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Using in vitro data in human cell lines, several research groups have investigated changes 
in gene expression in cellular systems following exposure to extremely low frequency 
(ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained 
five studies with complete microarray data and three studies with only lists of significantly 
altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets 
and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and 
human diseases were identified using a three-step process: (a) linking genes associated 
with classes of human diseases to molecular pathways, (b) linking pathways to ELF 
and RF EMF microarray data, and (c) identifying associations between human disease 
and EMF exposures where the pathways are significantly similar. A total of 60 pathways 
were associated with human diseases, mostly focused on basic cellular functions like 
JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome 
P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no 
clear pattern emerged. Individual datasets showed some linkage to cancer, chemical 
dependency, metabolic disorders, and neurological disorders. RF EMF datasets were 
not strongly linked to any disorders but strongly linked to changes in several pathways. 
Based on these analyses, the most promising area for further research would be to focus 
on EMF and neurological function and disorders.

Keywords: electromagnetic fields, genomics, microarray gene expression, gene set analysis, signal-transduction 
pathways, human disease, metabolic pathways

inTrODUcTiOn

The worldwide use of mobile phones has aroused concern about possible health effects of radiofre-
quency electromagnetic fields (100 kHz–300 GHz; RF EMF) (1, 2). Even though extensive research 
on possible effects of extremely low-frequency electromagnetic fields (ELF EMF) has been done, the 
underlying mechanism(s) still remain unknown (3, 4).
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Many studies have been performed on identifying genes being 
involved in biological effects caused by ELF and RF EMF using a 
variety of mammalian cell lines and primary cells. Most of these 
studies were hypothesis-driven and demonstrated changes in the 
expression of a limited number of genes, especially those involved 
in stress response (5–18), and cell cycle regulation and apoptosis 
(19–23), suggesting an upregulation or downregulation of the 
genes involved. A few studies tried to pinpoint signal-transduc-
tion pathways involved in stress response. These investigations 
gave evidence that RF EMF activate the mitogen-activated 
protein kinase (MAPK) stress response pathway (5, 24, 25). The 
extracellular signal-regulated kinases (ERK) 1 and 2 are MAPKs 
that are also important in cellular proliferation, differentiation, 
and survival.

The importance of cellular context was demonstrated through 
comparison of the effects of EMF in different cell lines (10).

In contrast to the approach investigating EMF on a limited 
number of genes, studies evaluating changes in transcription 
profiling have been performed to speed up the identification of 
genes responding to EMF. Several transcriptomics studies have 
been performed, and the outcome has been reviewed (26). New 
methods for analyzing high throughput studies can be used to 
extract additional insight from these data. The use of analytical 
tools/databases allow for integrated analyses of biological func-
tions and changes in these functions as a result of environmental 
factors.

There has been significant research on the use of gene expres-
sion data to identify people with diseases (disease biomarkers), 
to monitor exposure to chemicals (exposure biomarkers), and to 
predict effects from exposure to chemical agents (effects biomark-
ers). Much of the recent work on effects biomarkers has focused 
on the classification of genes into ontology groups that can then 
be used to predict a biological effect (27–30). These efforts can be 
broken down into two different approaches. In the first approach, 
the genes from a specific ontology group form a set. If many of 
the genes in this set have altered gene expression following a 
chemical exposure, then the effect is significant for that ontology 
group. Gene set enrichment analysis (GSEA) (31) or some other 
appropriate approach can be used to determine the significance 
of a specific effect from gene expression data.

The enrichment analysis approach can be used on gene sets 
that consist solely of lists of genes. One approach widely used to 
define gene sets is to base them upon the proteins in signaling or 
metabolic pathways already described by many years of research. 
There are numerous collections of pathways that could be used, 
such as the Kyoto Encyclopedia of Genes and Genomes Pathways 
(KEGG pathways) (32). The second approach toward the linking 
of genes to effects is to use the structure of the pathways as well 
as the membership of gene products in a pathway to determine 
linkage to the pathway. One example of such an approach is the 
Structurally Enhanced Pathway Enrichment Algorithm (SEPEA) 
(33). Gohlke et  al. (34) used the SEPEA algorithm to build a 
linkage model between genes associated with human diseases 
and the KEGG pathways. Starting with the Genetic Association 
Database (GAD) (35), they classified human diseases and condi-
tions into 208 broad diseases and disease categories (e.g., liver 
cancer, epilepsy, and type II diabetes), which we will refer to as 

the human diseases. For each human condition, they extracted 
from the GAD all of the genetic polymorphisms associated with 
that condition and used SEPEA to determine which pathways 
are most likely to be associated with the disease. This created 
a linkage mapping between human diseases and the KEGG 
pathways. To demonstrate the utility of this linkage mapping, 
Gohlke et  al. then used the SEPEA algorithm to link data on 
changes in gene expression due to chemical exposure from 
the Comparative Toxicogenomics Database (CTD) (36) with 
the KEGG pathways. By combining the chemical/pathway and 
pathway/disease linkages, they were able to predict the known 
linkages between chemicals/pharmaceuticals/nutrients, and 
human diseases.

This paper uses a similar approach to identify plausible link-
ages between exposure to ELF and RF EMF and human diseases. 
Several authors have looked at changes in gene expression in 
cellular systems following exposure to EMF using microarrays. 
We will use these data to find linkages between alterations in 
gene expression and the KEGG pathways. We will then update 
the analysis done by Gohlke et  al. linking KEGG pathways to 
human diseases, although using broader disease categories. 
Given the linkages between EMF and pathways and pathways 
and human diseases, we will predict plausible linkages between 
EMF and human diseases. These linkages form hypotheses that 
can be pursued in other research efforts to study the potential 
health effects of EMF.

MaTerials anD MeThODs

gene expression Data
Microarray data on changes in gene expression in human cells 
were obtained in three separate ways. In late 2011, we searched 
the Gene Expression Omnibus using the following search terms: 
“electromagnetic,” “magnetic,” “electric,” “RF,” “radio,” and “ELF.” 
This located data from two studies (37, 38). We also did an exten-
sive search of the literature using PubMed, Web of Science, and 
the EMF Portal1 with the same search terms and identified 287 
published manuscripts matching these terms. After a review of all 
of these manuscripts, 22 studies using microarrays for the analy-
sis of EMF effects were identified. Authors were contacted and 
asked to provide us with data, resulting in data being provided 
for two studies (39, 40). Of the remaining papers, eight provided 
complete information on the genes that were significantly altered 
making them useful for this analysis (41–48). Finally, we were 
provided the original data created under the EU REFLEX ini-
tiative (49, 50). All of the microarray experiments are described 
below. The descriptions include indications of what measure of 
gene expression was used as input to the pathway analysis algo-
rithm. Characteristics of the datasets are summarized in Table 1. 
The datasets used for each analysis are referred to by letter codes 
that are given at the start of each paragraph below.

A: Human SK-N-SH neuroblastoma cells were exposed to 
900 MHz GSM signals with a specific absorption rate (SAR) of 
0.2 W/kg for 2 h (39). Duplicates were pooled for analysis using 

1 http://www.emf-portal.de 
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Table 1 | studies of gene expression in human cells following exposure to eMF.

code reference Field type Field characteristics human cell type chip samples

A (39) RF 900 MHz GSM SK-N-SH, 0.2 W/kg pulsed Affymetrix human 2
B (38) RF 1800 MHz, 2 W/kg GSM MCF-7 Affymetrix HU133A 4
C (38) RF 1800 MHz, 3.5 W/kg GSM MCF-7 Affymetrix HU133A 4
D REFLEX-1 (50) RF 1800 MHz, 2 W/kg GSM NB69 Human RZPD-2 4
E REFLEX-2 (50) RF 900 MHz, 1.8–2.5 W/kg GSM EA.hy926 endothelial Human RZPD-2 4
F REFLEX-3 (50) RF 1800 MHz, 1.8–2.5 W/kg GSM EA.hy926 endothelial Human RZPD-2 4
G REFLEX-4 (50) RF 1800 MHz, 1.8–2.5 W/kg GSM EA.hy926 endothelial Human RZPD-2 4
H REFLEX-5 (50) RF 1800 MHz, 1.4 W/kg GSM Quiescent T lymphocytes Human RZPD-2 4
I REFLEX-6 (50) RF 900 MHz, 2 W/kg GSM U937 Human RZPD-2 4
J REFLEX-7 (50) RF 900 MHz, 2 W/kg GSM CHME5 Human RZPD-2 4
K REFLEX-8 (50) RF 1800 MHz, 1 W/kg DTX mode HL60 leukemia Human RZPD-2 4
L REFLEX-9 (50) RF 1800 MHz, 1.3 W/kg DTX mode HL60 leukemia Human RZPD-2 4
M REFLEX-10 (50) RF 1800 MHz, 1.3 W/kg DTX mode HL60 leukemia Human RZPD-2 4
N (52) LF 2080 Hz duty cycle of 90% Epidermal keratinocytes Affymetrix HU133A 2
O (40) ELF 50 Hz, 1 mT 45 min Umbilical cord blood monocytes Human RZPD-2 2
P REFLEX-11 (50) ELF 50 Hz, 1 mT 24 h ES-1 Human RZPD-2 4
Q REFLEX-12 (50) ELF 50 Hz, 1 mT 15 h ES-1 Human RZPD-2 4
R REFLEX-13 (50) ELF 50 Hz, 2 mT 16 h SY5Y Human RZPD-2 4
S Pooled (five studies) RF Multiple Multiple Multiple 5
T Pooled (three studies) ELF 50 Hz, multiple Multiple Multiple 3
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Affymetrix Human Focus Gene Arrays. Affymetrix IDs were con-
verted to Entrez with an online Gene ID Conversion Tool.2 Gene 
expression data were reported as p-values for the significance of 
change in gene expression between controls and exposed cells; 
(1 − p) was used as the measure of gene expression.

B, C: Human MCF-7 breast cancer cells were exposed to 
1800  Hz RF EMF (38). There were two exposure conditions 
with matched sham controls: 2 W/kg SAR (experiment C) and 
3.5 W/kg SAR (experiment D). Exposures were for 24 h. Each 
group had two biological replicates. Gene expression was meas-
ured using Affymetrix human GeneChip HG-U133A. Data were 
identified by Affymetrix Probe ID, which was converted to Entrez 
using the same procedures as in A. Log2 ratios of control/exposed 
expression values were used as the measure of gene expression.

D: Human neuroblastoma NB69 cells were exposed to 
1800 MHz RF EMF for 24 h (5 min on, 5 min off) at an SAR 
of 2  W/kg (49, 50). Exposed and control cells were analyzed 
by Human RZPD-2 microarray. Genes were identified with 
GenBank IDs and converted to Entrez using IDConverter (51). 
The mean of the log2 of the gene expression ratio for four samples 
(two samples from two hybridizations) was used as the measure 
of gene expression.

E–G: Human endothelial EA.hy926 cells were exposed to 
900 MHz (experiment F) or 1800 MHz (experiments G and H) 
RF EMF for 1 h at an SAR of 1.8–2.5 W/kg (49, 50). Exposed 
and control cells were analyzed by Human RZPD-2 microarray. 
Genes were identified and analyzed as in D.

H: Human quiescent T lymphocyte cells were exposed to 
GSM-modulated RF EMF at 1800 MHz, 10 min on and 20 min 
off, for 44 h at an SAR of 1.4 W/kg (49, 50). Triplicates of exposed 
and control cells were pooled for analysis by Human RZPD-2 
microarray. Genes were identified and analyzed as in D.

2 http://david.abcc.ncifcrf.gov/conversion.jsp 

I: Human U937 monocytic lymphoma (lymphoblastoma) cells 
were exposed to 900 MHz RF EMF for 1 h at an SAR of 2 W/kg  
(49, 50). Exposed and control cells were analyzed by Human 
RZPD-2 microarray. Genes were identified and analyzed as in D.

J: Human CHME5 microglial cells were exposed to 900 MHz 
RF EMF for 1 h at an SAR of 2 W/kg (49, 50). Exposed and control 
cells were analyzed by Human RZPD-2 microarray. Genes were 
identified and analyzed as in D.

K–M: Human HL60 leukemia cells were exposed to 1800 MHz 
RF EMF using GSM DTX modulation for 24 h (5 min on, 5 min 
off) at an SAR of 1 W/kg (experiment L) or for 24 h (continuous) 
at an SAR of 1.3 W/kg (experiments M and N) (49, 50). Exposed 
and control cells were analyzed by Human RZPD-2 microarray. 
Genes were identified and analyzed as in D.

N: Human keratinocytes in cell culture dishes were wounded 
and exposed to an electric field with a strength of 2.5  mV/cm 
and a frequency of 2080 Hz for 1 h (52). Triplicate controls and 
triplicate exposed cells were combined for analysis using the 
Affymetrix Human Genome HU133A 2.0 GeneChip array. Data 
were identified by Affymetrix Probe ID, which was converted to 
Entrez using the same procedures as in A. Log2 ratios of control/
exposed expression values were used as the measure of gene 
expression.

O: Monocytes from human umbilical cord blood were exposed 
to 50 Hz, 1.0 mT ELF EMF for 45 min (40). The available data 
included exposed/control expression ratios for 998 genes with 
at least a twofold change in expression (up or down). Genes are 
identified by gene names, which were converted to Entrez using 
the same method as in A. Log2 of the ratio was used as the measure 
of gene expression.

P, Q: Human diploid fibroblast cells (ES-1) were exposed to 
50 Hz ELF EMF at 1 mT for 5 min on/10 min off for 15 h (P) or 
15  h (Q) (49, 50). Exposed and control cells were analyzed by 
Human RZPD-2 microarray. Genes were identified and analyzed 
as in D.
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Table 2 | number of pathways linked to disease class in the genetic 
association Database using the sePea algorithm.

Disease class number of genes number of pathways

Aging 67 4
Cancer 549 21
Cardiovascular 649 17
Chemical dependency 300 11
Developmental 346 4
Hematological 209 6
Immune 708 16
Infection 201 12
Metabolic 770 22
Neurological 497 10
Psychological 460 11
Renal 126 5
Reproduction 180 12
Vision 80 5
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R: Human neuroblastoma cells (SH-SY5Y) were exposed to 
50 Hz ELF EMF at 2 mT for 5 min on/5 min off for 15 h (49, 50). 
Exposed and control cells were analyzed by Human RZPD-2 
microarray. Genes were identified and analyzed as in D.

S: This pooled dataset combines all significant genes from five 
RF EMF experiments (41, 43, 44, 46, 47) with complete reporting 
of all significant alterations in gene expression. Jurkat human 
T lymphoma cells were exposed to 1763  MHz RF EMF radia-
tion at 2 or 10 W/kg for 30 min (44). The Applied Biosystems 
1700 full genome expression human microarray was used to 
evaluate changes in gene expression following exposure. Human 
glioblastoma cells (U87MG) were exposed for 4  h to 1.9  GHz 
pulse-modulated RF EMF at 0.1, 1, and 10 W/kg (47). Changes in 
gene expression were calculated using the Agilent Human 1A (v1) 
oligonucleotide 22 K microarray. Human skin fibroblasts (Detroit 
550) were exposed to GSM RF EMF at 902.4 MHz for 1 h at an 
intensity of 0.6 W/kg (46). Gene expression was assessed using 
the Atlas Human Array Trial kit. A human mast cell line, HMC-1, 
was exposed to 7 W/kg of 864.3 MHz RF EMF for three exposures 
each of 20-min duration daily for 7 days (43). Gene expression 
was assessed using the Atlas Human cDNA Array. Human cell 
lines, A172 (glioblastoma), H4 (neuroglioma), and IMR-90 
(fibroblasts from normal fetal lung), were exposed to 2.1425 GHz 
continuous wave (CW) and wideband code division multiple 
access (W-CDMA) RF EMF fields at three field levels: 80, 250, 
or 800 mW/kg (41). Gene expression changes were determined 
using the Affymetrix Human genome HG-U133A and B chips. 
The measure of gene expression used in the pathway analysis was 
an indicator variable, equal to 1 for genes with significant changes 
in expression and equal to 0 otherwise.

T: This pooled dataset combines all significant genes from 
three ELF EMF experiments (42, 45, 48) with complete report-
ing of all significant alterations in gene expression. Primary 
human mesenchymal stem cells and a human chondrocyte 
cell line (C28I2) were exposed to pulsed 50 Hz EMF 8 min per 
day for up to 3 days with a mean field strength of 35 mT (48). 
Microarray analyses were performed using the Affymetrix Gene 
Chip HG-U133A. Peripheral human lymphocytes were exposed 
to 50 Hz pulsed BEMER-type EMF five times at 12-h intervals 
for 8 min with a mean field strength of 35 mT (45). Microarray 
analyses were performed using a custom oligonucleotide array. 
Cells from a human breast cancer cell line (MCF-7) were exposed 
to 50 Hz EMF for 24 to 96 h at 1.2 mT (42). Analysis of RNA 
was performed using custom microarray nylon membranes. The 
measure of gene expression used in the pathway analysis was an 
indicator variable, equal to 1 for genes with significant changes in 
expression and equal to 0 otherwise.

sePea Pathway analysis
Because the effects of external influences on the body are medi-
ated through changes in cellular function that are themselves 
controlled by various signaling pathways, it is helpful to analyze 
data on genetic transcription effects using methods taking those 
pathways into account. One such method is the SEPEA algorithm 
(33), which evaluates the degree to which a known genetic path-
way is significantly affected by changes in genes or their products. 
When we describe an exposure as linked to a specific disease, it 

reflects the significance of this test. Pathway data for humans were 
downloaded from the KEGG database (32). For purposes of the 
SEPEA analysis, only 161 of the 206 human pathways were used 
(pathways with 3 or fewer genes, pathways corresponding to dis-
eases or health conditions, and catchall pathways were excluded).

Disease–gene association
The GAD (35) was downloaded on August 16, 2010. Genes indi-
cated as being associated with diseases were used in the analysis. 
A total of 16,621 gene–disease associations were found, with 3562 
unique gene names. IDConverter3 was used to match gene names 
to Entrez IDs, and 3172 of the gene names were matched. The 
disease classes listed in the GAD were used for the analysis. Of 
the 19 disease categories, categories “Mitochondrial,” “Normal 
variation,” “Other,” “Unknown,” and “Pharmacogenomic” were 
not used in the analysis due to few linked genes. The 14 disease 
classes used in the analysis and the numbers of matched genes 
associated with them are shown in Table 2.

Disease–gene associations were used as input to the SEPEA 
algorithm. The association was considered to be significant if 
p < 0.01. This is similar to the earlier analysis (34) with broader 
disease categories and the most recent information contained in 
the GAD. The numbers of pathways associated with each disease 
are presented in Table 2.

eMF-Pathway linkage
The significance of associations between experimental results and 
KEGG pathways were derived by using the SEPEA algorithm. For 
this analysis, pathways were assumed to be associated with EMF 
exposure if p < 0.05. All individual experiments (A–T) were ana-
lyzed against the 162 KEGG pathways. The version of the SEPEA 
algorithm used in this analysis was SEPEA NT3, which requires 
only one data point, a measure of strength of expression, for each 
gene. Where full data on gene expression levels were available, 
we used log2 of the exposed/control expression ratio. When full 
data were not available, we used different measures of expression 
strength, as noted in the data descriptions above.

3 https://idconverter.bioinfo.cnio.es 
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Several additional pooled analyses were done to evaluate 
linkages to pathways and diseases across a broad array of expo-
sures and cell lines. We pooled all complete RF EMF microarray 
datasets (A–M) into one dataset for analysis, all complete ELF 
EMF microarray datasets (O–R), all RF EMF experiments 
(A–M, S), all ELF EMF experiments (O–R, T), and all experi-
ments (A–T).

eMF-Disease linkage
Significant association between the gene expression changes 
from a single dataset using EMF exposure and each disease 
was calculated using the hypergeometric function. Under the 
null hypothesis that the pathways significant in the dataset are 
unrelated to those significant in the disease, the p-value for 
significant relationship between the dataset and disease was 
calculated. If there are N pathways for the disease and K for 
the dataset, with M total pathways, and there were X pathways 
in common, then the probability of at least X in common was 
calculated [1 − H(X − 1,M,K,N)], where H(X − 1,M,K,N) is the 
hypergeometric CDF at X − 1 for drawing K items in N drawings 
without replacement from a set of M objects.

resUlTs

This research used microarray data from the literature to predict 
linkages between RF EMF or ELF EMF with human disease 
categories. The linkage was done in three steps: (1) linkage of 
human disease categories to KEGG pathways using genetic poly-
morphisms, (2) linkage of EMF exposure with KEGG pathways 
using gene array data, and (3) comparison of the disease-linked 
pathways with EMF-linked pathways to predict significant link-
ages between EMF and human disease.

human Disease to Kegg Pathway linkage 
analysis
Table 2 provides the number of significant pathways found for 
each human disease. Pathways ranged from as few as 4 for aging 
and developmental disorders to as high as 21 for cancer and 22 
for metabolic disorders. Aging, developmental (four pathways), 
renal, vision (five pathways), hematological (six pathways) disor-
ders, immune disorders, and infection had few significant path-
ways and will not be discussed further. The full listing of pathways 
associated with each human disease is given in Spreadsheet S1 in 
Supplementary Material.

Cancer was linked with 21 pathways, predominantly relating 
to metabolism (7 pathways), hormone control (2 pathways), DNA 
repair (3 pathways), and cellular replication (3). Other pathways 
significantly linked to cancer and known to be important to 
carcinogenesis included JAK–STAT signaling and adipocytokine 
signaling. Thus, of the 21 pathways identified, 17 have long-
standing linkages to cancer as a disease process.

Cardiovascular disease was linked to 17 pathways, 5 associ-
ated with metabolism of xenobiotics and hormones, 5 pathways 
associated with inflammatory response, and 4 linked pathways 
relating to cellular homeostasis and control (calcium signaling, 
gap junction management, neuroactive ligand–receptor interac-
tions, and aldosterone-regulated sodium reabsorption).

Chemical dependency was significantly linked to 11 path-
ways; 6 metabolic pathways, 4 linked pathways relating to cel-
lular homeostasis and control (glucogenesis, calcium signaling, 
neuroactive ligand–receptor interactions, and long-term poten-
tiation), and NOD-like receptor signaling involved in immune 
response.

There were 10 pathways linked to neurological disorders. 
Psychological disorders had 11 linked pathways, 4 of which were 
shared with neurological disorders, all linked to basic cellular 
control and homeostasis (tyrosine metabolism, calcium signal-
ing, neuroactive ligand–receptor interactions, and the renin 
angiotensin system). Both disorders had additional metabolic 
pathway linkage, with psychological disorders additionally 
linked to metabolism of linoleic acid and arachidonic acid (three 
essential fatty acids), while neurological disorders were linked 
to cytochrome P450 metabolism. Neurological disorders were 
linked to PPAR and Notch signaling pathways, both important 
in neurological development. Psychological disorders were also 
linked to circadian rhythm control and long-term depression, a 
signaling network thought to be a molecular and cellular basis for 
cerebellar learning with multiple signal-transduction pathways 
involved in this process.

Metabolic disorders were associated with 22 pathways, 13 
of which deal with metabolism of drugs, xenobiotics, lipid, 
fatty acids, and steroids. The remaining pathways included the 
ATP-based transporters, basic cellular control and homeostasis 
pathways, PPAR, insulin signaling, and adipocytokine signaling, 
many of which have already been associated with metabolic 
disorders.

The 12 pathways associated with reproductive disorders cov-
ered a variety of systems, some of which were related to basic cel-
lular functions and others dealing with a variety of pathways not 
usually associated with reproductions. Because of the diversity of 
this response, it will not be further discussed.

In total, 60 of the 162 pathways were associated with at least 
1 human disease or disorder. Many of these were linked to five 
or more diseases and dealt with basic cellular functions like 
JAK–STAT signaling, cytokine–cytokine receptor interaction, 
and neuroactive ligand–receptor interaction. Many of the other 
multi-disease pathways involve metabolic functions. However, 
there were several specific to certain diseases; DNA repair path-
ways and cancer, circadian rhythm and psychological diseases, 
and insulin signaling and several metabolic pathways specific to 
metabolic disorders. All of the evaluations for all pathways and 
diseases are presented in the Spreadsheet S1 in Supplementary 
Material.

eMF exposure to Kegg Pathway 
linkage analysis
In this study, 13 RF EMF (A–M) microarray, 1 LF EMF (N) 
microarray, and 4 ELF EMF (O–R) microarray datasets with 
human cells for which we had the original data were analyzed. 
In addition, two datasets were constructed by pooling five RF 
EMF (dataset S) and three ELF EMF (dataset T) microarray 
studies from the literature in multiple cell lines with multiple 
field strengths and exposure durations. These literature studies 
identified all significantly altered genes.
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As a general rule, the individual datasets were linked to biologi-
cally diverse pathways. The total number of linked pathways was 
also quite diverse ranging from 3 for dataset P to 26 for dataset N. 
The separate analyses of the individual RF EMF studies showed 
31 pathways being significant at p < 0.05 in more than one study. 
When all of the RF EMF studies are combined in one analysis, 
there were 25 significant pathways linked to the exposure.

The LF study (N) was significant for every disease/disorder 
category. The ELF EMF studies did not demonstrate a response as 
robust as the LF and RF EMF studies. The four individual studies, 
for which we had complete data (O–R), showed 3 to 14 linkages 
each. Only two pathways were significantly linked in more than 
one study, both being linked in two studies. These two pathways, 
inositol phosphate metabolism and FC gamma R-mediated 
phagocytosis are not related. The analysis of the LF and ELF EMF 
data combined (experiments N–R, T) resulted in 15 significantly 
linked pathways. No obvious pattern emerged from these linked 
pathways.

All of the linkages between the experiments and the KEGG 
pathways are provided in Spreadsheet S2 in Supplementary 
Material.

eMF exposure linkage to human Disease 
through associated Kegg Pathways
Ten (A, E–F, H–M) of the 13 RF EMF studies demonstrated no sig-
nificant linkages to disease based on common pathways. Dataset 
B demonstrated the strongest pathway linkages to disease with 
significant linkages to three disease categories; cardiovascular 
disease, psychological disorders, and reproduction. The identical 
study using a higher power exposure (C) was significantly linked 
to chemical dependency, but to none of the same linkages seen 
for B. Dataset G was significantly linked to reproductive disorders 
resulting in a total of 2 of the 13 datasets linked to this disease 
category.

Cardiovascular disease was linked to the significant pathways 
from only dataset B (seven pathways) and did not show any 
additional linkage, even in the combined datasets. Similarly, 
psychological and reproductive disorders were significantly 
linked to study B (five and four pathways, respectively) but did 
not demonstrate significant linkage in the combined analyses.

Reproductive disorders show significant linkages to two path-
ways for dataset G with only one pathway occuring in dataset 
B (long-term depression). However, when the datasets were 
combined (A–M, S), the significance could not be maintained 
because the combined dataset only linked to one pathway, long-
term depression.

Cardiovascular disease was significantly linked in dataset B to 
five linked pathways (linoleic acid metabolism, calcium signal-
ing pathway, neuroactive ligand–receptor interaction, intestinal 
immune network for IgA production, and salivary secretion). In 
contrast, study C was not significantly linked with cardiovascular 
disease because of only two pathways (calcium signaling pathway 
and neuroactive ligand–receptor interaction), both also linked in 
dataset B. The combined analysis using all of the RF EMF micro-
array data had no linkage to cardiovascular disease.

Chemical dependency was significantly linked to only one 
dataset (C) with three pathways (histidine metabolism, calcium 

signaling pathway, and neuroactive ligand–receptor interaction). 
No linkage was seen in the combined analysis.

When the RF data are combined (A–M and A–M, S), there are 
no significant linkages to diseases or disorders.

Study N (LF) was linked to all seven diseases and disorders 
in Table 3. It was the only study to identify a significant linkage 
with cancer (9 pathways; steroid hormone biosynthesis, linoleic 
acid metabolism, retinol metabolism, metabolism of xenobiot-
ics by cytochrome P450, drug metabolism – cytochrome P450, 
drug metabolism – other enzymes, JAK–STAT signaling path-
way, hematopoietic cell lineage, and long-term potentiation), 
metabolic disorders (10 pathways; steroid hormone biosynthesis, 
starch and sucrose metabolism, linoleic acid metabolism, retinol 
metabolism, metabolism of xenobiotics by cytochrome P450, 
drug metabolism – cytochrome P450, drug metabolism – other 
enzymes, ABC transporters, neuroactive ligand–receptor inter-
action, and long-term potentiation), and neurological disorders 
(6 pathways; tyrosine metabolism, metabolism of xenobiotics by 
cytochrome P450, drug metabolism – cytochrome P450, calcium 
signaling pathway, neuroactive ligand–receptor interaction, and 
hematopoietic cell lineage).

Dataset N linked with seven pathways for cardiovascular dis-
ease, three of which matched what was seen for dataset B (linoleic 
acid metabolism, neuroactive ligand–receptor interaction, and 
salivary secretion). Although dataset B linked with seven pathways 
for chemical dependency, only two matched dataset C (calcium 
signaling pathway and neuroactive ligand–receptor interaction). 
Dataset N was linked to five pathways for psychological disor-
ders, four of which matched dataset B (linoleic acid metabolism, 
calcium signaling pathway, neuroactive ligand–receptor interac-
tion, and long-term depression). Finally, dataset N linked to six 
pathways for reproductive disorders, matching both datasets B 
and G for long-term depression pathway and matching dataset B 
for neuroactive ligand–receptor interaction.

None of the ELF EMF datasets (O–R) were significantly linked 
to any disease. Surprisingly, the combined ELF EMF literature 
dataset (T) was linked to cancer, chemical dependency, metabolic 
disorders, and neurological disorders, predominantly through 
linoleic acid metabolism, retinol metabolism, and drug metabo-
lism by cytochrome P450. The combined LF/ELF EMF datasets 
(N–R, T) were significantly linked to chemical dependency, 
metabolic disorders, and neurological disorders, predominantly 
by datasets N and T.

Combining all of the data from RF, LF, and ELF resulted in 
significant linkages to cardiovascular disease, chemical depend-
ency, metabolic disorders, and neurological disorders.

DiscUssiOn

Pathways and Processes impacted by rF 
eMF exposure
The strongest linkage between RF EMF and the KEGG pathways 
relates to cellular structure and cytoskeleton maintenance. 
Extra cellular matrix (ECM)–receptor interaction relates to the 
complex mixture of structural and functional macromolecules 
that help to regulate cellular structure and plays an important 
role in tissue and organ morphogenesis. Although this pathway 
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Table 3 | p-Values linking single and combined experiments to various disease and disorder categories through sePea.

Diseases  
studies

Field cancer cardiovascular chem.-dependency Metabolic neurological Psych reproduction # linked  
pathways

A RF 0.5921 – 0.3765 – – – – 6
B 0.5561 0.0055a 0.2503 0.2535 0.1872 0.0005b 0.0124c 13
C – 0.2849 0.0284d 0.7803 0.1196 0.1413 0.5800 10
D – – 0.5856 0.8123 – – – 11
E 0.2447 – – 0.2447 – – 0.4518 8
F 0.8123 0.7191 – – – – – 12
G 0.4477 – – 0.4477 – 0.2486 0.0331e 5
H 0.5921 – – – – 0.3505 – 6
I – – – – – – – 4
J 0.6500 – – – – – – 7
K 0.5095 0.3689 – 0.8398 – 0.5856 – 12
L – – – – 0.1639 0.5856 0.6494 12
M – – – 0.5921 – – – 6
N LF 0.0024f 0.0082g 0.0006h 0.0004i 0.0014j 0.0175k 0.0078l 26
0 ELF 0.7803 0.2849 – 0.7803 – 0.5176 – 10
P – – – – – – – 3
Q 0.5997 0.4499 0.6779 0.1035 – – 0.7081 14
R – – – – – – – 3
S RF 0.4085 0.2849 – – – 0.5176 0.5800 10
T ELF 0.0082m 0.0557 0.0282n 0.0082o 0.0196p 0.2486 – 4
A–M RF 0.9288 – – – 0.6835 0.7191 0.7794 25
A–M, S 0.9288 – – – 0.6835 0.7191 0.7794 25
N–R ELF 0.0760 0.1022 0.0005q 0.0202r 0.0152s 0.1093 0.0415t 14
N–R, T 0.0935 0.1206 0.0001u 0.0059v 0.0187w 0.3813 0.1850 15
A–T All 0.0935 0.0329x 0.0375y 0.0935 0.0187z 0.1248 – 19

aLinoleic acid metabolism; calcium signaling pathway; neuroactive ligand–receptor interaction; intestinal immune network for IgA production; salivary secretion.
bTyrosine metabolism; linoleic acid metabolism; calcium signaling pathway; neuroactive ligand–receptor interaction; long-term depression.
cSteroid hormone biosynthesis; metabolism of xenobiotics by cytochrome P450; neuroactive ligand–receptor interaction; JAK–STAT signaling pathway; hematopoietic cell lineage; 
long-term depression.
dHistidine metabolism; calcium signaling pathway; neuroactive ligand–receptor interaction.
eOne carbon pool by folate; long-term depression.
fSteroid hormone biosynthesis; linoleic acid metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; drug 
metabolism – other enzymes; JAK–STAT signaling pathway; hematopoietic cell lineage; long-term potentiation.
gLinoleic acid metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; calcium signaling pathway; neuroactive ligand–receptor interaction; hematopoietic 
cell lineage; salivary secretion.
hTyrosine metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive ligand–
receptor interaction; long-term potentiation.
iSteroid hormone biosynthesis; starch and sucrose metabolism; linoleic acid metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – 
cytochrome P450; drug metabolism – other enzymes; ABC transporters; neuroactive ligand–receptor interaction; long-term potentiation.
jTyrosine metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive ligand–receptor interaction; 
hematopoietic cell lineage.
kDrug metabolism – cytochrome P450; Notch signaling pathway.
lSteroid hormone biosynthesis; metabolism of xenobiotics by cytochrome P450; neuroactive ligand–receptor interaction; JAK–STAT signaling pathway; hematopoietic cell lineage; 
long-term depression.
mLinoleic acid metabolism; retinol metabolism; drug metabolism – cytochrome P450.
nRetinol metabolism; drug metabolism – cytochrome P450.
oLinoleic acid metabolism; retinol metabolism; drug metabolism – cytochrome P450.
pDrug metabolism – cytochrome P450; Notch signaling pathway.
qGlycolysis/gluconeogenesis; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive 
ligand–receptor interaction.
rSteroid hormone biosynthesis; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; drug metabolism – other enzymes; 
neuroactive ligand–receptor interaction.
sMetabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive ligand–receptor interaction.
tSteroid hormone biosynthesis; metabolism of xenobiotics by cytochrome P450; neuroactive ligand–receptor interaction; long-term depression.
uGlycolysis/gluconeogenesis; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive 
ligand–receptor interaction; NOD-like receptor signaling pathway.
vSteroid hormone biosynthesis; starch and sucrose metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; drug 
metabolism – other enzymes; neuroactive ligand–receptor interaction.
wMetabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; calcium signaling pathway; neuroactive ligand–receptor interaction.
xLinoleic acid metabolism; retinol metabolism; metabolism of xenobiotics by cytochrome P450; neuroactive ligand–receptor interaction; hematopoietic cell lineage.
yRetinol metabolism; metabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; neuroactive ligand–receptor interaction.
zMetabolism of xenobiotics by cytochrome P450; drug metabolism – cytochrome P450; neuroactive ligand–receptor interaction; hematopoietic cell lineage.
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was unrelated to any disease based upon our linkage analysis, it 
was linked to six of the RF EMF datasets. This pathway links to 
other KEGG pathways, including the focal adhesion pathway 
(four datasets linked). The focal adhesion pathway represents the 
signaling associated with cell membrane to extracellular matrix 
contact points through transmembrane receptors of the integrin 
family. Focal adhesion was significantly linked in four of the 
same datasets as ECM–receptor interaction. The findings cross 
multiple cell lines, although there is insufficient data to isolate any 
cell line as responsive or not. Both pathways were significant in 
both pooled datasets (A–M and A–M, S).

Previous studies found evidence for linkage between 
cytoskeleton development and RF EMF. Changes in two 
vimentins, intermediate filament proteins that make up part 
of the cytoskeleton, were observed in a proteomics analysis of 
endothelial cells following RF EMF exposure (53). Gene expres-
sion changes in microtubule-associated proteins 2, 1b, and tau, 
genes that control the development of microtubules (54), were 
also observed. Exposure of embryonic neural stem cells at 4 W/
kg 1800 MHz inhibited the neurite outgrowth and reduced the 
mRNA and protein expression of the proneural genes Ngn1 and 
NeuroD, whereas the expression of Hes1, an inhibitor or neurite 
outgrowth was decreased (55). Finally, a fourfold increase in 
beta15 thymosin in rat primary cortical neurons was seen after 
RF EMF exposure and was associated with a change in neurite 
branching (56).

Changes in the ECM–receptor interaction and focal adhesion 
are linked to a variety of higher level cellular functions, such as 
apoptosis and cell cycle control. Thus, if one were seeing changes 
in these pathways, it would be likely that changes would be seen in 
related pathways that are part of the apoptotic process and/or cell 
cycle control. Of the eight pathways with significant linkages in 
three or more datasets, three are related to apoptosis. In addition 
to ECM–receptor interaction and focal adhesion, TGF-β signal-
ing (5), apoptosis (3), and p53 signaling (3) are all significantly 
linked in multiple studies. Apoptosis, a basic cellular function, is 
linked to cancer and several other diseases. These three pathways 
are all linked to cell cycle control, suggesting that RF EMF can 
interfere with the routine cellular functions associated with cell 
cycle control; cytoskeleton and extracellular matrix manage-
ment, apoptosis, and cellular replication. There is evidence from 
single endpoint studies reporting changes in gene and/or protein 
expression after RF EMF exposure related to apoptosis and/or cell 
cycle control (10, 15, 16, 19, 20, 23, 24, 57, 58).

These findings are expected from the literature. MAPK signal-
ing (two studies) plays an important role in all of these processes 
and appears extensively in these pathways. The ERK 1 and 2 are 
MAPKs that function in cellular proliferation, differentiation, 
and survival, and their inappropriate activation is a common 
occurrence in human cancers. Several authors (15, 16, 19, 24, 25, 
46, 59) have shown changes in ERK (either transcription or activ-
ity), following exposure to RF EMF fields. The c-Jun N-terminal 
kinases (JNKs) are also MAPKs regulated by specific MAPK 
kinases (MKKs) and MKK kinases (MKKKs) that phosphorylate 
and regulate the activity of transcription factors and regulatory 
proteins in the cell. JNKs are regulated by growth factors, 
cytokines, cell adherence, and stress stimuli. These MAPKs also 

appear in most of the pathways mentioned above and also have an 
extensive literature showing modification by RF EMF (16, 19, 24, 
25). Finally, the p38 MAPKs are involved in cellular replication 
and differentiation and, along with the JNKs, are responsive to 
stress stimuli, such as mitogens, ultraviolet radiation, and heat 
shock. These have been extensively studied in the RF and ELF 
EMF literature with mixed results where some researchers have 
seen changes in p38 MAPKs following RF EMF exposure (19), 
while others have not (5, 15, 16, 24, 25), even though most of 
the studies demonstrated changes in heat-shock proteins.

Additional support for these findings comes from other stud-
ies in the literature, including studies evaluating changes in p53 
(19, 20) and changes in c-fos and other immediate early genes (58, 
60–63) that had varied results (58, 64).

The other strong linkage identified in our transcriptomics 
analyses of human cells exposed to RF EMF relates to metabolic 
pathways linked to some of the datasets. Unlike apoptosis, cell 
cycle control, and cellular structure, the linkages to metabolic 
processes generally involved only one or two databases and hence 
represent a weaker association. One pathway related to carbo-
hydrate metabolism (galactose metabolism) and two pathways 
related to lipid metabolism (fatty acid elongation and primary 
bile acid biosynthesis) were each linked to two datasets. Many 
of the original publications using gene ontology analyses noted 
significant linkages to metabolism (26, 65). Lipid metabolism 
may involve STAT3 activation. Activators of the JAK–STAT 
pathway include cytokines and growth factors. JAKs mediate the 
recruitment of MAPK leading to cell cycle changes, apoptosis, 
differentiation, or lipid metabolism. The release of pro-inflam-
matory cytokines was demonstrated in microglia and astrocytes 
after exposure to RF EMF. In microglia, STAT3 activation was 
in microglia, but not in astrocytes (55, 66, 67). It is worth not-
ing that changes in lipid metabolism can result in cellular stress 
(68), relating metabolic changes to the earlier changes in cellular 
response to stress.

Diseases and rF eMF exposure
The lack of a strong linkage of RF EMF to cancer and metabolism 
disorders is surprising. The pathways and processes linked to the 
RF EMF datasets would suggest a strong linkage to both of these 
disease classes.

Cancer has been the major focus of studies in humans con-
cerning RF EMF exposure. A scientific panel convened by the 
International Agency for Research on Cancer concluded it is a 
possible human carcinogen (1). In this study, in order for cancer 
to link with RF EMF exposure, two things must occur: there 
must be a linkage between a set of pathways and cancer and the 
same set of pathways need to be linked to RF EMF. While we 
found RF EMF linkage to historical cancer pathways, these same 
pathways did not link to cancer in the GAD linkage analysis. Of 
the five pathways linked to apoptosis and cell cycle control, in 
three or more datasets, only p53 signaling was linked to cancer 
in the GAD. It could be true that these pathways, such as TGFβ 
signaling, are not linked to cancer, but this is unlikely based on 
historical research. It is more likely that genetic polymorphisms 
of genes in these pathways have not been adequately studied for 
cancer linkage and hence do not appear in the GAD. For example, 
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the MAPKs have very few entries in the GAD. Alternatively, these 
pathways may be so basic that genetic variants in genes in these 
pathways tend to be dominant lethal. It is also possible that our 
assumption that polymorphisms can be used to identify pathways 
important in disease occurrence is incorrect.

As for cancer, there was very little linkage between RF EMF 
and metabolic disorders despite linkage between RF EMF and 
metabolic pathways. In the GAD, most of the linkages between 
metabolism genes and diseases are with cancer. These genes were 
predominantly identified in occupational cohorts where there 
are gene–environment interactions (69). More recently, genome-
wide association studies are beginning to identify additional 
polymorphisms in diseased populations. However, these studies 
have not yet been incorporated into the GAD. Even with this 
bias, the pathways linked to metabolic disorders in the GAD 
linkage analysis are reasonable and cover the obvious contribu-
tors such as tryptophan metabolism. But the linkage between 
RF EMF and metabolic pathways is too sporadic to provide a 
significant linkage with the disease pathways. This might also 
be due to the variability of cells used and therefore, any EMF 
cell type-specific effects could have been “averaged out” across 
the diverse cell types. A larger study using more microarrays 
and targeted cell lines could strengthen this relationship and 
identify key metabolic pathways that tie RF EMF to disease.

Radiofrequency electromagnetic fields alterations in metabo-
lism are of growing interest due to a few studies showing changes 
in brain metabolism following RF EMF exposure (70–72). Note, 
the latter two studies show effects in opposite directions com-
plicating this picture and demonstrating the need for additional 
research (73).

A complete loss of pyramidal cells in the CA1 area of the hip-
pocampus in mouse brain after 5-day exposure to RF EMF was 
reported recently (74). Calcium-binding proteins were observed 
to be changed, and the authors hypothesized these changes would 
alter cellular calcium levels and possibly be responsible for the 
deleterious effect on the hippocampus. Frequency-dependent 
modifications of calcium spikes were seen in P19-derived neu-
ronal cells (75). They found that both N-type calcium channels 
and phospholipase enzymes appear to be involved in the calcium 
spiking. Our analysis points in a similar direction with the cal-
cium signaling pathway (this pathway includes phospholipases) 
linked to neurological disorders in three of our datasets.

Pathways and lF/elF eMF exposures
The LF EMF exposure study (N) demonstrated numerous linkages 
to pathways, predominantly metabolic pathways. The individual 
ELF EMF studies O–R demonstrated sporadic linkages to multi-
ple pathways with only three common linkage seen in exactly two 
studies including cell cycle pathway (Q and R), inositol phosphate 
metabolism (O and P), and FC gamma R-mediated phagocytosis 
(O and P). When all of the LF and ELF datasets are combined 
(N–R and T), there are three additional pathways that were 
common to two of the studies; drug metabolism via cytochrome 
P450, linoleic acid metabolism, and retinol metabolism (N and 
T). There is insufficient consistency in these findings to draw any 
strong conclusions.

Diseases and lF/elF eMF exposures
The LF EMF exposure study (N) was linked to all of the disease 
classes listed in Table  3, mostly due to significant linkages to 
numerous metabolic pathways. None of the individual ELF 
exposure studies (O–R) were linked to any individual disease 
classes. When combined with the LF exposure study, significant 
linkages were found for diseases related to chemical dependency, 
metabolic dysfunction, neurological disorders, and reproduc-
tion. The combined ELF literature studies (T) to cancer, chemical 
dependency, metabolic dysfunction, and neurological disorders. 
When all LF and ELF exposure studies are combined (N–R, T), 
significant linkages remained for chemical dependency, meta-
bolic dysfunction, and neurological disorders. However, the lack 
of linkage for any of the individual studies (O–R) and the strong 
influence of the LF exposure study on these results preclude any 
strong conclusions regarding the overall linkages to any disease 
from these data.

biases
There are two aspects of potential bias to consider in this analysis: 
(1) cell type bias and (2) dividing cell bias in using cell lines. 
There are a preponderance of neurological cell lines, such as 
SK-N-SH, NB69, CHME5, and SH-SY5Y, which may favor 
detection of changes in neurological pathways and disease out-
comes. This could bias the conclusion that RF EMF data suggest 
further study into neurological disorders. Also, the use of cell 
lines might favor detecting changes in cell division, extracellular 
matrix, and activation of many signaling pathways compared to 
more quiescent, non-dividing, differentiated cells. These changes 
in dividing cells with an active cell cycle and correspondingly 
engaged signaling and metabolic pathways may favor changes 
leading to conclusions of outcome diseases like cancer, any 
type of metabolic disorder, immunological effects, or damage 
and repair responses to disease. However, just as likely, active 
cell cycle and correspondingly engaged signaling and metabolic 
pathways may hide effects on subtle changes in cell cycle regula-
tion that would be detectable and significant in quiescent cells like  
neurons.

cOnclUsiOn

Our analysis supports a linkage between RF EMF exposure 
to human cells and changes in the pathways associated with 
apoptosis, cellular regulation, and cytoskeleton maintenance. 
There is weaker support for linkage to metabolic pathways and 
neurological pathways. Based on these linkages alone, there 
is reason to believe that RF EMF could play a role in carcino-
genesis, metabolic disorders, and neurological development 
and function. The strength of the evidence linking pathways 
for disease to the RF EMF-linked pathways is weaker. There is 
little support for a direct linkage between cancer pathways and 
RF EMF pathways, probably due to the quality of the GAD 
database. Similarly, there is very little linkage to metabolic  
disease.

Our analysis supports a linkage between ELF EMF and cancer, 
chemical dependency, metabolic dysfunction, and neurological 
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disorders; however, these findings are largely driven by a single 
study and should be considered weak.

The greatest strength of this analysis is that it is fully objective 
in its approach. Data were identified by literature review; all data 
were handled equally depending on the type of data available for 
the analysis. The results are all tied to objective statistical methods 
that demonstrate the strength of the linkage between various 
pathways and EMF exposure and disease. The major weakness 
of this analysis is the inability of these small EMF microarray 
datasets to provide the depth and complexity to support a more 
thorough analysis. Also weakening this analysis are the limita-
tions to the GAD as discussed above. Thus, at best, this analysis 
generates hypotheses that may be followed up. Changes in gene 
expression do not always correlate to changes in the proteins, 
enzymes, and transcription factors that govern cellular signaling 
and cellular metabolism. In following up with further research, 
both gene expression studies and studies of protein changes 
should be considered.
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