with age. We found that physiological dysregulation increases with 
age; that increased dysregulation is associated with increased mortality, and increasingly 
so with age; and that, in most but not all cases, there is a decreasing ability to return 
quickly to baseline physiological state with age. We also revealed substantial sex differ-
ences in these processes, with women becoming dysregulated more quickly but with 
men showing a much greater sensitivity to dysregulation in terms of mortality risk.

Keywords: physiological dysregulation, stochastic process model, Mahalanobis distance, longitudinal data, 
mortality, sex differences

inTrODUcTiOn

The aging process involves many physiological changes affecting the homeostatic state of the organ-
ism (1). Studies of biomarkers of aging thus have the potential to simultaneously shed light on the 
underlying aging process and to provide measurement tools for understanding how aging proceeds 
within an individual. While a large number of studies have examined changes in biomarkers during 
the aging process, almost all of these have considered markers one at a time and without reference to 
how optimal levels of the markers change with age [see, e.g., Ref. (2)]. However, it is clear on the one 
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hand that optimal levels can and do change with age (3, 4), and 
on the other that information contained in biomarkers is highly 
redundant, non-linear, and complex (5–7). While some studies 
have succeeded in incorporating one or the other of these com-
plexities, none have yet attempted both simultaneously. The need 
for new methodological developments that would analytically 
integrate the number of biomarkers and complex interrelation-
ships among them is recognized in the literature (2).

Recent advances in biodemographic models of aging resulted 
in development of mathematical models of aging that are based 
on biological theory, incorporate several essential mechanisms 
of aging-related changes in organisms, and work with relevant 
socio-demographic and other information collected in longitudi-
nal data on aging. These models, known as the stochastic process 
models (SPM) or the quadratic hazard models (4, 8–10), allow 
us to evaluate “hidden components” of aging-related changes 
including adaptive capacity, resistance to stresses, physiological 
norms, and effects of allostatic adaptation  –  all variables that 
play important roles in the processes of aging (11–15); their 
inclusion in the model is therefore important to understand 
regulatory mechanisms driving observed aging-related changes 
in physiological variables and their influence on risks of death or 
developing a chronic disease, as well as for evaluating a genetic 
component in such processes. The advantage of the SPM-based 
approaches is that “hidden components of aging” can be estimated 
from the data although corresponding variables are not directly 
observed in the study.

Recently, Cohen et  al. (5) presented a novel approach for 
measuring physiological dysregulation via the joint distribution 
of multiple biomarkers based on calculation of a multivariate 
distance called the Mahalanobis distance (which we denote DM) 
(16, 17). Such a measure represents the deviation of a current 
physiological state of an organism from the “normal” physiologi-
cal state. In contrast to previous approaches, such as those used 
to calculate allostatic load, DM does not depend on a choice of 
biomarkers known to be associated with poor health, and thus 
avoids a potential for circularity (18). The interpretation of DM as 
physiological dysregulation has been validated by showing that it 
(a) increases with age within individuals, (b) predicts mortality 
controlling for age, (c) gains predictive power as more variables 
are included, and (d) is not particularly sensitive to which mark-
ers are included, nor to their individual correlations with age (5). 
It has even been shown to function in a wild bird species (19). 
While individual trajectories of DM with age have been examined 
in relation to health outcomes (20), the modeling approach used 
lacked the advantages of SPMs listed above, notably the ability 
to quantify adaptive capacity and optimized versus realized 
trajectories. Differences between men and women have also not 
been characterized.

The primary goal of this paper is to understand individual 
trajectories of dysregulation during aging in terms of adaptive 
capacity, mortality risk, and male–female differences. To do this, 
we will implement the measure of multivariate distance (DM) in 
the SPM framework. Joining the two approaches (SPM, DM) in 
the same model can further increase our capacity to uncover 
important aging-related processes. First, DM can be used as a 
quantitative measurement of how an individual departs from 

the physiological norm and is thus directly informative about 
parameters to be estimated by SPM. Second, although success-
fully applied to different data in different settings in one- or two-
dimensional cases (3, 4, 21–27), the SPM may face computational 
difficulties in applications to multidimensional data because of a 
large number of parameters to be estimated and a computation-
ally intensive likelihood maximization procedure. DM is useful in 
application of the SPM because it allows us to work with multiple 
physiological variables in a one-dimensional model while still 
allowing us to estimate and interpret all components of this one-
dimensional SPM in the same way as in the original model. The 
SPM originates from the Woodbury–Manton model (28) and 
complexities associated with multidimensional versions of such 
models are recognized, see, e.g., Ref. (29), so the current approach 
is an important step forward in this research area. This paper is the 
first one addressing the combined effect of multiple physiological 
variables on mortality in the SPM (8) framework. We carry this 
out by applying the model to the Framingham Original Cohort 
(FHS) data. We estimate the model separately for female and male 
FHS participants to investigate sex differences in the dynamic 
behavior of the measure of physiological dysregulation and its 
possible relationships to the observed sex-specific differences in 
mortality risks.

DaTa anD MeThODs

Measure of statistical Distance and 
Physiological Dysregulation
For a given set of physiological variables (biomarkers) represented 
by a column vector X measured in an individual at age t, X(t), DM 
is defined as (5):

 D X t X t X S X t XM
T( ( )) ( ( ) ) ( ( ) )= − −−1  (1)

where X is a vector of means, S is the variance–covariance matrix 
for respective variables calculated from some population defining 
the “normal” state (which can be the same population or some 
other “reference” population), and T denotes transposition.

Mathematical Model of age Dynamics of 
Physiological Variables, aging, and 
Mortality
Recent advances in mathematical modeling of aging allow us to 
link the age dynamics of physiological variables and mortality 
risks and evaluate “hidden components” of aging-related changes 
incorporating several major concepts of aging in the structure 
of the model. These models, originating from the Woodbury–
Manton’s random walk model (28), became known as the SPM 
(8), see Section “Introduction.” Theoretical background of the 
models with survival functions induced by stochastic covariates is 
presented in Ref. (28, 30, 31). These results are directly applicable 
to the SPM version by Yashin et al. (8). The random evolution 
of covariates with age or time (which is a natural assumption, 
for example, for the evolution of biomarkers affecting survival) 
is not explicitly modeled in standard approaches, such as logistic 
or Cox models, and it is captured in such stochastic models. This 
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is a fundamental feature of such models, which is an appealing 
property for practical applications, but the presence of stochastic 
covariates requires computations of marginal hazards and 
survival functions from the conditional hazards. When the con-
ditional hazard is a quadratic function of such random covariates 
[as in Ref. (8)], such expressions can be computed as shown in 
Ref. (32, 33). Below, we briefly describe the SPM (8) in which we 
implement the measure of statistical distance (Eq. 1).

Briefly, the SPM consists of two equations representing the 
dynamics of chosen variables as a function of age t and conditional 
mortality rate at age t given the vector of the variables measured 
at respective ages. Let Y(t) be a K-dimensional stochastic process 
representing a (K × 1) vector of variables at age t. The conditional 
hazard of death is specified as:

 µ µ( , ( )) ( ) ( ( ) ( )) ( )( ( ) ( ))t Y t t Y t f t Q t Y t f tT= + − −0 0 0  (2)

Here, μ0(t) is the “residual” or “baseline” hazard that represents 
the mortality risk, which would remain if the variables in Y(t) 
followed the “optimal trajectory” represented by a (K × 1) vector 
function f0(t). This baseline hazard μ0(t) models the effect of other 
risk factors not included in Y(t) that impact the risk of death. The 
age trajectory of variables f0(t) that minimizes the risk of death 
is referred to as the “physiological norm.” The matrix Q(t) is a 
(K × K) positive-definite symmetric matrix.

The dynamics of the stochastic process Y(t) is given by the 
following equation:

 dY t a t Y t f t dt b t dW t( ) ( )( ( ) ( )) ( ) ( )= − +1  (3)

with initial condition Y(t0). Here, W(t) is a vector Wiener process 
with independent components [W(t) is assumed to be independ-
ent of the initial vector Y(t0)], which defines random paths of the 
variables in Y(t). A matrix of diffusion coefficients b(t) regulates 
how this “randomness” propagates to variability of trajectories 
of Y(t).

The vector function f1(t) (referred to as the “mean allostatic 
state”) describes the effect of allostatic adaptation (13). This state 
characterizes the allostatically modified set point for homeostatic 
regulation, that is, the physiological state that organisms are 
forced to maintain by the process of homeostatic adaptation, 
which represents averaged effects of complex interplay among 
factors controlled by the ontogenetic program, senescence, 
and long-term stresses exceeding the limits of the organism’s 
homeostatic regulation. This dynamic behavior [i.e., that Y(t) 
adapts to changes in the function f1(t)] in the model is possible 
due to the presence of the negative feedback mechanism in Eq. 3 
with coefficients of homeostatic regulation given by a matrix a(t). 
Age-related changes in these coefficients characterize changes in 
adaptive capacity with age. Specifically, the elements of this matrix 
characterize the rate of the adaptive response for any deviation of 
the variables from the state f1(t). This allows us to test hypotheses 
on decline in adaptive capacity with age [see also more discus-
sion and examples in Ref. (8, 10)]. Note that the general model 
with age-dependent components in Eqs 2 and 3 can be simplified 
to the version with age-independent components. This may be 
helpful in some applications where testing the hypotheses on age-
dependence of respective characteristics is not important but in 

our applications age-dependence of all components [except f0(t) 
and b(t)] is essential as it allows for addressing the hypotheses 
formulated below in Section “Application to Framingham Heart 
Study Data.”

The SPM described above can be applied to any set of variables 
for which longitudinal measurements are available in the data. 
The measure of physiological dysregulation (DM) represents an 
example of such a variable: it can be calculated for each individual 
at each observation point (exam) so that each individual has a 
trajectory of measurements of DM at different ages.

Mathematical Model of age Trajectories 
of Physiological Dysregulation, aging, 
and Mortality
Let Y(t) = DM[X(t)] as given by Eq. 1. This is now a one-dimen-
sional process represented by Eq. 3 where respective components 
[W(t), f1(t), a(t), b(t)] are scalar counterparts of corresponding 
vectors/matrices. The one-dimensional version of Eq. 2 is:

 µ µ( , ( )) ( ) ( )( ( ) ( ))t Y t t Q t Y t f t= + −0 0
2  (4)

where f0(t) and Q(t) are also scalars. As DM measures physiologi-
cal dysregulation in an organism represented as deviations from 
the “normal state” (as specified in its calculation), it is natural to 
assume that f0(t) = 0 in Eq. 4. That is, in this implementation we 
assume that the “normal” values of physiological variables from 
the definition of DM (Eq. 1) minimize the risk of death at all ages 
[see also Section “Results and Discussion” regarding the speci-
fication of the “normal state” in DM calculations and alternative 
implementations of the “norm” f0(t)]. Note that the definition of 
DM involves calculations of a vector of means and the variance–
covariance matrix for respective variables from some “reference” 
population defining the “normal” state. The question of which 
“reference” population should be used for these purposes can be 
dictated by data availability and research paradigms in specific 
studies, but the results are generally not overly sensitive to specif-
ics of the choice (34). Reference populations that differ markedly 
from study populations across many demographic aspects (e.g., 
age, race, and sex) perform poorly, but differences in any single 
aspects have mostly minor effects. In our application, we used the 
population of individuals from the original Framingham cohort 
aged 40  years and younger at the baseline exam, as described 
below in Section “Application to Framingham Heart Study Data.”

application to Framingham heart 
study Data
The Framingham Original Cohort was launched in 1948 and 
has continued with biennial examinations to the present. The 
FHS Original Cohort included 5,209 respondents (nearly all 
subjects were Caucasians) aged 28–62 years at baseline residing 
in Framingham, MA, USA, between 1948 and 1951. Data on 
5,079 individuals (2,785 females, 2,294 males) from the Original 
Cohort were available for this study. Data relevant to our analyses 
include ages at exams, sex, ages at death/censoring (available 
data contain information on the number of days since the first 
exam until the event/censoring from which we calculated respec-
tive ages dividing the number of days by 365.25), and various 
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physiological variables measured at exams. For our analyses, we 
selected physiological variables measured at a sufficient number 
of exams and whose dynamic characteristics have been shown to 
be related to the risk of death or onset of aging-related diseases 
in participants of the FHS Original Cohort in our earlier studies 
including those which used the original SPM approach [see, e.g., 
Ref. (3, 4, 24, 26, 27, 35)]. The list includes blood glucose (BG), 
body mass index (BMI), total cholesterol (CH), diastolic blood 
pressure (DBP), hematocrit (HC), systolic blood pressure (SBP), 
pulse pressure (PP), and ventricular rate (VR). Their relevance to 
research on aging has been discussed in the literature, see, e.g., an 
earlier publication by Manton et al. (36).

The original data on physiological measurements contain 
missing values (either by design when at some exam the respective 
variable was not measured or intermittent missing values when 
some individuals missed an exam). Following Engels and Diehr 
(37), we imputed intermittent missing longitudinal values for an 
individual using available data for that individual. Intermittent 
missing values were imputed using a linear approximation of 
available observations in the adjacent exams. For missing data 
at initial exams, two methods were used: the “next observation 
carried backward” method and the average of measurements at 
the next two exams. We repeated all computations using the data 
generated by these two methods and the results were not sensitive 
to the imputation method so only the results that used the latter 
method are reported here.

The data on original variables (BG, BMI, CH, DBP, HC, 
PP, SBP, and VR) were each transformed using the Box–Cox 
transformation and then standardized to a zero mean and a unit 
variance so that all transformed variables are on the same scale in 
the analyses. We used these standardized transformed variables 
in calculations of DM, as defined in Eq. 1. We calculated the means 
and the variance–covariance matrix in Eq. 1 using baseline meas-
urements for individuals aged 40 years and younger (altogether, 
there were 2,012 such individuals in the Original Cohort, 1,104 
females and 908 males). All analyses were performed separately 
for females and males (to avoid any assumptions on relationships 
between parameters of the model in two sexes) using the sets of 
physiological variables included in calculations of DM variants, as 
described below.

The values of DM depend on the specific set of variables included 
in its definition. Therefore, to test if the results are sensitive to the 
choice of variables in DM, it is necessary to perform analyses with 
different variants of DM based on different subsets of variables. The 
most comprehensive approach would be to use all possible combi-
nations of variables as in Cohen et al. (5). However, as the present 
study applies the SPM that involves intensive computations, the 
analyses of all such variants are not feasible. Therefore, we selected 
a “basic” variant of DM and performed sensitivity analyses for an 
additional (limited) set of variants to test whether the results are 
sensitive to the choice of the variables in the construction of DM. 
Our “basic” variant is “the most complete” DM when all variables 
are included in its construction. Note that, as PP = SBP − DBP, 
we cannot use these three variables simultaneously in analyses. 
Therefore, we considered three “basic” variants each including 
seven variables: BG, BMI, CH, HC, VR, and two variables out of 
DBP, PP, and SBP. We also computed several additional variants of 

DM to perform sensitivity analyses to test: (a) whether the removal 
of one variable from such “basic” variants substantially changes 
the results; and (b) whether the removal of HC and VR (which, 
unlike the other variables, were not measured until exam 4) from 
such “basic” variants substantially changes the results. Altogether, 
we analyzed 24 different DM variants.

In our applications of SPM (Eqs 3 and 4) to these DM variants 
we used the following functional forms of the model’s compo-
nents: (1) a linear function of age for the feedback coefficient: 
a(t) = aY + bY(t − tmin), where aY < 0, bY ≥ 0, and tmin = 28 (which 
is the minimal age at the first exam in the FHS Original Cohort); 
(2) a linear function of age for the mean allostatic trajectory: 
f t a b t tf f1 1 1

( ) ( )min= + − ; (3) a linear function of age for the 
multiplier in the quadratic hazard term [named “vulnerability 
index” in Arbeev et al. (4) as it characterizes the “robustness,” or 
“vulnerability,” a component of stress resistance]: Q(t) = aQ + bQt; 
(4) the Gompertz baseline hazard: ln ( ) ln ( )minµ µ µ0 0 0

t a b t t= + − ; 
(5) a constant diffusion coefficient: b(t) = σ1; and (6) a normally 
distributed initial value Y t N f t( ) ~ ( ( ), )0 1 0 0

2σ .
This is a parsimonious specification of the model that still 

allows us to test several hypotheses on the impact of systemic 
dysregulation on mortality risk and its relation to different aging-
related processes represented by components of the model:

 (1) H0: Q(t)  =  0 [i.e., aQ  =  0 and bQ  =  0, so that there is no 
quadratic term in the hazard rate (Eq.  4) and mortality is 
described by the baseline Gompertz rate μ0(t)]. This is the 
most important hypothesis because the failure to reject this 
hypothesis would not allow us to claim that DM is a legitimate 
characteristic for capturing physiological dysregulation 
affecting mortality risk in this sample.

 (2) H0: Q(t)  =  aQ (i.e., bQ  =  0). Rejection of this hypothesis 
would mean that the effect of physiological dysregulation on 
mortality risk is age dependent. This hypothesis allows us to 
make inferences on aging-related change in stress resistance 
associated with the variables used in DM. For example, if Q(t) 
increases with age then the J-shape of the hazard rate (as a 
function of DM at a fixed age t) narrows with age indicat-
ing that the same value of DM induces a larger increase in 
mortality risk at old ages compared to younger ages, which 
can be interpreted as the aging-related decline in resistance 
to stresses associated with the dynamics of the respective 
variables, see Yashin et al. (8) and Arbeev et al. (4).

 (3) H0: f1(t) = 0 (i.e., a f1
0=  and bf1

0= ). This hypothesis allows 
us to make inferences on the presence of a systemic dysregu-
lation for the specific set of variables used in DM. Rejection 
of this hypothesis would mean that there is a systemic 
dysregulation in an organism that forces the trajectories of 
physiological variables to deviate from their “normal values” 
specified in calculation of DM [or, equivalently, forces Y(t) to 
deviate from f0(t)].

 (4) H0: f t a f1 1
( ) =  (i.e., bf1

0= ). This hypothesis allows us to 
make inferences on the changes in the level of systemic 
dysregulation with age for the specific set of variables used 
in DM. Rejection of this hypothesis would mean that the level 
which the trajectory of Y(t) is forced to follow changes with 
age. For example, increasing f1(t) with age would mean an 
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increasing level of systemic physiological dysregulation with 
age (so that the trajectories of physiological variables deviate 
further with age from their “norms” defined at younger ages), 
which can be associated with the manifestation of the aging 
process.

 (5) H0: a(t) = aY (i.e., bY = 0). This hypothesis allows us to make 
inferences on the decline in adaptive capacity with age for the 
specific set of variables used in DM. Rejection of this hypoth-
esis would mean that the value of the feedback coefficient in 
Eq. 3 changes with age. As noted, this feedback coefficient 
in the model is associated with the adaptive capacity of 
an organism [i.e., the rate of the adaptive response for any 
deviation of Y(t) from f1(t)]. In general, the larger the abso-
lute value of a(t), the faster Y(t) tends to f1(t). This means that 
if the absolute value of a(t) declines with age then more time 
is needed for the trajectory of Y(t) to go back to f1(t) at old 
ages compared to younger ages, which is the manifestation of 
the decline in adaptive capacity with age. Note also that Y(t) 
can deviate from f1(t) in both directions, i.e., closer to zero 
as well as toward larger values, and if the absolute value of 
a(t) declines with age then such periods when the trajectory 
of DM departs farther from f1(t) tend to be longer at old ages. 
This may mean that aging-related changes observed in the 
aging human body may also manifest effects of compensatory 
adaptation which tend to reduce dysregulation effects when 
f1(t) becomes large enough. These considerations stimulate 
further development of methods of dynamic modeling of 
aging-related changes and their connections with health and 
survival outcomes. See also further discussion on relation-
ships between adaptive capacity, dysregulation and different 
components of aging-related changes in Section “Results and 
Discussion.”

Testing the above hypotheses involves fitting the restricted 
models (with restrictions on the parameters specified as in the 
parentheses above) along with the original (unrestricted) model 
using the same likelihood estimation procedure (8). As we deal 
with nested models in all cases, the likelihood ratio test can be 
used to make statistical inference (see Table S1 in Supplementary 
Material). The likelihood maximization in the SPM is performed 
using the constrained optimization procedure (implemented, 
e.g., in the MATLAB’s Optimization toolbox). Constrained 
optimization is needed because constraints on parameter values 
are necessary in respective components of the model both for 
the mortality risk as well as for the risk factor Y(t). The details 
can be found elsewhere [e.g., Ref. (8, 9)]. Also note that Y(t) can 
always be transformed (e.g., using the logarithm or the Box–Cox 
transformation) similar to the original variables X(t), if necessary. 
The original scale was used in the paper for the sake of interpret-
ability of the resulting trajectories.

resUlTs anD DiscUssiOn

estimates of Parameters and results of 
Testing hypotheses
Estimates of parameters of the SPM applied to different variants 
of DM calculated for individuals from the Framingham Original 

Cohort as described in Section “Application to Framingham Heart 
Study Data” are given in Table 1 (for females) and Table 2 (for 
males). The tables show that, although the parameter estimates 
differ for different variants of DM, they still follow a common pat-
tern so that generally the components of the model look similar 
in applications to considered DM variants (a few exceptions are 
described below). The tables also reveal systematic differences 
between estimates of parameters in females and males. This is 
addressed in more detail in Section “Sex-Specific Differences in 
Estimates in the Model.”

Tables 1 and 2 also present the results of the hypothesis tests 
specified in Section “Application to Framingham Heart Study 
Data” (see notes in the tables for definitions of symbols or the 
absence of those used in different columns of the tables). Most 
importantly, the tables show that the null hypotheses H0: Q(t) = 0 
is rejected for all variants of DM (p < 0.0001 for all DM in males 
and most DM in females, with maximal p = 0.0007 for DM with BG, 
BMI, CH, HC, SBP, and VR). This allows us to conclude that there 
is a quadratic term in the hazard rate (Eq. 4) so that mortality is 
not entirely captured by the baseline Gompertz rate μ0(t), regard-
less of the variant of DM. This means that DM captures effects of 
deviations of physiological variables on mortality in this applica-
tion. All considered DM affect mortality risk in this sample so that 
non-zero values of DM result in a higher mortality rate compared 
to the baseline mortality rates at respective ages. Note also that, 
although we have non-zero estimates of the multiplier Q(t) and 
the quadratic term is present in Eq. 4, we also have non-zero esti-
mates of the baseline mortality rate μ0(t). There are many more 
risk factors that affect mortality risk and which are not included 
in definitions of DM and, correspondingly, in the quadratic part 
of the hazard. This “residual” mortality rate μ0(t) summarizes the 
effects of such unspecified factors affecting mortality risk.

The null hypothesis H0: Q(t) = aQ is also rejected in all cases, 
with p ≤ 0.0001 for males and p-values ranging between 0.0005 
and 0.01 for females (except DM with BG, BMI, CH, DBP, and 
SBP for which p = 0.038). Tables 1 and 2 also show that in all 
cases the parameter bQ is positive. These observations indicate 
that the effect of physiological dysregulation (represented by 
DM) on mortality risk is age dependent and that the J-shape of 
the mortality rate (as a function of DM at any fixed age) narrows 
with age. This narrowing pattern with age has the effect that the 
same level of physiological dysregulation (i.e., the same value of 
DM) induces a larger increase in mortality risk at old ages than 
it does at younger ages (compared to the baseline mortality rate 
for respective age). This can be interpreted as the aging-related 
decline in resistance to stresses associated with deviant dynamics 
of respective physiological variables [see also Yashin et al. (8) and 
Arbeev et al. (4)].

The null hypotheses H0: f1(t) = 0 and H0: f t a f1 1
( ) =  are rejected 

in all cases (all p < 0.0001). This result shows the presence of a 
systemic dysregulation in an organism that forces the trajectories 
of physiological variables to deviate from their “normal values” 
specified in calculation of DM (equivalently, forces DM to deviate 
from zero). The effect of this dysregulation is that, on average, an 
individual tends to have the values of physiological variables that 
deviate from the “normal” state (i.e., he/she has non-zero DM) so 
that the resulting mortality risk is higher than it could be if that 
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TaBle 1 | estimates of parameters of the stochastic process model applied to different variants of DM calculated for females from the Framingham 
Original cohort.

DM variables Parametersa,b ln lc

ln a
0µ b

0µ aQ⋅· 104 bQ⋅· 105 aY bY⋅· 103 σ0 σ1 af1
bf1

BG, BMI, CH, DBP, HC, SBP, VR −13.86 0.172 −0.520§ 0.186# −0.178 0.832† 0.97 0.58 2.06† 0.055† −51646.89

BG, BMI, CH, DBP, HC, PP, VR −13.73 0.170 −0.522§ 0.186# −0.179 0.765† 1.01 0.55 2.20† 0.046† −49857.15

BG, BMI, CH, HC, PP, SBP, VR −13.72 0.170 −0.535§ 0.191# −0.191 1.027† 0.95 0.53 2.24† 0.043† −48934.60

BG, BMI, CH, DBP, SBP −12.87 0.155 −0.490† 0.260* −0.177 0.981† 0.94 0.60 1.53† 0.060† −61306.99

BG, BMI, CH, DBP, PP −13.27 0.163 −0.853† 0.350# −0.185 1.154† 0.98 0.54 1.70† 0.049† −57547.70

BG, BMI, CH, PP, SBP −13.44 0.166 −1.003† 0.392# −0.198 1.369† 0.92 0.51 1.79† 0.042† −55461.22

BMI, CH, DBP, HC, SBP, VR −12.24 0.137 −1.054† 0.376# −0.161 0.328 0.95 0.57 1.88† 0.054† −53324.65

BMI, CH, DBP, HC, PP, VR −12.57 0.145 −1.126† 0.402# −0.160 0.206 0.99 0.53 2.03† 0.045† −51264.65

BMI, CH, HC, PP, SBP, VR −12.59 0.146 −1.158† 0.414# −0.173 0.480* 0.94 0.52 2.08† 0.041† −50236.56

BG, CH, DBP, HC, SBP, VR −11.79 0.137 −1.250† 0.447# −0.197 1.227† 0.96 0.60 1.88† 0.055† −58255.78

BG, CH, DBP, HC, PP, VR −12.02 0.142 −1.345† 0.480§ −0.197 1.135† 1.00 0.56 2.02† 0.046† −56406.84

BG, CH, HC, PP, SBP, VR −12.14 0.144 −1.403† 0.501§ −0.210 1.388† 0.95 0.55 2.05† 0.043† −55579.67

BG, BMI, DBP, HC, SBP, VR −12.56 0.162 −0.676† 0.242§ −0.170 0.525# 1.00 0.61 1.74† 0.058† −61075.97

BG, BMI, DBP, HC, PP, VR −12.44 0.161 −0.655§ 0.234# −0.171 0.426* 1.03 0.56 1.89† 0.048† −58788.66

BG, BMI, HC, PP, SBP, VR −12.40 0.160 −0.657§ 0.235# −0.185 0.697§ 0.97 0.55 1.93† 0.044† −57709.21

BG, BMI, CH, HC, SBP, VR −13.33 0.164 −0.556§ 0.199* −0.156 0.204 0.95 0.51 2.19† 0.034† −47813.00

BG, BMI, CH, HC, PP, VR −13.79 0.172 −0.598§ 0.213# −0.181 0.899† 0.92 0.53 1.98† 0.046† −48462.89

BG, BMI, CH, DBP, SBP, VR −13.13 0.160 −0.750† 0.268# −0.176 0.908† 0.96 0.61 1.74† 0.062† −61663.48

BG, BMI, CH, DBP, PP, VR −13.37 0.165 −0.842† 0.301§ −0.181 0.907† 0.99 0.55 1.93† 0.050† −58231.94

BG, BMI, CH, PP, SBP, VR −13.36 0.165 −0.868† 0.310§ −0.190 0.979† 0.93 0.53 2.00† 0.044† −56720.57

BG, BMI, CH, DBP, HC, VR −13.50 0.167 −0.657§ 0.235# −0.162 0.000 0.92 0.50 2.27† 0.023† −46868.24

BG, BMI, CH, DBP, HC, SBP −13.40 0.163 −0.560§ 0.200# −0.180 0.925† 0.96 0.57 1.86† 0.053† −51207.11

BG, BMI, CH, DBP, HC, PP −13.32 0.163 −0.563§ 0.201# −0.182 0.963† 0.99 0.54 1.99† 0.045† −49271.98

BG, BMI, CH, HC, PP, SBP −13.34 0.163 −0.585§ 0.209# −0.196 1.293† 0.94 0.52 2.04† 0.040† −48112.82

aThe estimates of some parameters are rescaled for better visibility in the table: aQ is multiplied by 104; bQ is multiplied by 105; and bY is multiplied by 103.
bThe symbols after the numbers in the following columns of table denote p-values (evaluated by the likelihood ratio test) for different null hypotheses: column “aQ⋅104”: null 
hypothesis – zero quadratic part of the hazard, i.e., Q(t) = 0 (aQ = 0 and bQ = 0); column “bQ⋅105”: null hypothesis – age-independent J-shape of the hazard, i.e., Q(t) = aQ (bQ = 0); 
column “bY⋅103”: null hypothesis – no aging-related decline in the adaptive capacity, i.e., a(t) = aY (bY = 0); column “af1

”: null hypothesis – no systemic dysregulation in an organism, 
i.e., f1(t) = 0 (a 0f1

=  and b 0f1
= ); and column “bf1

”: null hypothesis – age-independent level of systemic physiological dysregulation, i.e., f (t) a1 = f1
 (b 0f1

= ).
The symbols in these columns denote: †p < 0.0001; §0.0001 ≤ p < 0.001; #0.001 ≤ p < 0.01; and *0.01 ≤ p < 0.05, for respective null hypotheses. The absence of symbols after 
the numbers in these columns means that respective p-values exceed 0.05. Note that all other columns in the table, except the columns mentioned above, are not used to represent 
information on testing any null hypotheses and therefore they do not contain any symbols.
cln L, logarithm of the likelihood function.
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person managed to keep his/her physiological variables equal to 
the “norm” (i.e., to have zero DM) in which case the mortality risk 
would be equal to the baseline mortality at the respective age. 
Note also that in applications to all variants of DM parameter bf1

 is 
positive. This indicates an increasing level of systemic physiologi-
cal dysregulation with age that manifests itself in trajectories of 
physiological variables drifting further away from their “norms” 
as age progresses.

The results for the null hypothesis H0: a(t) = aY are mixed. 
For many variants of DM (16 for females and 6 for males), the 
decline in the absolute value of the feedback coefficient a(t) with 
age (associated with the decline in adaptive capacity of an organ-
ism) is significant with p < 0.0001, and for some other variants, 
the decline is not significant, with some estimates bY = 0. This 
means that the conclusions about the decline in adaptive capacity 
depend on the variables used in calculations of DM and that differ-
ent physiological variables have different behaviors in terms of the 
change with age in the ability of an organism to push them back 
to the trajectories specified by the mean allostatic trajectories. For 
those variables that indicated the decline in the absolute value of 

the feedback coefficient a(t) with age, this ability worsens with 
age and more time is needed for the trajectories of physiological 
variables to go back to their mean allostatic trajectories at old ages 
compared to the time needed at younger ages. However, for some 
physiological variables, this ability of an organism seems not to be 
affected by age. These results confirm our earlier observations on 
mixed patterns of age dynamics of adaptive capacity in analyses 
of different physiological variables and different outcomes (4, 26). 
A strong negative correlation between intercept and slope for the 
feedback coefficient a(t) (−0.86 for males, −0.92 for females) indi-
cates that for the DM variants with worse initial adaptive capacity 
(i.e., smaller absolute values of aY) the subsequent decline tends to 
be slower than that for the DM variants with better initial adaptive 
capacity (i.e., larger absolute values of aY).

sex-specific Differences in estimates in 
the Model
Tables 1 and 2 reveal systematic differences between estimates 
of parameters in females and males. These differences can be 
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TaBle 2 | estimates of parameters of the stochastic process model applied to different variants of DM calculated for males from the Framingham 
Original cohort.

DM variables Parametersa,b ln lc

ln a
0µ b

0µ aQ · 104 bQ⋅· 105 aY bY · 103 σ0 σ1 af1
bf1

BG, BMI, CH, DBP, HC, SBP, VR −12.00 0.157 −1.901† 0.679† −0.176 0.072 0.87 0.54 2.23† 0.031† −39006.26

BG, BMI, CH, DBP, HC, PP, VR −11.98 0.157 −1.890† 0.675† −0.192 0.284 0.88 0.53 2.32† 0.027† −38742.16

BG, BMI, CH, HC, PP, SBP, VR −11.87 0.155 −1.862† 0.665† −0.208 0.578* 0.84 0.53 2.35† 0.024† −38455.61

BG, BMI, CH, DBP, SBP −10.65 0.128 −3.665† 1.309† −0.211 1.747† 0.86 0.52 1.70† 0.034† −47230.85

BG, BMI, CH, DBP, PP −10.76 0.130 −3.871† 1.382† −0.233 2.064† 0.86 0.50 1.80† 0.028† −46222.86

BG, BMI, CH, PP, SBP −10.72 0.130 −3.934† 1.405† −0.249 2.221† 0.82 0.49 1.87† 0.023† −45581.04

BMI, CH, DBP, HC, SBP, VR −11.55 0.146 −3.214† 1.148† −0.171 0.000 0.85 0.53 2.05† 0.030† −42764.52

BMI, CH, DBP, HC, PP, VR −11.54 0.147 −3.209† 1.146† −0.181 0.000 0.86 0.52 2.14† 0.025† −42432.30

BMI, CH, HC, PP, SBP, VR −11.46 0.146 −3.202† 1.144† −0.190 0.000 0.82 0.52 2.18† 0.022† −42085.78

BG, CH, DBP, HC, SBP, VR −10.32 0.125 −3.839† 1.371† −0.190 0.209 0.87 0.55 2.03† 0.031† −44353.45

BG, CH, DBP, HC, PP, VR −10.47 0.129 −3.946† 1.409† −0.205 0.359 0.88 0.54 2.12† 0.027† −44027.24

BG, CH, HC, PP, SBP, VR −10.38 0.127 −3.906† 1.395† −0.220 0.564* 0.85 0.54 2.15† 0.024† −43794.58

BG, BMI, DBP, HC, SBP, VR −11.39 0.157 −2.370† 0.846† −0.183 0.219 0.88 0.55 1.96† 0.035† −46361.15

BG, BMI, DBP, HC, PP, VR −11.34 0.157 −2.325† 0.830† −0.195 0.231 0.88 0.54 2.05† 0.030† −45917.42

BG, BMI, HC, PP, SBP, VR −11.23 0.155 −2.238† 0.799† −0.209 0.409 0.84 0.54 2.09† 0.027† −45565.79

BG, BMI, CH, HC, SBP, VR −11.74 0.154 −2.053† 0.733† −0.177 0.000 0.84 0.51 2.23† 0.019† −37438.01

BG, BMI, CH, HC, PP, VR −11.59 0.151 −1.970† 0.703§ −0.197 0.538* 0.83 0.52 2.13† 0.024† −38109.39

BG, BMI, CH, DBP, SBP, VR −10.86 0.133 −2.640† 0.943† −0.200 1.157† 0.87 0.54 1.92† 0.036† −47889.24

BG, BMI, CH, DBP, PP, VR −10.92 0.135 −2.714† 0.969† −0.214 1.224† 0.87 0.53 2.03† 0.030† −47136.73

BG, BMI, CH, PP, SBP, VR −10.83 0.134 −2.686† 0.959† −0.229 1.354† 0.83 0.52 2.09† 0.027† −46628.07

BG, BMI, CH, DBP, HC, VR −11.85 0.155 −2.283† 0.815† −0.177 0.000 0.82 0.50 2.18† 0.019† −37076.87

BG, BMI, CH, DBP, HC, SBP −11.79 0.153 −2.167† 0.774† −0.180 0.355 0.87 0.53 2.03† 0.029† −38428.67

BG, BMI, CH, DBP, HC, PP −11.77 0.153 −2.148† 0.767† −0.198 0.653# 0.87 0.52 2.12† 0.025† −38128.94

BG, BMI, CH, HC, PP, SBP −11.68 0.152 −2.128† 0.760† −0.215 0.926§ 0.84 0.51 2.16† 0.021† −37779.68

aThe estimates of some parameters are rescaled for better visibility in the table: aQ is multiplied by 104; bQ is multiplied by 105; bY is multiplied by 103.
bThe symbols after the numbers in the following columns of Table 1 denote p-values (evaluated by the likelihood ratio test) for different null hypotheses: column “aQ⋅104”: null 
hypothesis – zero quadratic part of the hazard, i.e., Q(t) = 0 (aQ = 0 and bQ = 0); column “bQ⋅105”: null hypothesis – age-independent J-shape of the hazard, i.e., Q(t) = aQ (bQ = 0); 
column “bY⋅103”: null hypothesis – no aging-related decline in the adaptive capacity, i.e., a(t) = aY (bY = 0); column “af1

”: null hypothesis – no systemic dysregulation in an organism, 
i.e., f1(t) = 0 ( a 0f1

=  and b 0f1
= ); and column “bf1

”: null hypothesis – age-independent level of systemic physiological dysregulation, i.e., f (t) a1 f1
=  ( b 0f1

= ).
The symbols in these columns denote: †p < 0.0001; §0.0001 ≤ p < 0.001; #0.001 ≤ p < 0.01; and *0.01 ≤ p < 0.05, for respective null hypotheses. The absence of symbols after 
the numbers in these columns means that respective p-values exceed 0.05. Note that all other columns in the table, except the columns mentioned above, are not used to represent 
information on testing any null hypotheses and therefore they do not contain any symbols.
cln L, logarithm of the likelihood function.
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better understood from Figures 1 and 2. Figure 1 compares the 
estimates of female and male patterns of different components 
of the model applied to different variants of DM. It shows that 
the baseline mortality rate μ0(t) is higher in males. Males also 
have higher levels of the multiplier in the quadratic hazard term 
Q(t), which also increases faster with age than that in females. 
This means that males have a narrower J-shape of the mortality 
risk as a function of DM at each age and, moreover, this J-shape 
narrows even further at a faster rate in males than the J-shape for 
females. This confirms our earlier observations (4) and suggests 
that males have generally lower resistance to stresses associated 
with deviant dynamics of the respective physiological variables 
than females: at each age males are more vulnerable to devia-
tions from the “normal” state (i.e., the same value of DM results 
in a larger increase in the mortality risk in males compared to 
females). Increasing patterns of Q(t) in both sexes show that the 
same value of deviations from the norm (i.e., the same value of 
DM) causes a larger increase in mortality rate (compared to the 
baseline rate at respective age) at old ages than it does at younger 
ages. This is true for both sexes but a faster increase of Q(t) with 

age in males implies that this “additional price” which an organ-
ism has to pay in terms of increasing mortality rate for deviations 
of physiological parameters from the “norm” increases faster with 
age in males than in females. This, along with a higher baseline 
mortality rate, results in the higher mortality rate for males that 
is observed in human populations.

Mean allostatic trajectories f1(t) show the opposite pattern –  
they are higher and increase faster in females. This indicates that 
the physiological variables summarized by the respective DM 
tend to deviate farther from the “norm” in females and with age 
this gap widens faster in females. As such deviations generally 
correspond to abnormal values of physiological variables that are 
indicators of diseases/conditions (e.g., diabetes or hypertension), 
this can contribute to the observed higher prevalence of aging-
related diseases and conditions in females. These results on sex 
differences agree with previous studies showing higher mortality 
in males but greater propensity for clinical frailty in females 
(38–40). However, the effect of this on mortality is attenuated 
by the observed lower values of the multiplier in the quadratic 
hazard term Q(t) in females compared to males. Nevertheless, 
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FigUre 1 | estimates of different components of stochastic process model applied to different variants of DM. (a) baseline mortality rate μ0(t); (B) 
multiplier in quadratic hazard term Q(t); (c) mean allostatic trajectory f1(t); (D) absolute value of feedback coefficient a(t). Different lines correspond to estimates of 
respective components in specific DM variants for females (solid lines) and males (dashed lines).
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for some compositions of DM, we can see no major differences in 
mean allostatic trajectories for females and males. This observa-
tion implies that for some specific indicators of health the male–
female mortality–morbidity paradox (41, 42) may not hold and 
may even be reversed (43).

The results on the age dynamics of the feedback coefficient 
a(t) are mixed, although females have a tendency to have worse 
adaptive capacity (both initial adaptive capacity at younger ages 
and adaptive capacity at old ages). But generally, it confirms our 
earlier observations that there is no universal behavior of the 
decline in adaptive capacity for different physiological variables 
in females and males (4, 26).

Figure 2 displays box plots of parameter estimates in differ-
ent variants of DM applied to female and male data. This figure 
illustrates the sex differences in the components of the model 
described above from the perspective of model’s parameters. It 
also shows the estimates of parameters σ0 and σ1 indicating that 
females and males also differ in terms of variability of DM (both 
at baseline and dynamic variability over age), and, respectively, in 
terms of variability of the underlying physiological variables, with 
females having higher variability than males.

advantages, limitations, and Further 
Perspectives
The advantages of the presented mathematical model of age 
trajectories of physiological dysregulation, aging, and mortality 

combine those of the underlying model (SPM) and the measure 
of physiological dysregulation (DM), i.e., a robust measure of 
physiological dysregulation with a biologically explicit and easily 
interpretable model of age-related changes in physiology in rela-
tion to mortality (4, 5, 8, 10, 26, 27). An additional advantage is 
that the use of this measure of physiological dysregulation (DM) 
allows us to perform analysis of a one-dimensional SPM instead 
of using its multidimensional version.

Physiological variables can be analyzed within the SPM 
approach by using them explicitly in the hazard or in the sum-
mary measures such as the distance DM. The first approach is 
more flexible in the sense that we have the capability to specify 
parameters of the model for each variable separately and, thus, 
to investigate their effects on the time-to-event outcome in 
detail, as well as to make inference on their dynamic properties 
from respective parameters in Eq.  3. However, this flexibility 
has its price as we deal with a multidimensional model and the 
computational workload in the likelihood estimation procedure 
is essential. Therefore, if one is interested in the combined 
effect of the variables on the outcome of interest (and also is 
not investigating the dynamic properties of each individual vari-
able) then the approach implementing the summary measures 
such as DM becomes beneficial. It substantially reduces the 
computational burden as it works in a one-dimensional setting 
while it still has the same components, which can be interpreted 
in the context of aging-related processes. In the case of a large 
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FigUre 2 | Box plots of parameter estimates in different variants of DM applied to data on females (F) and males (M). Note: points are shown as outliers 
(“+”) if they are larger than q3 + w(q3 − q1) or smaller than q1 − w(q3 − q1), where q1 and q3 are the 25th and 75th percentiles, respectively, and w = 1.5.
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number of physiological variables this may result in a consider-
able computational advantage because the calculations of DM are 
much faster than the maximization of the likelihood function of 
the multidimensional SPM for the original set of physiological 
variables.

From a theoretical standpoint, use of a global measure of 
physiological dysregulation is likely to be more robust and less 
noisy than individual biomarkers, which may vary for many 
reasons unrelated to long-term aging processes. The interpreta-
tion of DM as a robust measure is enhanced by the fact that our 
results here are highly concordant with previous studies on 
the Women’s Health and Aging Study (WHAS), the Baltimore 
Longitudinal Study on Aging (BLSA), and InCHIANTI (5, 20, 
44), despite major differences in (a) statistical approach; (b) bio-
marker choice (only three of the biomarkers here – CH, glucose, 
and hematocrit  –  were among the 40+ used in those studies); 
(c) participant characteristics (e.g., WHAS contained exclusively 
older women from the Baltimore area; InCHIANTI was in Italy); 
and (d) follow-up time (~5–10  years for WHAS, BLSA, and 
InCHIANTI versus ~55  years here). This replication of results 
confirms the idea that DM represents an underlying system-level 
property of physiological dysregulation that can be detected and 
interpreted relatively robustly under different contexts and with 
different markers.

The proposed model provides an approach to measure the 
impact of systemic dysregulation in an organism on mortality 
risk, which is an alternative to that using a cumulative measure 
of health deterioration such as an index of cumulative deficits or 
deficits index (DI) (45, 46), also an efficient approach to investigate 
aging-related processes of health deterioration. The DI, which 
takes into account the cumulative contribution of different vari-
ables (including those with possibly minor effects of individual 
variables on the risk) on mortality risk, can also be implemented in 
the SPM as in our earlier work (22). Remarkably, both approaches 
revealed similar sex-specific differences in dynamics of model’s 
components, see Figure 1 here and Figure 1 in Yashin et al. (22): 
baseline mortality is higher in males; U-shape (J-shape) of mor-
tality as a function of DI (DM) is narrower and it narrows faster 
with age in males; and mean allostatic trajectories are higher and 
increase faster in females (with respective trajectories estimated 
at zero for males in the case of DI). Such similarities are observed 
despite, again, major differences in (a) the measure used in the 
model (DM and DI); (b) variables used in construction of respec-
tive measures (biomarkers here versus questions from the survey 
questionnaires in the DI studies); (c) participant characteristics, 
sample size, and follow-up time (the model with DI was applied to 
the National Long Term Care Survey (NLTCS) data, a nationally 
representative survey of more than 49,000 Medicare enrollees); 
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and (d) specifications of the SPM [gamma-Gompertz (logistic) 
baseline hazards, non-symmetric U-shapes, non-zero “norms,” 
quadratic functions for mean allostatic trajectories, and constant 
feedback coefficients in the SPM applied to the NLTCS data]. 
This similarity in the results obtained using these two different 
approaches can thus indicate manifestation of different aspects 
of the same general process of aging-related deterioration in 
an organism that cause sexual dimorphism in the dynamics of 
aging-related processes.

There are two limitations in the implementation of the model 
described in this paper. First, we note that, as a single imputation 
method was used, the uncertainty and SEs could in general be 
underestimated. Another limitation is that it defines the “nor-
mal” state of physiological variables from which deviations are 
evaluated by DM using the mean values at the baseline exam in 
individuals 40 years and younger. That is, it is assumed that these 
values minimize the risk of death (as a function of these physi-
ological variables) at all ages. Note that, if we insert the formula of 
DM (Eq. 1) in Eq. 4 then, essentially, the vector of means X in DM 
represents the “physiological norm” or “optimum” for respective 
physiological variables in the corresponding multidimensional 
SPM for the original variables included in the definition of DM. 
Thus, we actually assume here that this “physiological optimum” 
is age independent. While this assumption can be true for some 
variables, for other variables it is likely to be incorrect. Many 
hormone-related variables experience changes in accordance with 
the ontogenetic program, and these changes are likely to modify 
the optimal value for these variables [e.g., this could be mani-
fested by the menopause; see also discussion on age-dependent 
physiological norms in Yashin et al. (3)]. Thus, one possibility to 
enhance the results presented here is to assume age-dependent 
“optima” in the definition of DM. However, this can generally be 
a challenging problem because one needs to decide which values 
to use to define the “optima” for different ages before performing 
analyses of SPM rather than estimate these “physiological optima” 
from the SPM itself as in our earlier applications (3, 4, 21–24). A 
possible remedy could be to use a “surrogate” definition of the 
“physiological optimum” suggested in Yashin et  al. (26) taking 
the average age trajectories of physiological variables for long-
lived individuals (say, 90+) on the premise that the long-lived 
individuals are those who, on the average, managed to keep the 
age trajectories of physiological variables close to the optimal 
ones that minimize the risk of death at respective ages. However, 
there are still computational challenges in this approach as one 
will need a large enough number of long-lived individuals to reli-
ably estimate the means and the variance–covariance matrices 
in respective age groups as needed for DM. Alternatively, we can 
relax the assumption on zero “optimum” f0(t) (and this is also 
a testable hypothesis in this approach). Although in the current 
implementation of the model a non-zero “optimum” for DM could 
mean different things depending on the patterns of changes in the 
underlying physiological variables, this approach could provide 
insights on whether the values of biomarkers that are “optimal” 
for younger individuals are still “optimal” at older ages.

Another direction for applications of the approach presented 
in this paper is to investigate genetic effects of different can-
didate genes or single-nucleotide polymorphisms (SNPs) on 

the measures of physiological dysregulation and on respective 
aging-related characteristics such as mean allostatic trajectory, 
resistance to stresses or adaptive capacity which can be evaluated 
in SPM. For example, one can evaluate carriers of which alleles 
or genotypes have higher levels of physiological dysregulation, 
a faster increase in systemic dysregulation with age, a faster 
decline in resistance to stresses or adaptive capacity calculating 
respective estimates of SPM components for carriers of different 
alleles or genotypes. This can be done using either a stratified 
analysis by genotype or allele using the original SPM (8) as we did 
here stratifying by sex or implementing DM in the genetic SPM 
(9), which has an advantage of using additional information on 
non-genotyped individuals to increase the power. This can also be 
done either for individual genes/SNPs or for cumulative “genetic 
doses,” that is the variable calculating the number of some alleles 
in an individual’s genome that were pre-selected using some cri-
teria or analyses [e.g., “longevity alleles” as in Yashin et al. (27)].

The desire to have useful biological interpretation of the 
results of analyses stimulates the need for further development 
of concepts and models describing the aging-related changes 
developing in the human body. Although the “dysregula-
tion” variable (DM) is useful because it allows us to quantify 
aging-related changes showing how the particular individual 
differs from the “ideal” standard (e.g., observed in healthy 
young adults), its applications to studying mechanisms of 
aging-related changes requires its further development. 
From the point of view of this paper, the dysregulation is 
the result of everything that causes the constructed measure 
(DM) to deviate from zero where the zero value characterizes 
the healthy young adults. At the same time, such measure 
could be too general if one would like to understand causes 
and mechanisms of aging-related changes, for example, to 
produce useful recommendations for improving person’s 
health. One approach might be to examine DM by specific 
physiological system (47). Alternatively, in Ukraintseva 
and Yashin (48) and Arbeev et  al. (49), the importance of 
distinguishing among three components of aging-related 
changes was emphasized. These include basal (senescent), 
ontogenetic, and exposure related components. The approach 
described above has a potential to include these components 
into the model and use them to address questions about vari-
ous mechanisms driving dynamics of aging-related changes 
during the life course. For example, allostatic load can be 
linked with the exposure-related component. Changes in 
physiological norm can be linked with the ontogenetic com-
ponent and changes in stress resistance and adaptive capacity 
with the basal (senescent) component. All three components 
contribute to dysregulation in physiological state, although 
their interaction may sometimes have side effects that might 
slow down or even reduce DM. For example, the reduction of 
adaptive capacity may slow down accumulation of DM due to 
weakening negative feedback, especially when f1(t) continues 
to increase. This process could partly be due to compensatory 
adaptation. The effects, however, may not last long because 
in case of weak feedback regulation the “noise” component in 
Eq. 3 will make stronger effects on Y(t). Note that different 
components of aging-related changes can be evaluated from 
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available longitudinal data (24, 27). More detailed analyses 
of dysregulation components will be performed elsewhere.

cOnclUsiOn

Implementation of the measure of physiological dysregulation 
(Mahalanobis distance) in the framework of the SPM of aging 
allows one to investigate physiological dysregulation in relation 
to different hidden mechanisms of aging-related changes, and, 
ultimately, to yield estimates of how such dynamic relationships 
can produce an increase in the risk of death with age and how it 
may be related to the observed sex-specific differences in mortal-
ity risks. Results of application of the method to individuals from 
the Framingham original cohort indicate that physiological dys-
regulation increases with age; that increased dysregulation results 
in increased mortality, and increasingly so with age; and that, in 
most but not all cases, there is a decreasing ability to return to 
baseline physiological state with age. We also show substantial 
sex differences in these processes, with women becoming dys-
regulated more quickly but with men showing a much greater 
sensitivity to dysregulation in terms of mortality risk.
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