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Background: In older people, chronological age may not be the best predictor of resid-
ual lifespan and mortality, because with age the heterogeneity in health is increasing. 
Biomarkers for biological age and residual lifespan are being developed to predict disease 
and mortality better at an individual level than chronological age. In the current paper, we 
aim to classify a group of older people into those with longevity potential or controls.

Methods: In the Leiden Longevity Study participated 1671 offspring of nonagenarian 
siblings, as the group with longevity potential, and 744 similarly aged controls. Using 
known risk factors for cardiovascular disease, previously reported markers for human 
longevity and other physiological measures as predictors, classification models for lon-
gevity potential were constructed with multiple logistic regression of the offspring-control 
status.

results: The Framingham Risk Score (FRS) is predictive for longevity potential [area 
under the receiver operating characteristic curve (AUC) = 64.7]. Physiological parameters 
involved in immune responses and glucose, lipid and energy metabolism further improve 
the prediction performance for longevity potential (AUCmale = 71.4, AUCfemale = 68.7).

conclusion: Using the FRS, the classification of older people in groups with longevity 
potential and controls is moderate, but can be improved to a reasonably good classi-
fication in combination with markers of immune response, glucose, lipid, and energy 
metabolism. We show that individual classification of older people for longevity potential 
may be feasible using biomarkers from a wide variety of different biological processes.

Keywords: human longevity potential, classification and prediction, Framingham risk score, biomarker, sex-
specific analysis

inTrODUcTiOn

The aging process is underlying the physiological and functional decline of the body with time. In 
older people, the heterogeneity of bodily decline and the ability to cope with exposure and resiliency 
is increasing and chronological age may then not be the best predictor of disease risk and mortality. 
Biomarker studies for the bodily functional decline aim to develop a measure for biological age as a 
better marker for the residual lifespan and mortality.
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In large population-based studies, several measures of physi-
ological dysregulation (1–3) and biological age scores (4–6) have 
been developed using cross sectional and longitudinal data. 
The challenge in biomarker development lays in the prediction 
of residual lifespan or mortality risk for an individual. The 
Framingham Risk Score (FRS) (7) that provides an estimate of 
the individual 10-year cardiovascular disease risk, and is used in 
the prediction of cardiovascular health as a tool to assess optimal 
cardiovascular treatment, is the most successful biomarker for 
cardiovascular disease risk.

If prediction of residual lifespan at an individual’s level would 
be possible, it should be possible to classify people as those with 
an expected longer residual lifespan or those with an expected 
shorter residual lifespan. A group of people prone to become 
long-lived are members of long-lived families. They seem to 
escape, delay the onset, or exhibit reduced severity of age-related 
disease. They also have ~30% survival advantage as compared 
to their birth cohort (8, 9). Offspring of long-lived parents 
show lower prevalence of type 2 diabetes, hypertension, and 
myocardial infarction than control groups as well as a delayed 
onset of cardiovascular disease and they have, despite similar 
cancer prevalence, a lower cancer-specific mortality (10, 11). This 
indicates that at similar age offspring of long-lived parents are 
healthier than the general population (12, 13) and that mecha-
nisms involved in the escape, delay of onset of disease and/or 
the severity of disease may potentially be discovered by studying 
familial longevity. The spouses of such members of long-lived 
families may represent the general population (controls) and 
have an average expected residual lifespan. The ability to clas-
sify people as member of a long-lived family or as control could 
provide insight in the feasibility of a biomarker for residual life 
or mortality.

Here, we aim to predict whether a person belongs to a long-
lived family, as a proxy for longevity potential, or not. Therefore, 
as part of the Leiden Longevity Study (8, 13), we extensively 
phenotyped 1671 offspring of nonagenarian siblings and 744 
of their partners as controls from the general population and 
we performed statistical modeling. First, we determined to 
what extent the established FRS predicts longevity potential. 
Next, we examined whether this prediction by the FRS could 
be improved by the markers that are known to be different 
between controls and members of long-lived families: serum 
levels of glucose (14), insulin (14), free triiodothyronine (15), 
triglycerides (14), adiponectin (16), and the ratio of total 
cholesterol over high-density lipoprotein cholesterol (HDL-C) 
(17), and low-density lipoprotein (LDL) particle size (18, 19). At 
last, the effect of other phenotypic measures, such as cell counts 
and IgG glycosylation, on the prediction for longevity potential 
was explored.

MaTerials anD MeThODs

The leiden longevity study
Between 2002 and 2006, the Leiden Longevity study included 421 
Caucasian families consisting of long-lived siblings together with 
their offspring and the partners of the offspring (8). Long-lived 

families were recruited if at least two long-lived siblings were 
alive and willing to participate. Men were considered long-lived 
if 89 years or older and females 91 years or older. In 2001, less 
than 0.5% of the Dutch population fulfilled these criteria. In 
total, 2415 members of long-lived families have been recruited 
consisting of the offspring of long-lived siblings (n = 1671) and 
the partners of the offspring as controls (n = 744). The Medical 
Ethical Committee of the Leiden University Medical Centre 
approved the study and informed consent was obtained from all 
subjects. All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 
1964 Helsinki declaration and its later amendments or compara-
ble ethical standards.

Non-fasted venous blood samples were taken at baseline. 
Between November 2006 and May 2008, additional information 
on self-reported smoking habits, weight, and height was col-
lected for the offspring and the controls, and information on 
medical history for hypertension, type 2 diabetes, and cardio-
vascular disease was re-quested from the participants’ treating 
physicians (13).

serum and Plasma Parameters
Grouping of Measures
We considered the components of the FRS as the “cardiovascular 
risk factors” (7), which are current smoking habits, prevalence of 
hypertension, type 2 diabetes, plasma levels of total cholesterol, 
HDL-C, and low-density lipoprotein cholesterol (LDL-C). As 
“Longevity markers” we considered molecular measures that 
have been reported to be different between offspring of long-
lived individuals and controls, which are plasma levels of glucose 
(14), insulin (14), free triiodothyronine (fT3) (15), triglycerides 
(14), adiponectin (16), the ratio of total cholesterol over HDL-C 
(Total/HDL ratio) (17), and LDL particle size (18, 19). Because 
a lot of other parameters have been determined in participants 
of the LLS, we also define a group of “other molecular markers” 
that are white blood cell count, hemoglobin, hematocrit, platelet 
count, neutrophil count, lymphocyte count, monocyte count, 
eosinophil count, basophil count, count of large unstained cells, 
IgG glycosylation species, plasma levels of IGF1, IGF1BP3, 
fructosamine, free thyroxine (fT4), thyroid-stimulating hormone 
(TSH), high-sensitive C reactive protein (HsCRP), homocystein, 
Il6, free fatty acids (FFA), 25(OH) vitamin D3, ApoE, and leptine. 
Furthermore, height, weight, BMI, HDL particle size (HZ), APOE 
isoform, rs405509 (APOE −219 A/C), and cytomegalovirus 
(CMV) serostatus have been determined. All serum measure-
ments were performed using fully automated equipment and 
all chemical analyses were performed in a single batch at the 
Department of Clinical Chemistry, Leiden University Medical 
Center, the Netherlands. Table S1 in Supplementary Material 
shows the descriptives of all analyzed parameters.

Cardiovascular Risk Factors
Current smoking habits were self-reported through a question-
naire to the study participants, while prevalence of hypertension 
and type 2 diabetes has been reported by their general practitioner. 
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For total cholesterol, HDL-C, and triglyceride levels the Hitachi 
Modular P 800 from Roche (Almere, the Netherlands) was used. 
CVs of these measurements were less than 5%. For LDL-C, the 
Friedewald formula was used.

Known Longevity Markers
For serum glucose levels the Hitachi Modular P 800 from Roche 
(Almere, the Netherlands) was used. CVs of these measure-
ments were less than 5%. For insulin levels the Immulite 2500 
from DPC (Los Angeles, CA, USA) was used. The coefficient of 
variation (CV) for this measurement was less than 8%. For free 
triiodothyronine the Modular E170 was used (Roche, Almere, the 
Netherlands). The coefficients of variation of these measurements 
were all below 5% (15). Adiponectin (R&D Systems Europe, 
Ltd., Abingdon, UK) was determined using specific sandwich 
enzyme-linked immunosorbent assay (ELISA) and triglyceride 
levels and LDL particle sizes and concentrations were measured 
using proton nuclear magnetic resonance (NMR) spectroscopy 
(LipoScience Inc., Raleigh, NY, USA) (20).

Other Molecular Markers
For insulin-like growth factor-1 (IGF-1) and insulin-like growth 
factor binding protein 3 (IGFBP3) levels the Immulite 2500 from 
DPC (Los Angeles, CA, USA) was used. The CV for this meas-
urement was less than 8%. For thyrotropin and free thyroxine 
the Modular E170 was used, for hsCRP the Cobas Integra 800 
was used (Roche, Almere, the Netherlands). The CVs of these 
measurements were all below 5% (15). Levels of fructosamine 
(millimolar/liter) have been determined on a Roche Integra 
analyzer, using nitroblue tetrazolium reagent (Roche Diagnostics, 
Mannheim, Germany), and FFA were measured using NEFA–
HR2 kits (Wako Chemicals GmbH, Neuss, Germany) on the 
Roche/Hitachi Modular P800 analyzer (Roche Diagnostics) The 
CVs for this measurement were below 4%. Homocystein levels 
were determined using a competitive immunoassay (Architect) 
(21). Plasma levels of Apoliporotein E, interleukin 6 (IL6) and 
leptin were determined using specific sandwich ELISA (22). 
Levels of 25(OH) vitamin D3 were determined on the Cobas e 
411 analyzer (Roche, Almere, the Netherlands).

Furthermore, automated white blood cell differential (counts 
of neutrophils, lymphocytes, monocytes, eosinophils, basophils, 
and large unstained cells) were determined as well as hemoglobin, 
hematocrit, and platelet count at the Department of Clinical 
Chemistry, Leiden University Medical Center, the Netherlands.

For the current analyses, we used self-reported measures of 
height and weight by which body mass index was determined 
[(weight in kg)/(height in cm)2]. The CMV serostatus was deter-
mined by the CMV IgG kit (ETI-CYTOK-G PLUS DiaSorin, 
Saluggia, Italy) based on enzyme immunoassay technology.

To determine the APOE isoform two SNPs have been 
genotyped, in addition to rs405509, which located in the APOE 
promotor and has previously been associated the development 
of dementia, using custom made Taqman Assyas (Applied 
Biosystems).

High-density lipoprotein particle sizes were measured using 
proton NMR spectroscopy (LipoScience Inc, Raleigh, NY, 
USA) (19).

Glycosylation of IgG was measured in citrate plasma with 
mass spectrometry as described in Ruhaak et al. (23). In short, 
immunoglobulin G was purified from citrate plasma samples 
in 22 96-well filter plates using a Protein A affinity purification 
step. Two microliters of plasma were added to 15  μl Protein 
A coated beads in 185 μl PBS in a 96-well plate, and incubated 
at room temperature for 1 h. After washing, IgGs were eluted 
using 100 mM formic acid. After tryptic digestion of the iso-
lated IgGs, glycopeptides were purified using a C18-SPE plate. 
Consequently, large-scale analysis of IgG glycosylation profiles 
was performed using MALDI-TOF-MS. Nomenclature of glyco-
forms is as follows: IgG1 G0 (IgG1A), IgG1 G1 (IgG1 B), IgG1 
G2 (IgG1 C), IgG1 G0N (IgG1 D), IgG1 G1N (IgG1 E), and IgG1 
G2N (IgG1 F).

Lipidome analysis was performed in citrate plasma by ultra-
high pressure liquid chromatography coupled to mass spec-
trometry (UPLC-MS) using an optimized version of the method 
reported by Hu et  al. (24) and has been described previously 
(25). Validation parameters were: linearity LPC (19:0), r2 > 0.99; 
PC (34:0), r2 > 0.97; PE (34:0), r2 > 0.98; TG (45:0), r2 > 0.99; 
repeatability and reproducibility, RSD < 15%. Two freeze–thaw 
cycles did not alter validation parameters (RSD  <  15%). Lipid 
names and abbreviations were assigned according to Lipid Maps 
nomenclature (http://www.lipidmaps.org).

statistical Methods
Since missing values occur in various variables and individu-
als (Table S1 in Supplementary Material), we used the multi-
variate imputation by chained equations (MICE) (26) method 
to impute the missing values, and to fully use available data. 
We created five imputed complete data sets, analyzed each 
data set separately, and combined the results as described in 
Chapter 3 of Multiple imputation for non-response in surveys 
by Rubin (27).

To assess association between longevity potential (offspring-
controls allocation) and the phenotypic parameters, logistic 
regression models were fitted. Since the aging process seems 
different between the two sexes (28), we performed the current 
analyses stratified by sex and adjusted for age. The association 
of the FRS, of which age is a component, with offspring-control 
allocation can be interpreted that it is at least not due to the age 
difference between the two groups. Furthermore, within-family 
(between-siblings) dependence is taken into account by using 
generalized estimating equations (GEE) approach with robust SE 
estimates of the effect sizes.

Prediction models for longevity potential are constructed 
with multiple logistic regression of the offspring-partners status 
on a number of published parameters as predictors: the (known) 
cardiovascular risk factors and longevity markers, FRS. Since 
many other molecular phenotypes were available, we investigated 
which set of predictors jointly predict the longevity outcome 
best. We constructed the various age adjusted models starting 
with FRS as a surrogate variable for cardiovascular risk factors; 
FRS as a compulsory variable (Model 1), FRS as a compulsory 
variable with addition of longevity markers (Model 2), FRS as a 
compulsory variable with addition of other molecular phenotypes 
(Model 3). Additionally, instead of using FRS, we constructed the 
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TaBle 1 | characteristics of study population (mean and sD between brackets) stratified by sex and offspring-control allocation.

characteristics referenceb Male Female

Offspring controls Offspring controls

Number of individuals 772 315 899 429
Age (years) 59.3 (6.58) 61.2 (7.46) 59.4 (6.47) 56.9 (6.95)
BMI index 25.7 (2.96) 25.8 (3.23) 25.0 (4.01) 25.4 (3.88)

cardiovascular risk factors
Smoking YES N (%) (7, 31) 88 (13.8) 42 (15.0) 98 (12.8) 58 (15.8)
Hypertension YES N (%) (7, 31) 148 (22.8) 73 (27.1) 171 (22.3) 105 (28.5)
Diabetes YES N (%) (7, 31) 32 (4.8) 27 (10.1) 28 (3.6) 20 (5.4)
Total cholesterol (mmol/l) (31) 5.46 (1.12) 5.47 (1.12) 5.68 (1.24) 5.73 (1.15)
HDL-C (mmol/l) (7) 1.27 (0.37) 1.23 (0.35) 1.60 (0.45) 1.56 (0.49)
LDL-C (mmol/l) (7) 3.30 (0.94) 3.30 (0.95) 3.38 (1.02) 3.39 (0.94)
Framingham risk score (7) 10.96 (6.61) 13.12 (7.93) 4.17 (2.33) 4.47 (3.00)

longevity markers
Glucose (mmol/l) (14) 5.91 (1.38) 6.40 (2.20) 5.72 (1.22) 5.90 (1.41)
Insulina (mmol/l) (14) 17.48 (2.26) 19.32 (2.36) 14.75 (2.23) 16.61 (2.25)
Free triiodothyronine (pmol/L) (15) 4.31 (0.66) 4.30 (0.67) 3.89 (0.69) 4.02 (0.85)
Triglyceridea (mmol/l) (14) 1.74 (1.71) 1.85 (1.72) 1.36 (1.66) 1.50 (1.71)
Total/HDL ratio (17) 4.57 (1.42) 4.78 (1.58) 3.77 (1.21) 3.98 (1.38)
LDL particle size (nm) (18, 19) 20.97 (0.78) 20.82 (0.76) 21.58 (0.75) 21.45 (0.80)
Adiponectine (mg/l) (16) 4.92 (2.25) 4.66 (2.15) 7.65 (3.44) 7.13 (3.65)

aNatural logarithmically back transformed means.
bReferences refer to published literature demonstrating that the measure is indeed a biomarker for cardiovascular risk or longevity potential.
BMI index, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Total/HDL-C, the ratio of total cholesterol level over  
HDL-cholesterol level; LDL size, low-density lipoprotein particle size; SE, standard error of the estimate of the effect size log-OR.
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model based on all markers, which include the components of 
cardiovascular risk factors (Model 4):

Model 1: Group = β1 × FRS + β2 × Age.
Model 2: Group = β1 × FRS + β2 × Age + β3–9 × Known Longevity 

Markers.
Model 3: Group = β1 × FRS + β2 × Age + β3–9 × Known Longevity 

Markers + β10–59 Other Molecular Markers.
Model 4: Group  =  β1  ×  Age  +  β2–8  ×  Cardiovascular Risk 

Factors  +  β9–15 Known Longevity Markers  +  β16–65  ×  Other 
Molecular Markers.

The selection algorithm based on elastic net (29) was imple-
mented, in order to deal with possible correlations between the 
parameters and to select relevant (or important) variables. This 
method is a combination of lasso (for selection of predictors) and 
ridge (for shrinkage) logistic regression, and encourages group-
ing effect. The original data sets were divided into two sets: (1) for 
building prediction model and (2) for validation of the selected 
model. Available families and controls were both randomly 
divided into two equally sized halves. Half of the first set con-
sisted of randomly selected families and half of randomly selected 
controls, so that by 10-fold cross validation the best predicting 
model was constructed. The second set contained the other half of 
families and the other half of controls, and was used for validation 
of the selected model. Finally, prediction performance of these 
various models was compared using area under the receiver 
operating characteristic (ROC) curve (AUC) based on validation 
sets. To assess relative importance of the individual markers in the 
selected model, Breiman’s Random Forests (30) was used.

Data analyses are performed using the freely available pack-
ages and software R version 2.13.1 (R Development Core Team, 
2009).

resUlTs

study Population
Table  1 provides the descriptives of the studied groups with 
longevity potential and controls from the Leiden Longevity 
Study. While the males with longevity potential (mean age 
59.3 years) were on average younger than male controls (mean 
age 61.2 years), the females with longevity potential (mean age 
59.4 years) were older than female controls (mean age 56.9 years). 
Because of the presence of this mean age difference between the 
groups with longevity potential and controls, all subsequent 
analyses were adjusted for age.

With regard to the cardiovascular risk factors the prevalence of 
type 2 diabetes was lower among males with longevity potential 
(P-value = 0.007) as compared to male controls. In the compari-
son of females with longevity potential and controls, those with 
longevity potential exhibited lower prevalence of hypertension 
(P-value = 0.001) (Table 2).

There are biomarkers that are described to discriminate 
between members of long-lived families, as individuals with 
longevity potential, and similarly aged controls, which we will 
further call “known longevity markers” (18, 19). Table 2 shows 
the sex-specific analyses for these known longevity markers 
illustrating that associations seem not sex-specific and that direc-
tions of association are similar in both sexes. Glucose levels were 
lower among males with longevity potential as compared to male 
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TaBle 2 | Univariate association of cardiovascular risk factors and 
longevity markers with longevity as offspring-control allocation in the 
leiden longevity study.

Male N = 1087 Female N = 1328

log-Ora se P-value log-Ora se P-value

 Age −0.04 0.01 3.71 × 10−4 0.06 0.01 1.00 × 10−8

cardiovascular risk 
factors

 Smoking −0.21 0.21 0.316 −0.12 0.19 0.536

 Hypertension −0.14 0.17 0.422 −0.49 0.15 0.001

 Diabetes −0.75 0.28 0.007 −0.56 0.31 0.069

 Total cholesterol −0.02 0.06 0.749 −0.06 0.05 0.230

 HDL-C 0.39 0.20 0.050 0.23 0.14 0.119

 LDL-C −0.03 0.08 0.697 −0.04 0.07 0.585

longevity markers

 Glucose −0.16 0.04 1.28 × 10−4 −0.14 0.05 0.003

 Insulin −0.13 0.09 0.140 −0.23 0.08 0.004

 Free triiodothyronine −0.06 0.11 0.564 −0.21 0.09 0.023

 Triglyceride −0.09 0.05 0.059 −0.28 0.07 3.18 × 10−5

 Total/HDL-C −0.11 0.05 0.025 −0.16 0.05 0.002

 LDL size 0.23 0.09 0.013 0.26 0.08 0.002

 Adiponectin 0.07 0.03 0.035 0.04 0.02 0.039

aEffects of the risk factors (except age) are adjusted for age. A log-OR below 0 
indicates that offspring as compared to controls show lower prevalence (smoking, 
hypertension, diabetes) or serum levels of the associated trait. A log-OR above 0 
indicates that offspring as compared to controls show higher serum levels of the 
associated trait.
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
Total/HDL-C, the ratio of total cholesterol level over HDL-cholesterol level; LDL size, 
low-density lipoprotein particle size, SE, standard error of the estimate of the effect size 
log-OR.
Values in bold are significant P-values adjusted for multiple testing [Bonferroni 
significant P-value < (0.05/7) = 0.0071].

TaBle 3 | Predictive value (aUc) based on validation sets of various 
prediction models.

Prediction model Male Female

Model 1a: FRS 64.7 64.7
Model 2a: FRS + known longevity markers 65.6 66.4
Model 3a: FRS + known longevity markers + other molecular 
markers

71.4 68.7

Model 4b: All markers 70.8 68.5

aAge and Framingham risk score (FRS) were forced to be selected in the model.
bAge only was forced to be selected in the model.
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controls (P-value = 1.28 × 10−4). In the comparison of females 
with longevity potential and female controls glucose levels 
(P-value = 0.003), insulin levels (P-value = 0.004), triglyceride 
levels (P-value = 3.18 × 10−5), and ratios of total cholesterol over 
HDL cholesterol (P-value =  0.002) were lower in females with 
longevity potential, while LDL particle size (P-value = 0.002) was 
higher in females with longevity potential (Table 2).

Prediction of longevity Potential by Frs
In order to classify the Leiden Longevity Study participants into 
those with longevity potential and controls based on the FRS, 
we first imputed the missing values using MICE (26) methodol-
ogy so that the full data set is available for analyses. Using the 
five imputed data sets (see Materials and Methods for details), 
we calculated the FRS (7) from the separate cardiovascular risk 
factors. Since FRS can only be calculated on people that have not 
yet had a cardiovascular attack, we were able to calculate FRS 
in 2301 individuals (out of 2415), i.e., 716 males with longevity 
potential (out of 772), 300 male controls (out of 315), 873 females 
with longevity potential (out of 899), and 412 female controls 
(out of 429).

Males with longevity potential have lower FRS (FRSmean = 10.9) 
than male controls (FRSmean = 13.1) (P-value = 0.008). Females 
with longevity potential also have lower cardiovascular risk 

scores (FRSmean  =  4.2) than female controls (FRSmean  =  4.5; 
P-value  =  0.003). The significance of the mean difference is 
adjusted for age difference.

The dataset, including 2301 individuals with complete data 
regarding the FRS, is next being used for the prediction of 
longevity potential. First, a multiple logistic regression model, 
including the cardiovascular risk factors and known longevity 
markers as predictors was fitted in order to evaluate the partial 
contribution of each risk factor in the presence of the others. It 
appeared that only glucose levels in males (P-value = 0.004) and 
the prevalence of hypertension in females (P-value = 0.006) have 
significant partial contribution to the joint model (Table S2 in 
Supplementary Material).

Next, we investigated whether FRS is able to predict longevity 
potential, and whether the addition of known longevity markers 
will improve the prediction. In order to evaluate the performance 
of different prediction models, the ROC and the area under the 
ROC curve (AUC) were computed. To validate the predictive 
value of this prediction model, the ROC and the AUC were com-
puted using the validation data sets (Table 3). The AUCs for the 
male and female prediction models based on the FRS only (Model 
1) were 64.7 and 64.7, respectively. Given the fact that our design 
is case-cohort and there are a limited number of predictors, the 
moderate estimate of the area under the curve is expected and, 
therefore, our results indicate that the FRS is to some extent 
predictive for longevity potential. If the model was extended with 
known longevity markers (Model 2), the AUC further increased 
to 65.6 for males and 66.4 for females (Table 3).

Next, we explored if there are additional parameters from our 
data that can further improve the predictive model for longevity 
potential. Specifically, we test whether these additional parameters 
could contribute to (or improve) the best prediction model based 
on the known cardiovascular risk factors and known longevity 
markers. We extended the prediction models with additional 
predictors that are selected based on the cross-validated elastic 
net. Each of five imputed data sets was divided into two sets of 
equal size: for building the prediction model and for validation 
of the selected model. The addition of 63 traits (Table S1 in 
Supplementary Material) (Model 3), among others white blood 
cell counts, IgG glycosylation, and lipidomic traits, measured in 
blood did further increase the AUC in male to 71.4 and in women 
to 68.5 (Figure 1). The prediction of the longevity potential was 
not further improved when the separate cardiovascular risk fac-
tors, instead of the FRS, were tested in addition to the known 
longevity markers and all other molecular markers (Model 4) 
(Table 3).
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FigUre 2 | relative importance plot in the prediction longevity potential in males (left panel) and females (right panel) in model 3. The x-axis shows 
the relative importance, as mean decrease accuracy, and the y-axis shows the traits that have been selected in model 3. The importance plot is a critical output of 
the random forest algorithm and to assess relative importance of the individual markers in the selected model, the machine learning tool Breiman’s Random 
Forests21 was used. The traits on the y-axis ordered top-to-bottom as most- to least-important. Therefore, the most important variables for classification are at the 
top and an estimate of their importance is given by the position of the dot on the x-axis. Abbreviations left panel: FRS, Framingham risk score; IGF1, insulin-like 
growth factor 1; IgG1 G0N, immune globulin subclass G1 with Fc N-glycosylation at G0; TG (56:6), triglyceride with 56 carbon atoms and 6 double bonds; ApoE, 
lipoprotein E plasma levels; CRP, C-reactive protein plasma levels; IBP3, IGF1-binding protein 3; IgG2 G2, immune globulin subclass G2 with Fc N-glycosylation at 
G2; Free T4, Thyroxine; HDL size, high-density lipoprotein particle size; APOE234, Apolipoprotein isoform; CMV, cytomegalovirus seropositivity. Abbreviations right 
panel: FRS, Framingham risk score; GPEtn (38:6), ethanolamine glycerophospholipid with 38 carbon atoms and 6 double bonds; IGF1, insulin-like growth factor 1; 
TG(56:7), triglyceride with 56 carbon atoms and 7 double bonds; TG(52:1), triglyceride with 52 carbon atoms and 1 double bond; IgG1 G2N, immune globulin 
subclass G2 with Fc N-glycosylation at G2; SM(d18:1/14:0), Sphingomyelin (d18:1/14:0); GPCho(O-36:3), phosphatidylcholine O-36:3; Free T3, triiodothyronine.
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The parameters that were selected for the optimal prediction 
of longevity potential (Model 3) in each of the five imputed data 
sets, while age and FRS were forced into the model, are shown in 
Figure 2. We observe that parameters involved in glucose metabo-
lism (e.g., glucose, igf1 levels), lipid metabolism (f.e. triglycerides, 
sphingomyelins, lipoprotein particle size, APOE234 genotype), 
energy metabolism (f.e. thyroid hormones, leptin, adiponectin), 
and the immune system (f.e. IgG glycosylation, HsCRP, blood 
cell counts) play an important role in the prediction of longevity 
potential in both males and females.

DiscUssiOn

In this paper, we aimed at classification of older people as those 
with longevity potential or without. People with longevity 
potential were represented by offspring of nonagenarian siblings 
and compared to their partners as those with an expected aver-
age lifespan. The FRS, as an indicator of cardiovascular health, 
is a modest classifier for middle aged persons with longevity 
potential. Moreover, physiological parameters involved in 
immune response and glucose, lipid, and energy metabolism 
further improve the prediction value for longevity potential. We 
concluded that we are reasonably able to classify older people as 
controls or those with longevity potential.

The magnitude of the predictive value of ~0.70 indicates  
that 70% of the older people are classified in the right group.  
We expected that the classifier for being a member of a long-lived 
family, as proxy for longevity potential, is not able to reach 100% 
accuracy, since the predictive value of a classifier for a polygenic 
disease with a low frequency is expected to be very poor (32). In 
addition, the longevity phenotype is known for its complexity due 
to its multifactorial architecture. Also, the controls in our study 
design reflect population controls of who we do not know whether 
they will become long-lived. Therefore, the groups to classify are 
heterogeneous, i.e., among those with longevity potential there are 
people who will not become long-lived and among the controls there 
are people that will become long-lived. Therefore, we conclude that  
an AUC of about 70 is fairly high in predicting longevity potential.

It is known that in the comparison offspring of long-lived 
people and their spouses, there is a clear underestimation of the 
contrast. A Danish cohort study showed that spouses of descend-
ants of long-lived parents also show lower mortality than age 
and sex-matched population controls (33). This suggests that, 
due to the not as optimum contrast in longevity potential in the 
current study, the classification potential is also underestimated. 
From this, we may conclude that if a study with the optimum 
contrast will be investigated, it will probably classify better, which 
increases the feasibility of developing a predictor for residual life 
or mortality at an individual level.

A limitation of our study is that the glycosylation measures as 
well as the lipidomics measures have more that 5% missing val-
ues. We used MICE to impute the missing values in five replicate 
imputed data sets to minimize the influence of the phenotype 
imputation. Though, we should be carefully interpreting the 
influence of the specific traits.

Interestingly, the addition of the “other molecular markers” 
to the prediction model seems to contribute considerably the 

prediction performance (model 3 vs. model 2), and even seem to 
increase the performance more than the “known longevity mark-
ers.” Potentially there seems to be redundancy in biomarker signal 
between FRS markers and “known longevity markers,” such as the 
lipid markers. In the relative importance plot, it becomes clear 
that in men indeed other than lipid-based markers are selected 
in the model to predict longevity potential, such as IgG glyco-
sylation measures and APOE234 genotype. In females, it seems 
that very specific lipids, others than the classical measures, extra 
contribute to the prediction model for longevity potential, such 
as levels of sphingomyelin (d18:1/14:0) and phosphatidylcholine 
O-36:3. Notable is that the selected predicting parameters reflect 
different aspects of aging, implying that if additional biomarkers 
for different biological processes may even further improve the 
prediction value. For example, from the nine hallmarks of aging 
(34), we potentially covered three hallmarks: altered intracellular 
communication (IgG glycosilation), deregulation of nutrient 
sensing (glucose and lipid metabolism) and mitochondrial dys-
function (thyroid metabolism). Because physiological dysregula-
tion likely occur at multiple biological processes (35, 36), future 
identified biomarkers of the other six hallmarks, such as stem cell 
exhaustion, genomic instability, and epigenetic alterations, have 
high potential to improve the prediction performance.

Previously, in population-based studies, estimations of physi-
ological dysregulation or biological age have been associated with 
health outcomes and mortality (2, 3, 5). The difficulty in the com-
parison of each of these studies is that different study cohorts have 
been used and that different parameters have been determined 
to be included in analyses. Previously, albumin has been deter-
mined as an important predictor of biological age and residual 
lifespan (37, 38), which should encourage cohorts to measure 
metabolomics platforms that include albumin levels. Ultimately, 
transcriptomics, proteomics, and metabolomics measures should 
be harmonized for human cohorts and then added to the models 
for biological age and physiological dysregulation and investigate 
generalizability over multiple studies.

The next step before use in the clinic would be to test whether 
resulting established biomarkers of residual lifespan, mortality, 
and longevity potential are improving after a beneficial lifestyle 
intervention in older people. To delay the onset of age-related 
disease, older people are encouraged changing their lifestyle by 
adjusting their food and increasing their physical activity (39). 
To monitor whether the lifestyle intervention is not harmful for 
the older individual or initiate physiological dysregulation, the 
new biomarkers for longevity potential or biological age could be 
developed as a monitoring tool.

In conclusion, the classification of older people into groups 
with longevity potential and controls is moderate using the FRS. 
To acquire reasonably good classification markers of immune 
response, glucose, lipid, and energy metabolism are required. To 
improve the classification of older people according to longevity 
potential, novel biomarkers are required representing most likely 
additional biological processes, such as stem cell exhaustion, 
genomic instability, and epigenetic alterations. We show that 
individual classification of older people for longevity potential 
may be feasible using biomarkers from a wide variety of different 
biological processes.
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