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The Generalized Relative Pairs IBD
Distribution: Its Use in the Detection
of Linkage
Quan Zou*

Department of Statistics, The George Washington University, Washington, DC, USA

I introduce a novel approach to derive the distribution of disease affectional status
given alleles identical by descent (IBD) sharing through ITO method. My approach
tremendously simplifies the calculation of the affectional status distribution compared
to the conventional method, which requires the parental mating information, and could
be applied to disease with both dichotomous trait and quantitative trait locus (QTL).
This distribution is shown to be independent of relative relationship and be employed
to develop the marker IBD distributions for relative relationship. In addition, three linkage
tests: the proportion, the mean test, and the LOD score test are proposed for different
relative pairs based on their marker IBD distributions. Among all three tests, the mean test
for sib pair requires the least sample size, thus, has the highest power. Finally, I evaluate
the significance of different relative relationships by a Monte-Carlo simulation approach.

Keywords: allele identical by descent, ITO method, quantitative trait locus, relative pairs, linkage analysis

1. INTRODUCTION

Upon the completion of human genome sequences, geneticmarkers have enabledmapping of human
disease genes through linkage analysis. Sib pairs are the most common design among all possible
family configurations. A variety of linkage analyses have been developed for testing identical by
descent (IBD) sharing of affected sib pairs. Penrose first considered the covariance of the quantitative
sib pair trait phenotype and genetic marker in the linkage analysis (1). Haseman and Elston
logistically regressed the squared quantitative trait difference on the shared alleles IBD in sib pairs
(2). Suarez illustrated the perturbations in the marker IBD for sib pair to detect linked dichotomous
trait locus (3). Risch applied recurrence risk ratio method to investigate the IBD sharing of affected
sib pairs with dichotomous traits and has also extended this method to other relative pairs (4,
5). Amos showed that a variance components procedure could assess the genetic linkage (6, 7).
The model also accommodates gene–environment interactions and the effects of covariates and
epistasis.

The basic principle of linkage analysis is the similarity between disease trait andmarker genotype,
which are measured by (disease) affectional status and (marker) alleles IBD of the relative pairs,
respectively. If the trait and marker loci are linked, relative pair, that is likely to share disease alleles,
is also likely to inherit the same marker allele or vice versa. Thus, doubly affected sib pair should
show greater than expected chance of sharing two linked maker alleles IBD. Using the similarity
measure of geno- and phenotype, several statistical tests for linkage can be constructed by deriving
the expected degree of similarity under certain linkage assumption. The simplest approach is chi-
square “goodness of fit” test to compare the observed and expected marker alleles IBD under the
hypothesis of no linkage (8). The proportion test based on the counts of doubly affected sib pairs
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with two marker alleles IBD, was proposed by Day and Simons
and Suarez et al. (3, 9). The mean test, suggested by de Vries
et al. and Green and Woodrow, is based on the average number
of marker alleles IBD weighted by their probabilities (10, 11). The
mean test is generally more powerful than the proportion and the
goodness-of-fit tests (12). Another type of method is likelihood
ratio test, which utilizes LOD score of the proportion of marker
alleles IBD (4). The power of likelihood ratio test can be increased
by restricting IBD proportions to certain genetic models (13, 14).

The ITOmethod refers to the stochastic matrices developed by
Li and Sacks, where I, T, and O denote the probabilities sharing
2, 1, and 0 alleles IBD given relative pairs’ genotypes, respectively
(15). These ITO matrices provide a simple relationship between
relative genotypes and their IBD status and have been wildly used
in genetic analysis (16, 17). For example, the conditional genotype
probabilities of sib pairs could be calculated from ITO matrices
(18). The general formulation of genotype distributions of other
relative pairs are also suggested by using the ITO method (19).
The ordered ITO transition matrices were extended to calculate
the genetic covariance (20).

In order to examine the IBD sharing within affected family,
Risch has shown that the IBD probabilities of affected relative
pair depend on the recurrence risk ratio, known as λ (4). Under
the assumption of incompletely penetrant model, the probabil-
ities of the sibling’s affectional status given alleles IBD sharing
could also be recovered from Table II in Haseman and Elston,
by conditioning on parental mating types (2, 3). However, this
approach will require the information of second-degree parental
mating when being applied to relative relationships other than sib
pair. In the present paper, I partition the relative pairs’ affectional
status on their genotype information with respect to alleles IBD
sharing, i.e., the ITOmatrices. The ITOmethod greatly simplifies
the derivation of the conditional distribution of affectional status
for both the quantitative and the dichotomous traits. Furthermore,
it is shown that these probabilities are independent of relative
relationships.

In this research, I adopt a novel ITO method and develop the
allelic identical by descent (IBD) distributions at marker locus
given disease affectional status for siblings, uncle–nephew, grand-
parent–grandchild, half sibs, and first cousin pairs. By taking
advantage of the ITO matrices, I first demonstrate that the prob-
abilities of dichotomous disease status given trait IBD score are
independent of relative relationships. Then, I fully derive the
marker IBD distributions given dichotomous disease affectional
status for various relative relationships by utilizing the relative
pairs’ joint probabilities of IBD scores at both trait andmarker loci.
I also calculate themarker IBD distributions given extreme discor-
dant relative pairs at a quantitative trait locus (QTL) for different
relative relationships by my novel ITO method. Next, I examine
the power to detect the presence of a significant disease suscepti-
bility locus through linkage analysis by perturbing the conditional
marker IBD distribution. Specifically, three tests, the proportion
test, the mean test, and the logarithm of odds (LOD) score test,
were applied to obtain the sample size required to achieve sig-
nificance level p with different power. Finally, the Monte-Carlo
simulation studies have been conducted in order to evaluate the

performance of my methods. I assume Hardy–Weinberg equi-
librium, random mating and the marker locus to be completely
polymorphic such that all matings are informative.

2. MATERIALS AND METHODS

Let us consider the situation where alleles (T/t) at the trait locus
are linked to alleles (M/m) at a marker locus through recombi-
nation fraction θ and assume that the marker locus is completely
polymorphic. Additionally, the diallelic frequencies are p and q for
alleles T and t, where p+ q= 1. I denote penetrance frequencies,
i.e., the probability of the affected relative given genotypes TT, Tt,
or tt by f 1, f 2, or f 3, respectively. The prevalence of the trait in
the population is defined as KP = p2f 1 + 2pq f 2 + q2f 3, in addi-
tion to the additive variance (VA = 2pq[p(f 2 − f 1)+ q(f 3 − f 2)]2)
and dominance variance (VD = p2q2(f 1 − 2f 2 + f 3)2). I assume
no major gene by residual interaction and no epistasis, i.e., the
non-allelic interaction of different genes.

2.1. The Conditional Marker IBD Given the
Affected Status Distributions
Let X denotes the number of affected individuals in a relative pair.
In order to calculate the conditional probabilities of X= k (k= 0,
1, 2) given IBD score at trait locus for generalized relative pairs,
I reckon the genotype information of relative pairs derived from
the ITOmatrices, as shown in Table 1 (15).

The conditional affected status given IBDT (t= 0, 1, 2)
probabilities has been partitioned on all possible genotypes of
relative pairs, GTi, i= 1, 2, . . ., 9: TT−TT, TT−Tt, TT− tt,
Tt−TT, Tt−Tt, Tt− tt, tt−TT, tt−Tt, and tt− tt, as shown in
equation (1):

Pr(X = k|IBDT = t)

=
9∑

i=1
Pr(X = k,GTi|IBDT = t)

=
9∑

i=1
Pr(X = k|GTi) · Pr(GTi|IBDT = t). (1)

Note that I have utilized the fact that the affected status of
relative pair is conditionally independent of trait IBD score, given
their genotype. Clearly, knowledge of the trait IBD score provides
no extra information on the likelihood of affected status given
their genotype. For example, given IBDT = 2, there are only 3

TABLE 1 | The conditional distributions of relative pair with genotypes
(G1–G2) given the trait IBD values.

IBDT = 2 (I) IBDT = 1 (T) IBDT = 0 (O)

G2 TT Tt tt TT Tt tt TT Tt tt

TT p2 p3 p2q p4 2p3q p2q2

G1 Tt 2pq p2q pq pq2 2p3q 4p2q2 2pq3

tt q2 pq2 q3 p2q2 2pq3 q4
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TABLE 2 | The conditional distributions of the affected status given the trait
IBD values.

Pr(X= k|IBDT = t)

No. of affected
pairs

t=2 t=1 t=0

X =2 K2
P + VA + VD K2

P +
VA
2

K2
P

X =1 2(KP − K2
P − VA − VD) 2KP − 2K2

P − VA 2KP − 2K2
P

X =0 1 − 2KP + K2
P + VA + VD 1 − 2KP + K2

P +
VA
2

1 − 2KP + K2
P

TABLE 3 | The IBD probabilities at the trait locus.

IBDT = t

Relationship t=2 t=1 t=0

Sibs
1

4

1

2

1

4
Grandparent–grandchild

Uncle–nephew 0
1

2

1

2
Half sibs

First cousins 0
1

4

3

4

genotypes of the relative pair involved: TT−TT, Tt−Tt, and
tt− tt, which implies that

Pr(X = 2|IBDT = 2)

=
9∑

i=1
Pr(X = 2|GTi) · Pr(GTi|IBDT = 2)

= f 21 p2 + 2f 22 pq + f 23 q2

= K2
P + VA + VD. (2)

The resulting Pr(X= k | IBDT = t) as in Table 1 of Suarez was
reproduced here in Table 2 by Li’s ITOmethod (3, 15). Through-
out the calculation, I merely depend on the ITOmatrices and trait
genotype penetrance frequencies f 1, f 2, and f 3. It is easy to see
that conditional distribution of affected status on IBD score at trait
locus is independent of relative relationships. Indeed, the affected
number of relative pair should only depend on the numbers of
trait alleles shared between the relative pairs.

The probabilities of IBD at trait locus, Pr(IBDT = t) (t= 0, 1, 2),
for sib pair, grandparent–grandchild, uncle–nephew, half sib, and
first cousin are given in Table 3. By Bayes’ theorem, Pr(X)=Σt
Pr(X | IBDT = t)·Pr(IBDT = t), I give the marginal affected status
probabilities for different relative relationships from a randomly
mating population in Table 4.

Let the IBD scores at the marker and trait loci be denoted by
IBDM and IBDT, respectively. The joint probabilities for a relative
pair to have IBD scores at the marker locusM and the number of
affected relative pair is calculated as equation (3).

Pr(IBDM = m,X = k, r)

=
∑
t

Pr(X = k|IBDT = t) · Pr(IBDM = m, IBDT = t, r). (3)

TABLE 4 | The marginal distributions of the affected status.

Affected relative pairs (X= k)

Relationship X =2 X =1 X =0

Sibs (3) K2
P +

VA
2

+
VD
4

2KP − 2K2
P 1 − 2KP + K2

P

−VA −
VD
2

+
VA
2

+
VD
4

Grandparent–
grandchild

Uncle–nephew K2
P +

VA
4

2KP − 2K2
P −

VA
2

1 − 2KP + K2
P +

VA
4

Half sibs

First cousins K2
P +

VA
8

2KP − 2K2
P −

VA
4

1 − 2KP + K2
P +

VA
8

where relationship subscript r (relationship) refers s (sib),
g (grandparent–grandchild), u (uncle–nephew), h (half sib),
and f (first cousin). One notices that conditional probabilities
Pr(X= x|IBDT = t) are independent of the relative relationships.
Hence, the differences among relative relationships of the joint
probabilitiesPr(IBDM =m,X= k, r) are due to the contribution of
Pr(IBDM =m, IBDT = t,r). Combining Pr(IBDM =m, IBDT = t)
[see Table 1 in Risch (5)] and Table 4 according to equation (3), I
obtain Table 5, in which θ is the recombination fraction between
the trait and marker loci, parameter ψ defines θ2 + (1− θ)2.

2.2. Extreme Discordant Relative Pair for
Quantitative Trait Locus (QTL)
Risch and Zhang have shown that sib pairs from opposite tails
of the phenotypic distribution have substantial power to detect
linkage for a quantitative trait locus (QTL) (21, 22). Assuming the
Haseman and Elston model, x denotes the individual observed
phenotypic value: x=µ+ g + e, where µ is the general mean, g
and e are the genetic and environmental effects, respectively (2).
Following Risch and Zhang, define biallelic locus (T/t) with gene
frequencies p and q, respectively (21). Let a be the mean value of
genetic effect being TT, d the mean being Tt, and −a being tt.
Without loss of generality, I assume a= 1, d= 0, residual variance
within each genotype σ2

e = 1 and no residual correlation between
relative pairs, i.e., ρ= 0. Therefore, the cumulative distribution
function F(x) for the population distribution of the trait is a
mixture of three normal distributions:

F(x) =
∫ x

−∞
[ p2ϕ(s − 1) + 2pqϕ(s) + q2ϕ(s + 1)]ds. (4)

where ϕ(s) is the standard normal density function. Next, the
probability of one relative’s phenotype falls in the top decile and
the other relative’s in the bottom decile given their trait genotypes,
Pr(T1B1|GTi) (i= 1, 2, . . ., 9), is given as

Pr(T1B1|GTi) =
∫ F−1(0.1)

−∞

∫ ∞

F−1(0.9)
ϕ(s, t : G1,G2)dsdt, (5)

where ϕ(s, t) is the bivariate normal density function, G1, G2 take
1, 0, or −1 as their genotypes are TT, Tt, or tt, respectively. Thus,
the probabilities of the general extreme discordant relative pair
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TABLE 5 | The conditional marker IBD given the affected status distribution.

Affected relative pairs (X=k)

Relationship and
IBDM =m

X =2 X =1 X =0

Sibs (3)

m= 2
1

4
+

(
ψ −

1

2

)
VA +

(
ψ2 −

1

4

)
VD

4
(
K2
P +

VA
2

+
VD
4

) 1

4
−

(
ψ −

1

2

)
VA +

(
ψ2 −

1

4

)
VD

2
(
2KP − 2K 2

P − VA −
VD
2

) 1

4
+

(
ψ −

1

2

)
VA +

(
ψ2 −

1

4

)
VD

4
(
1 − 2KP + K 2

P +
VA
2

+
VD
4

)

m= 1
1

2
−

(
ψ −

1

2

)2

VD

2
(
K 2
P +

VA
2

+
VD
4

) 1

2
+

(
ψ −

1

2

)2

VD

2KP − 2K 2
P − VA −

VD
2

1

2
−

(
ψ −

1

2

)2

VD

2
(
1 − 2KP + K 2

P +
VA
2

+
VD
4

)

m= 0
1

4
−

(
ψ −

1

2

)
VA +

(
2ψ − ψ2 −

3

4

)
VD

4
(
K 2
P +

VA
2

+
VD
4

) 1

4
+

(
ψ −

1

2

)
VA +

(
2ψ − ψ2 −

3

4

)
VD

2
(
2KP − 2K 2

P − VA −
VD
2

) 1

4
−

(
ψ −

1

2

)
VA +

(
2ψ − ψ2 −

3

4

)
VD

4
(
1 − 2KP + K 2

P +
VA
2

+
VD
4

)
Grandparent–grandchild

m= 1
1

2
+

(
1

2
− θ

)
VA

4
(
K 2
P +

VA
4

) 1

2
−

(
1

2
− θ

)
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
+

(
1

2
− θ

)
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)

m= 0
1

2
−

(
1

2
− θ

)
VA

4
(
K 2
P +

VA
4

) 1

2
+

(
1

2
− θ

)
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
−

(
1

2
− θ

)
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)
Uncle–nephew

m= 1
1

2
+

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

4
(
K 2
P +

VA
4

) 1

2
−

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
+

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)

m= 0
1

2
−

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

4
(
K 2
P +

VA
4

) 1

2
+

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
−

[
ψ (1 − θ) +

θ

2
−

1

2

]
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)
Half-sibs

m= 1
1

2
+

(
ψ −

1

2

)
VA

4
(
K 2
P +

VA
4

) 1

2
−

(
ψ −

1

2

)
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
+

(
ψ −

1

2

)
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)

m= 0
1

2
−

(
ψ −

1

2

)
VA

4
(
K 2
P +

VA
4

) 1

2
+

(
ψ −

1

2

)
VA

2
(
2KP − 2K 2

P −
VA
2

) 1

2
−

(
ψ −

1

2

)
VA

4
(
1 − 2Kp + K 2

P +
VA
4

)
First cousins

m= 1
1

4
+

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

8
(
K 2
P +

VA
8

) 1

4
−

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

4
(
2KP − 2K 2

P −
VA
4

) 1

4
+

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

8
(
1 − 2Kp + K 2

P +
VA
8

)

m= 0
3

4
−

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

8
(
K 2
P +

VA
8

) 3

4
+

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

4
(
2KP − 2K 2

P −
VA
4

) 3

4
−

[
(ψ(1 − θ)2 +

1

2
θ2 −

1

4

]
VA

8
(
1 − 2Kp + K 2

P +
VA
8

)

given allele IBD sharing at trait locus is obtained through ITO
method:

Pr(T1B1|IBDT = t)

=
9∑

i=1
Pr(T1B1,GTi|IBDT = t)

=
9∑

i=1
Pr(T1B1|GTi) · Pr(GTi|IBDT = t), (6)

where Pr(T1B1|GTi) is integrated according to equation (5), and
Pr(GTi|IBDT = t) are the ITO matrices given in Table 1. Again,
the probabilities of extreme discordant relative pair with QTL
given IBDT are partitioned over their genotypes through the
ITO approach. Similar to the discrete case, Pr(T1B1|IBDT = t)
is also independent to the relative relationships. If one regards
the extreme discordant relative pair with QTL as the contin-
uous case for X= 1, then the probabilities of Pr(T1B1) and
Pr(IBDM|T1B1) could be derived in a similar fashion as in the
discrete case.
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3. RESULTS

The power to detect linkage will naturally decrease as the distance
between the trait (T/t) and marker (M/m) loci decreases. Here, I
refer the perturbation as the absolute deviation of the conditional
probabilities in Table 5 from those under the null hypothesis, i.e.,
|Pr(IBDM|X)θ − Pr(IBDM|X)θ0

|. In general, the less perturbation
is, the harder the linkage is detected. I fix a reasonable KP value
as 10% and focus on doubly affected relative pairs. In order to
compare the test power between the full sib pair and other relative
relationships, I letVD = 0.01 such that the perturbation of sib pairs
is increasing as VA increases (3). For extreme discordant relative
pairs withQTL, I use an additive model with p= 0.8, a= 1, d= 0,
σ2
e = 1, and ρ= 0. High recessive frequency allele with correlated

residual will yields the maximal perturbation in the conditional
marker IBD probabilities, i.e., the perturbation increases, as allele
frequency p or phenotype value of heterozygote d decreases, or
residual correlation ρ increases (21, 22). In this section, I derive
both common Wald- and score-type tests with either binary or
continuous trait. Further, I consider the Monte-Carlo simulation
to validate the power of the previous tests.

3.1. Proportion Test
I define Nj (j= 2 for sib pair and j= 1 for other relative pairs) as
the counts of doubly affected relative pairs with the dichotomous
trait or extreme discordant relative pairs with QTL, which share
j marker allele(s) IBD among total N relative pairs sampled. The
Wald test statistic is

Wr =
Nj − E(Nj)√

Var(Nj)
. (7)

Under the alternative hypothesis that θ < 1
2 , Nj is approxi-

mately normally distributed with

N
(√

Nr(4ϵr − 1)√
3

,
16ϵr(1 − ϵr)

3

)
, for r = s, f;

N
(√

Nr(2ϵr − 1), 4ϵr(1 − ϵr)
)
, for r = g, u, h. (8)

by Central Limit Theorem, where ϵr refers to conditional marker
IBD probabilities of relative relationship found in Table 5.

Since all the IBD perturbations are monotonic based on the
parameters chosen, the proportion tests are one-sided: Wr>Zα

for doubly affected relative pairs andWr< −Zα for relative pairs
with QTL. The required sample size Nr for this test to have the
power of 1−β is (14):

Nr =

(
±

√
3Zα − 4Z1−β

√
ϵr(1 − ϵr)

4ϵr − 1

)2

, for r = s, f;

Nr =

(
±Zα − 2Z1−β

√
ϵr(1 − ϵr)

2ϵr − 1

)2

, for r = g, u, h.

(9)

As previously noted, I take the parameters of KP = 0.1 and
VA = 0.01 for doubly affected relative pair with the dichotomous
trait, and consider the level α= 0.05 proportion test with 90%

power to detect the linkage for various relative types. Figure 1A
shows that the required sample size N plotted as a function of
recombination fraction θ. The power is calculated for a sample
of N = 300 relative pairs (Figure 1B). The power of test for sib
pair (solid line) is uniformly larger than that of first cousin (dotted
dash), which is explained by larger marker IBD perturbation of
sib pairs. However, grandparent–grandchild has the best power
among all five relative relationships, when θ > 0.217 (Figure 1B).
The increasing test power of grandparent–grandchild relative pair
is due to the less decrease in perturbation when θ is large. The
grandparent–grandchild relative pair dominates the test power
among other relative relationships whenever θ ≥ 1

4 , which is con-
sistentwith the results of Risch (4). For extreme discordant relative
pairswithQTL, the results are similar to the case of doubly affected
relative pairs with the dichotomous trait (see Figures 1C,D).

3.2. LOD Score Test
Following previous notation, the kernel of the likelihood of Nj
(j= 2 for sib pair, j= 1 for other relatives) is the following:(

Nj

N

)Nj
(
N − Nj

N

)N−Nj

. (10)

Note that the parameter of interest is not the recombination
fraction θ any more, but Nj, the count of relative pairs sharing j
allele(s) IBD. With ϵ̂ = Nj

N denoting the ML estimates for ϵ as
it varies in the parameter space, then the LOD score T for the
likelihood ratio test based on equation (10) is given by

T = 2 lg
ϵ̂Nϵ̂(1 − ϵ̂)N(1−ϵ̂)

ϵ0Nϵ̂(1 − ϵ0)N(1−ϵ̂) , (11)

where ϵ0 is the conditional marker IBD probabilities under null
hypothesis. Thus, the likelihood ratio test statistic T asymptoti-
cally distributed as χ2 with 1 d.f. Defining equation (11) as T(Nj,
N), and assuming level-α test with 1−β power, I obtain {Nj, N}
for each relative relationship as the critical size of relative pairs
sharing allele IBD and total required sample size, respectively.
One can check easily that T is an increasing function of Nj when
Ns are fixed. In other words, for an each N, I reject the null
hypothesis if the counts of allele IBD are greater than Nj. Usually,
the LOD score test use more strict criterion than the proportion
test does. Here, the total required sample sizeN of the 90% power,
level α= 0.001 LOD score test power is plotted as a function of
the recombination fraction θ for both doubly affected relative
pairs with the dichotomous trait and extreme discordant relative
pairs with QTL (Figures 2A,C). In many respects, they behave
similarly such that sib pairs have larger power for low θ, while
grandparent–grandchild pairs have the best power for high θ
(Figures 2B,D). In general, both critical allele IBD sharing size Nj
and total relative pair size N are increasing as θ gets closer to 0.5
or as the power of the test increases.

3.3. Mean Test
Since N interested sib pair can share either two or one allele(s)
IBD, I weight N1 with 1

2 , and define Ts−m = N2 + 1
2N1, the Wald

test statistics is:

Ws−m =

√
2
N (2Ts−m − N). (12)
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FIGURE 1 | The proportion test power for doubly affected relative pairs with the dichotomous trait and extreme discordant relative pairs with QTL.
Required sample size N of level α=0.05 proportion test with 90% power to detect linkage θ for doubly affected relative pairs (A) and extreme discordant relative
pairs with QTL (C). Power to detect linkage θ of level α= 0.05 proportion test by using N= 300 doubly affected relative pairs (B) and N= 300 extreme discordant
relative pairs with QTL (D).

Under the alternative hypothesis of θ < 1
2 , Ws−m is approxi-

mately normally distributed with

Ws−m ∼ N
(√

Ns−m(2ϵ2 + ϵ1 − 1), 8ϵ2(1 − ϵ2)

+ 2ϵ1(1 − ϵ1) − 8ϵ2ϵ1
)
. (13)

byCentral Limit Theorem, where ϵ2 and ϵ1 are conditionalmarker
IBD probabilities for sib pair sharing two or one allele(s) IBD,
respectively. For sib pair, one expects the increased allele sharing
under the alternative hypothesis, the level-α one-sided mean test
is:Ws–m>Zα for doubly affected sib pairs with the dichotomous
trait andWs–m< −Zα for extreme discordant sib pairs withQTL.
Following similar procedure as the proportion test, I obtain the
required sib pair sample sizeNs–m for level-αmean test with power
1−β (14):

Ns−m

=

(
±Zα −

√
2Z1−β

√
4ϵ2(1 − ϵ2) + ϵ1(1 − ϵ1) − 4ϵ2ϵ1√
2(2ϵ2 + ϵ1 − 1)

)2

.

(14)

Figure 3A compares the required total sample sizeN of doubly
affected sib pair with the dichotomous trait for all three test at

α level of 0.05with 90%power: the proportion test (solid line), the
mean test (dotted line), and the LOD score test (medium dash).
The mean test for sib pair requires the least sample size than
other two. For example, the required sample sizes are {157, 128,
176} for the proportion, mean and LOD score tests, respectively,
when θ= 0.1. Here, the mean test demonstrates the largest test
power among all three tests (Figure 3B). The results are similar
for extreme discordant sib pairs (figures not shown).

3.4. Simulation Study
In this section, I perform the Monte-Carlo simulation pro-
cedures to evaluate the power of three statistical tests. The
pedigree data consists of 300 replicates of 5 nuclear families.
Within each nuclear family, there are two affected individuals
with the dichotomous trait representing relative relationship of
sibs, grandparent–grandchild, uncle–nephew, half sibs, and first
cousin. Since the simulation programs use the parameters set
{p, f 1, f 2, f 3}, I take only one reasonable solution set for {KP,
VA, VD}= {0.1, 0.01, 0.01}, where p= 0.7887 is the gene fre-
quency of the normal allele, f 1 = 0.05359, f 2 = 0.1 are the first
two penetrance frequencies of homozygous individual of normal
alleles, and heterozygous individual, f 3 = 0.7464 is the penetrance
frequency of homozygous individual carrying recessive disease
alleles. Total 100,000 data set were generated under different
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FIGURE 2 | The LOD test power for doubly affected relative pairs with the dichotomous trait and extreme discordant relative pairs with QTL. Required
sample size N of level α= 0.001 LOD score test with 90% power to detect linkage θ for doubly affected relative pairs (A) and extreme discordant relative pairs with
QTL (C). Power to detect linkage θ of level α=0.001 LOD score test by using N= 300 doubly affected relative pairs (B) and N= 300 extreme discordant relative
pairs with QTL (D).

FIGURE 3 | The power comparison of the proportion test, the LOD test and the mean test for doubly affected Sib Pairs with the dichotomous trait.
(A) Required sample size N of 3 different test statistics at level α= 0.05 with 90% power to detect linkage θ. For doubly affected sib pairs. (B) Power to detect
linkage θ of 3 test statistics at level α= 0.05 by using N= 300 doubly affected sib pairs.

hypothesis of θ. The test power was then evaluated at putative
α level of 0.05 for the proportion and mean test statistics, and
α level of 0.001 for the LOD score test statistic. The simulated
empirical powers are consistent with the theoretical calculations
for all relative relationships, which serve as a validation of the test
statistics, and result of sib pair is shown in Figure 4.

4. DISCUSSION

I have demonstrated the Pr(IBDM|X) perturbation is closely
related to the power to linkage tests. When VA = 0, the non-
zero perturbation of full sib pair is due to the VD term. How-
ever, there are no VD term in the perturbations of other relative
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FIGURE 4 | The comparison between the simulated and theoretical
test powers of Sib Pairs. The simulated/calculated powers for proportion
test (solid line/circle), the mean test (dotted line/triangle), and the LOD score
test (medium dash/square) are plotted as a function of recombination fraction
θ for sib pairs.

relationships, i.e., the perturbations are always zero, whenever
VA hits zero for relative relationship, grandparent–grandchild,
uncle–nephew, half sibs, and first cousin. Among all the relative
relationships, only the perturbation of grandparent–grandchild
shows linear dependence upon the recombination fraction, θ,
while the remaining perturbations are higher order polynomial
functions of θ. One also notices that the condition of θ= 0 and
VA = 27

128 yields the maximal perturbations for all relative rela-
tionships: 0.2394 for full sibs, 0.5438 for first cousin, and equal
maximal perturbation of 0.4203 for grandparent–grandchild,
uncle–nephew and half sibs. Thus, for the relative relationships,
grandparent–grandchild, uncle–nephew, and half sibs, the tests
start with equal sample size, N = 211 at θ= 0 (in Figure 1A) and
N = 298 at θ= 0 (in Figure 2A). This conclusion also holds for
extreme discordant relative pair with QTL.

There exist programs that could evaluate the type I error rate of
the three statistical tests under the null hypothesis of no linkage.
The marker genotypes of each relative pair are independently
generated by either SLINK or SIMULATE programs. The SLINK
program randomly predicts the marker genotypes by calculating
their conditional probabilities given the disease phenotypes (23,
24), while the SIMULATE program simulates pedigree data by
using a crossover formation (CF) process to generate the counts of
crossovers and their locations along a chromosome (25). Once the
pedigree files have been created by either SLINK or SIMULATE
program, test statistics are calculated through exact counts of
relative pairs sharing allele(s) IBD. The empirical type I error
rates generated by both programs are consistent with the nom-
inal α levels (results not shown). However, neither SLINK nor
SIMULATE could track allele segregation unambiguously under

the alternative hypothesis. Therefore, I constructed Monte-Carlo
simulation directly from Table 5, so that the tests’ power could be
evaluated under both null and alternative hypotheses.

Because the counting statistic relies on the number of alleles
shared IBD in affected relative pairs to detect linkage, informa-
tiveness of the marker IBD determines the accuracy of linkage
analysis. A marker is highly informative for linkage studies, if
any individual chosen at random is likely to be heterozygous
for that marker. Nonetheless, in almost all applications, the bial-
lelic IBD value can not be determined unambiguously, but has
to be estimated. Previous work has been shown that increased
information of allele shared IBD of sib pair can be achieved by
analyzing two or more linkedmarker loci simultaneously (26, 27).
In order to recapture the lost information, Kruglyak et al. and
Kong and Cox have performed weighting schemes to take account
of all pedigree information (28, 29). Buckman and Li combined
both alleles identical by descent (IBS) and IBDmissing at random
(MAR) into the test statistic which has equal power as those in
Kong and Cox (30).

The allele-sharing methods, originally designed for application
of affected sib pair, are also referred as model-free (no assumption
of the distribution) linkage analysis and advantageous over tradi-
tional model based methods. Thus, this method does not require
specification of the disease model and could be readily applied to
either early- or late-onset disease. In practice, samples collected for
affected relative pair will likely contain three or more affected rel-
atives, such as siblings, grandparent–grandchild, uncle–nephew,
half sib, or first cousin. However, most commonly used methods,
restrict the linkage analysis to sib pair only. Thus, a large amount
of information contained in the data is discarded. The simple
way to achieve larger power is to include all available affected
individuals from each relative type. Since the possible selected
pairs are no longer independent, several weighting schemes were
applied to sib pair (18, 31). The most powerful weighting scheme
for various relative pairs are still need to be considered, perhaps
their theoretical sample size and power could be calculated.
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