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Genotoxicity and carcinogenicity testing of pharmaceuticals prior to commercialization is
requested by regulatory agencies. The bacterial mutagenicity test was considered hav-
ing the highest accuracy of carcinogenic prediction. However, some evidences suggest
that it always results in false-positive responses when the bacterial mutagenicity test
is used to predict carcinogenicity. Along with major changes made to the International
Committee on Harmonization guidance on genotoxicity testing [S2 (R1)], the old data
(especially the cytotgenetic data) may not meet current guidelines. This review provides
a compendium of retrievable results of genotoxicity and animal carcinogenicity of 136
antiparasitics. Neither genotoxicity nor carcinogenicity data is available for 84 (61.8%),
while 52 (38.2%) have been evaluated in at least one genotoxicity or carcinogenicity
study, and only 20 (14.7%) in both genotoxicity and carcinogenicity studies. Among
33 antiparasitics with at least one old result in in vitro genotoxicity, 15 (45.5%) are in
agreement with the current ICH S2 (R1) guidance for data acceptance. Compared with
other genotoxicity assays, the DNA lesions can significantly increase the accuracy of
prediction of carcinogenicity. Together, a combination of DNA lesion and bacterial tests
is @ more accurate way to predict carcinogenicity.

Keywords: genotoxicity, carcinogenicity, antiparasitics, risk evaluation, DNA lesions

INTRODUCTION

Antiparasitics are used widely throughout the world in humans and animals to kill or eliminate para-
sites in vivo and in vitro, and in public health to control diseases and prevent the spread of parasitism
from livestock to humans. According to the pharmacological effects and the target parasite species,
antiparasitics can be divided into three main groups: anthelmintics, antiprotozoal agents, and insec-
ticides. Chemically based treatment remains the most frequently chosen tool to control parasitism.
Unfortunately, the use of antiparasitics does not always result in the expected therapeutic success.
The toxic effects were found to be responsible for the therapeutic failure of drug treatment (1). In the
1970s of the last century, it was reported that the chemicals had the capacity to cause cancer in both
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animals and humans (2, 3). Genetic and carcinogenic damage was
found to have important health implications for the induction of
diseases, such as lung cancer (4), pancreatic cancer (5), bladder
cancer (6), leukemia (7-9), and non-Hodgkin’s lymphoma (10).
Therefore, the regulatory agencies of Europe, the USA and Japan
suggested that genotoxicity and carcinogenicity studies should
be conducted to learn the benefit/risk ratio before commercial
approval of pharmaceuticals.

It was recommended by the regulatory agencies that geno-
toxicity testing, which was considered to be a fundamental part
of the carcinogenic risk assessment, should be performed prior
to commercialization. It was forbidden to use compounds with
proven genotoxic properties on humans except in rare cases
with adequate justifications (11). According to the present
guidelines for genotoxicity testing of pharmaceuticals (12-15),
a standard test battery contains: (a) a test for gene mutations
in bacteria, (b) an in vitro test with cytogenetic evaluation of
chromosomal damage using mammalian cells or an in vitro
mouse lymphoma thymidine kinase* gene mutation assay, and
(c) an in vivo test for chromosomal damage using mammalian
hematopoietic cells. These assays were considered the best
approach for genotoxic hazard identification and potential
carcinogenic risk prediction. However, some limitations of
this standard test battery in detecting genotoxicity were found.
The current revised guidelines of the Veterinary International
Conference on Harmonization and ICH S2 (R1) suggested that
it can detect the genetic toxicity of most substances. However,
for some special chemicals such as antimicrobial, it was
required to supply the bacterial assay with a validated in vitro
test for gene mutation in mammalian cells to detect the genetic
toxicity (12, 15).

How can we identify and analyze positive genotoxicity
results, especially in vitro cytogenetics? Two main factors
including cytotoxicity and the highest testing concentration of
the tested chemicals have very important effects on the result of
genotoxicity. The Organization for Economic Cooperation and
Development (OECD) had changed over the years to find the
most suitable toxicity required at the highest concentration. In
the 1999 revision, it was recommended that at least 50% toxicity
should be induced. The ICH S2B suggested that in vitro geno-
toxicity tests should be conducted up to a top concentration of
10 mM in 1997 (16). In fact, when the dose level exceeds 100 puM,
the physiological biological reactions will be disorder and then
result in positive findings in in vitro genotoxicity tests. Moreover,
a study sponsored by the European Center for the Validation of
Alternative Methods indicated that the high testing dose should
be reduced because the false-positive results in in vitro genotoxic-
ity occurred at concentration levels from 1 to 10 mM. Recently,
the ICH updated the genotoxicity guidelines (Table 1) (11, 17).
It reduced the highest dose to 1 mM and supported the in vivo
genotoxicity assays.

Antiparasitics were used in the market for many years, and
for a large proportion of them, genotoxicity and carcinotoxicity
assays were performed prior to 1980, when the bioassays were
not concordant with the present guidelines. Thus, it is necessary
to re-evaluate the old data (especially the cytogenetic data) under
the current guidelines of ICH S2 (R1) (17).

TABLE 1 | Summary of the ICH (S2B) and ICH S2 (R1) proposed revision to S2.

ICH (S2B) ICH S2 (R1)

Bacterial mutation
(Ames) (positive)

Bacterial mutation (Ames) (negative)

Option 1 Option 2

In vitro mammalian cell test
[1 mM]

In vitro mammalian cell
test (10 mM)

No requirement

Chromosome aberrations
or TK gene mutation test or
micronucleus test

Chromosome aberrations
or TK gene mutation test

In vivo
cytogenetic assay

In vivo cytogenetic assay In vivo cytogenetic assay

Suggest to be integrated into acute toxicity assays
of 28 days

ICH, International Committee on Harmonization of Requirements for Registration
Pharmaceuticals for Human Use. It is a summary of the difference between the current
ICH (S2B) guideline for testing of pharmaceuticals and the revised guideline of ICH S2
(R1) (15, 18).

For pharmaceuticals, whose clinical use is continuous for at
least 6 months or intermittent in chronic recurrent conditions,
the long-term carcinogenicity studies in rats and mice using
lifetime treatment are required (19). This has remained the most
frequently chosen testing strategy since proposed by regulatory
authorities in 1970s. The objective of carcinogenicity studies is to
discover whether a drug has the ability to cause carcinogenicity in
animals and whether this tumorigenic potential poses a relevant
risk to humans (19, 20). To make an evaluation of carcinogenic
risks to humans, the International Agency for Research on Cancer
(IARC) in the 1-101 volumes of JARC monographs was published
in the years from 1972 to 2011 (21). It examined 940 drugs in
various groups: the carcinogenicity studies were sufficient for 107
drugs (11.4%), limited for 59 drugs (6.3%), and inadequate for
266 drugs (28.3%); and the remaining 508 drugs (54.0%) were not
classifiable in terms of their carcinogenicity to humans. However,
it included only 10 antiparasitics: 2 antiparasitics (Metronidazole
and Dichlorvos) were classified as possibly carcinogenic to humans
(Group 2B), and 8 antiparasitics (Chloroquine, Chlordimeform,
Danex, Deltamethrin, Fenvalerate, Malathion, Permethrin, and
Pyrimethamine) were considered non-classifiable in terms of
their carcinogenicity to humans (Group 3).

Based on the above mentioned, it is meaningful to verify the
extent of antiparasitics having the available results of genotoxic-
ity and carcinogenicity studies. It is also necessary to re-evaluate
in vitro genotoxicity results according to the present revised
guidance. Due to the bacterial mutagenicity test alone produced
misleading positive in predicting the carcinogens, we compared
the combinations of bacterial mutagenicity test and other geno-
toxicity assays (such as cytogeneticity in vivo and in vitro, DNA
lesions and mouse bone marrow micronucleus), aiming to work
out a novel strategy to predict carcinogenicity.

The 136 antiparasitics that are listed in both the human and-
veterinary pharmacopeia were authorized by China. Forty-three
and 107 antiparasitics were obtained from the human pharma-
copeia and veterinary pharmacopeia, respectively. Since some
parasites, including helminths, schistosome, and tapeworm,
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can infect both humans and animals, simultaneously, 14
antiparasitics (Albendazole, Amoscanate, Artesunate, Bithionol,
Diethylcarbamazine, Ivermectin, Levamisole, Piperazine,
Pyramine,  Praziquantel, = Mebendazole, = Metronidazole,
Niclosamide, and Semduramicin Soditium) can be used on both
humans and animals.

The methodology of the major carcinogenicity and
genotoxicity tests were summarized in Table 2. The collected
information of genotoxicity and/or carcinogenicity of antipara-
sitics was obtained primarily from peer-reviewed journals (e.g.,
Medline, Toxline, and the Registry of Toxic Effects of Chemical
Substances) (22), the US National Toxicology Program, the edi-
tion of Physician’s Desk Reference (23-25), the Center for Drug
Evaluation and Research of the Food and Drug Administration
and some relevant websites, such as http://www.updata.usa.com,
http://www.osha.gov, http://www.toxnet.nlm.nih.gov,  http://
www.ntp.server.niehs.nih.gov, http://www.potency.berkeley.edu,
http://www.fda.gov/cder, http://www.scirus.com, and http://
www.inchem.org. For some antiparasitics, the genotoxicity and
carcinogenicity data are incomplete in terms of the absence of
the dose, the indication of an exogenous metabolic system in
the genotoxicity assays, and the sex in carcinogenicity assays. In
such cases, we presented our data in tables as obtained in these
experimental conditions except for special markings. Moreover,
regarding the present guidelines, the equivocal results that we
found in extensive research were marked as positive in this
review.

RESULTS

Genotoxicity and Carcinogenicity
of Antiparatics

For the present analyses, an antiparasitic was regarded as geno-
toxic when it produced positive or equivocal results in at least one
of the standard battery tests, and as a rodent carcinogen when
it increased tumor incidence. Table 3 covers the information
available on genotoxicity and carcinogenicity findings for each
tested antiparasitic. The following genotoxicity assays were used:
Ames (bacterial mutagenesis), sex-linked recessive lethal, in vitro
cytogenetics (chromosome aberrations), in vivo cytogenetics
[chromosome aberrations, micronucleus and sister chromatid
exchange (SCE)], unscheduled DNA synthesis in vitro (UDS),
MLA (mouselymphoma L5178Y TK* assay), and other types of
genotoxicity studies, including DNA fragmentation, mammalian
mutagenesis HGPRT, SCE in vitro, DNA strand break analysis
in vitro, and the micronucleus assay in vitro. The long-term car-
cinogenicity test was carried out in mice, rats, and other species.

Table 4 summarizes the total number of antiparasitics and
the following are included: the number of antiparasitics with at
least one genotoxicity or carcinogenicity test result and with data
required by the present guidelines; the number of antiparasitics
only tested for genotoxicity or carcinogenicity. It also presents
the antiparasitics with results in in vitro data required by present
guidelines; the number of antiparasitics that have at least one
result in long-term carcinogenesis assays in rats or mice; and

TABLE 2 | The methodology of the major carcinogenicity and genotoxicity tests.

Test system Materials

Principle of reference

Bacterial mutagenicity

The following fi-M Salmonella strains were used for the bacterial reverse
mutation assay: TA97a, TA98, TA100, TA102, and TA1535. All strains were
checked for maintenance of genetic markers prior to study

This test was performed by a plate incorporation procedure
as outlined by OECD No.471, 46 Redbook 2000 IV.C.1.a
(26), Redbook 2000: IV.C.1.a (27), and Chinese standard
guidelines (28)

Mouse lymphoma assay

The mouse lymphoma assay using the thymidine kinase (Tk) gene of

L5178Y Tk* —8.7.2C mouse lymphoma cell lines was found to be the closest
to the in vivo environment among the different in vitro mammalian and
bacterial gene-mutation testings

The MLA was performed according to FDA toxicological
principles for the safety assessment of food ingredients
and OECD guidelines for the testing of chemicals. IV.C.1.c
Mouse Lymphoma Thymidine Kinase Gene Mutation Assay
(29) and Test Guideline 490: In Vitro Mammalian Cell Gene
Mutation Tests Using the Thymidine Kinase Gene (30)

Chromosomal aberration
assay

The potential of tested compound to induce structural and numerical
chromosome aberrations was evaluated in Chinese hamster lung
fibroblast cells (V79)

Chromosomal aberration assay in vitro according to OECD
No.473 (31), Redbook 2000 IV.C.1.b In Vitro Mammalian
Chromosomal Aberration Test (32)

Bone marrow erythrocyte
micronucleus assay

For each treated animal, at least 1,000 polychromatic erythrocytes

(PCE) were counted to determine the micronucleus frequencies and record
the micronucleus occurrence rate per one thousand PCE, and the proportion
of PCE to normochromatic erythrocytes (NCE) was evaluated by counting

a total of 1,000 erythrocytes

This assay was conducted in accordance with OECD
Guideline No.474 (33) and Redbook 2000 IV.C.1.d.
Mammalian Erythrocyte Micronucleus Test (27)

HGPRT mutation test

Mutations were expressed during a period of 6-7 days, including
two subculturing steps. Subsequently, mutant frequencies (mutants/106 cells)
and cloning efficiencies were scored

This assay was carried out following standard test
procedures (34)

Unscheduled DNA
synthesis assay

Prior to drug treatments, peripheral blood lymphocytes were isolated
from healthy individuals. The radioactivity was determined by Beckman
L.s3801 liquid scintillation spectrometry

This assay was performed according to the OECD
guideline number 482 (26, 34)

Long-term carcinogenesis
assay in rodent

The animal were randomly assigned to four groups based on their body
weights, and each group of animal were fed the basal diet mixed with tested
compound for a total period of 78 weeks (mice) and 104 weeks (rat)

Long-term carcinogenesis assay was conducted according
to the guidelines of Ref. (35, 36)
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TABLE 3 | Genotoxic and carcinogenicity effects of antiparasitics.

Test system Dose or concentration Result Reference
(LED or HID)

1. Acriflavine (8048-52-0)

Salmonella typhimurium (none), TA1537, TA1538, TA98 50 pg/plate - 37)

Salmonella typhimurium (rat, liver, S-9, aroclor1254), TA1537, TA1538, TA98 50 pg/plate + 37)

Gene mutation, Aspergillus nidulans + (38)

Chinese hamster ovary (CHO), CHO-K1-BH4 (HGPRT) 0.5-4 pg/!l + (39)

Chromosome aberrations in vivo, Mammalian or early embryo - (40)

Forward and reverse gene mutation, host-mediated assay, Salmonella typhimurium# - (41)

Sex-linked recessive lethals and sex-chromosome loss + (42)

Micronucleus test in vivo and in vitro, chromosome aberrations, mammalian + (43)

polychromatic erythrocytes, mammalian cell culture, non-human

Mitotic recombination or gene conversion, Saccharomyces cerevisiae NC (44)

Sperm morphology, mouse + (45, 46)

2. Albendazole (54965-21-8)

Bacterial mutation (Ames) - 47)

SCE and micronucleus (MN) on human lymphocytes in vivo 15 mg/kg p.o. in diet for + (48)
28 days

Micronuclei in cultured peripheral blood lymphocytes in vitro and in cultured human lymphocytes 10-100 pg/ml + (49)

Cytogenetics in vitro and in vivo - 47)

Micronucleus assay with CHO-K1 cells in vitro + (50)

Long-term carcinogenesis assay, mice 400 mg/kg/day - (24)

Long-term carcinogenesis assay, rats 20 mg/kg/day - (24)

3. Amitraz (33089-61-1)

Salmonella typhimurium, TA98, TA100, TA97, TA102 0-200 pg/plate - (51)

Genotoxic in the vibrio test 10-% to 107° pg/plate - (52)

DNA damage on hamster cells in vitro, comet assay 3.75 pg/l + (53)

Long-term carcinogenesis assay. rat (oral) 0, 15, 50, 200 mg/! in feed - (54)
for 104 weeks

Long-term carcinogenesis assay. mouse (oral) - (54)

4. Amodiaquine (86-42-0)

Salmonella typhimurium, TA100, reverse mutation 0.1-5,000 pg/plate - (55)

Salmonella typhimurium, TA97A, TA102, TA104 0.1-1,000 pg/plate - (56)

Salmonella typhimurium, TA100 (rat, liver S-9, Phenobarbital), reverse mutation 0.1-5,000 pg/plate - (56)

Salmonella typhimurium, TA97A, TA102, TA104 (rat, liver S-9, Phenobarbital), reverse mutation 0.1-1,000 pg/plate - (56)

5. Amoscanate (26328-53-0)

Salmonella typhimurium, TA1537, TA1535, TA100, TA1538, TA98, reverse mutation 0.1-1,000 pg/plate -

Salmonella typhimurium, TA1537, TA1535, TA100, TA1538, TA98 (rat, liver S-9, aroclor 0.1-1,000 pg/plate -

1254 or Phenobarbital), reverse mutation

Salmonella typhimurium, TA100 (rat, liver S-9, aroclor 1254 or Phenobarbital), reverse mutation 20-160 nmol/plate - (57)

6. Amphotericin B (1397-89-3)

Bacterial mutation (Ames) - 47)

Chromosome aberrations, peripheral blood lymphocytes - (58)

Cytogenetics in vitro and in vivo - 47)

MLA - 47)

7. Atovaquone (95233-18-4)

Bacterial mutation (Ames) - 47)

Cytogenetics in vitro and in vivo - 47)

MLA - 47)

Long-term carcinogenesis assay, mice (liver tumors) human AUC x 5 + (24)

Long-term carcinogenesis assay, rats NR - (24)

8. Bithionol (97-18-7)

Salmonella typhimurium (none), TA98, TA100, TA97, TA102, TA100, TA1535, TA1537, TA97 0.1-1,000 pg/plate - (59)
0.1-6.6 pg/plate - (60)

Salmonella typhimurium (rat, liver, S-9, kanechlor 400) TA98, TA100, TA97, TA102 0.1-1,000 pg/plate - (59)

Salmonella typhimurium (Hamster, liver, S-9, Aroclor 1254) TA100, TA1535, TA97, TA98 1-200 pg/plate - (60)

Micronucleus test in vivo, chromosome aberrations, mammalian polychromatic erythrocytes - 61)

9. Bromofenofos (21466-07-9)

Salmonella typhimurium (rat, liver, S-9, kanechlor 400), TA100, TA98, TA1535, TA1537, TA1538; 0.005-0.5 mg/plate - 61)

Salmonella typhimurium (none), TA100, TA98, TA1535, TA1537, TA1538

Micronucleus test in vivo, chromosome aberrations, mammalian polychromatic erythrocytes (mouse) - 61)

(Continued)
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TABLE 3 | Continued

Test system Dose or concentration Result Reference
(LED or HID)
10. Chlordimeform (6164-98-3)
Salmonella typhimurium, TA1535, TA1537, TA98, TA100 1-7,500 pg/plate - (62)
Salmonella typhimurium, TA98, TA100, TA1535, TA1537, TA1538 1-2,000 pg/plate - (63)
64)
Recombination assay, Bacillus subtilis (H17 vs. M45) - (65)
63)
E. coli polA (WP; uvra), recombination assay, DNA effects (bacterial DNA repair) 10-5 g/ml - (65)
E. coli 1-7,500 pg/plate - (62)
UDS in vitro, DNA effects (Human diploid fibroblasts FL cell) 1078 to 10-° g/ml - (66)
+ (66)
Chromosomal aberrations in vitro and in vivo human peripheral lymphocytes MTD - 67)
Chromosomal aberrations in vivo, Chinese hamster cells (CHO), Voles living donor bone marrow cells MTD - (68)
SCE, bone marrow cells in mice, Voles living donor bone marrow cells, Voles fibroblasts 10 mg/kg + 67)
80 mg/kg + (63)
Micronucleus test, mice bone marrow cells in vivo, peripheral lymphocytes 77 mg/kg (69)
Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)
Neoplasms + (70)
Carcinogenicity studies in mouse and rat + (71)
Chromosomal aberrations, mouse bone marrow cells in vivo 100 mg/kg + (55)
11. Chloroquine (54-05-7)
Salmonella typhimurium, TA97, TA1537, reverse mutation 250 pg/plate + (72, 73)
200 pg/!
Salmonella typhimurium, TA1977, TA1535, TA1537, TA1538, reverse mutation 600 pg/! - (74, 75)
10 000 pg/plate
Salmonella typhimurium, TA98, TA100, reverse mutation 0-10,000 pg/plate + (56, 73)
Salmonella typhimurium, TA98, TA100, TA1537, TA1538, reverse mutation 5,000 pg/plate NC (73, 76)
Salmonella typhimurium, TA97A, TA1537, reverse mutation 5,000 pg/plate - (73, 77)
Salmonella typhimurium, TA98, TA100, TA97A, TA100, reverse mutation 50 pg/plate - (73, 78)
10,000 pg/plate
Salmonella typhimurium, TA102, TA104, reverse mutation 5,000 pg/plate - (56, 73)
E. coli WP2 uvra, reverse mutation 5,000 pg/plate NT (72, 73)
E. coli, reverse mutation 300 pg/plate + (78)
Salmonella typhimurium, TA97A, TA100, reverse mutation 20-50 pg/plate + (78)
Salmonella typhimurium, TA97A, TA100 (rat, liver S-9, phenobarbital); Salmonella typhimurium, TA102, 0.1-10,000 pg/plate - (79)
TA104; Salmonella typhimurium, TA102, TA104 (rat, liver S-9, phenobarbital), reverse mutation
E. coli polA (W3119 vs. P3478) Rec-assay, DNA effects (bacterial DNA repair) 0.1-10,000 pg/plate + (55)
Chromosome aberrations, mammalian cell culture, non-human, micronucleus test in vitro + (43)
SCE, mouse bone marrow cells in vivo 12.5 mg/kg + (78)
Chromosomal aberrations, mouse bone marrow cells in vivo 100 mg/kg + (55)
12. Closantel (57808-65-8)
Chromosomal aberrations in vivo, bone marrow cells 0, 5,10, 15, 20 mg/kg + (80)
13. Coumaphos (56-72-4)
Salmonella typhimurium (none), TA98, TA1535, TA1537, TA1538, TA100, TA100, TA98 3.3-3338.3, 3.3-10,000, - (81)
0.3-333.3 pg/plate
Salmonella typhimurium (rat, liver, S-9, aroclor 1254), TA98, TA1535, TA1537, TA1538, TA100, TA100, 3.3-3333.3, 3.3-10,000, - (81)
TA98 0.3-333.3 pg/plate
Salmonella typhimurium (none), TA98, TA100, TA1535, TA1537, TA1538 667, 1.000, 3.333, 6.667, - (82)
10,000 pg/plate
E. coli WP2 uvra, (none); E. coli WP2 uvra (rat, liver, S-9, aroclor 1254) 3.3-10,000, 0.3-333.3 ug/ - (81)
plate
E. coli, mouse, liver, S-9; E. coli, hamster liver, S-9, aroclor 1254 3.3-10,000, 0.3-333.3 ug/ - (81)
plate
Chromosomal aberrations in vitro, CHO cells (rat, liver, S-9, aroclor 1254) 100, 300, 1,000 pg/! - (83)
Chromosomal aberrations in vitro, CHO cells (none) 99.5, 299, 995 g/l - (83)
Micronucleus in vivo, polychromatic erythrocytes 480 mg/kg of coumaphos at + (82)
98.0% purity
Carcinogenicity studies, rats 0 (1% peanut ail), 1, 5, - (82)
25 mg/l in diet for 24 months
Carcinogenicity studies, mouse 0, 10, 20 mg/I in diet - (84, 85)
Carcinogenicity studies, rats 0, 10, 20 mg/l in diet - (84, 85)
(Continued)
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TABLE 3 | Continued

Test system Dose or concentration Result Reference
(LED or HID)

14. Cyfluthrin (68359-37-5)

Salmonella typhimurium, TA98, TA100 (none); TA98, TA100 (rat liver S9), reverse mutation 1,000-5,000 pg/plate - (86)

Gene mutation, Ames/micronucleus test in cultured human peripheral blood lymphocytes - (86)

Chromosomal aberrations in cultured human peripheral blood lymphocytes; chromosomal aberrations 1,000, 2,000 mg/ml + (86)

in vivo 250, 500, 1,000 mg/kg b.w.

SCE, in cultured human peripheral blood lymphocytes 500, 1,000, 2,000 mg/ml - (86)

SCE in blood lymphocytes 500, 1,000, 2,000 pg/l

Micronucleus (MN) formation in cultured human peripheral blood lymphocytes 500, 1,000, 2,000 mg/ml + (86)

DNA damage on the epithelial cells of human nasal mucosa 0.05, 0.1, 0.5, 0.75, + 87)
1.0 mg/ml

DNA damage and comet assay in fish species 5.6 mg/| beta-cyfluthrin for + (88)
48 h

Chromosomal aberrations in vitro 500, 1,000, 2,000 pg/l - (86)

Mouse bone marrow cells in vitro 1,000 pg/l + (86)

15. Cypermethrin (52315-07-8)

Salmonella typhimurium, TA98, TA100, TA1535 - (89)

Micronuclei formation in bone marrow cells in rats; DNA damage in blood cells in rats 25 mg/kg b.w. p.o. for + (90)
28 days

Micronucleus test in mice in vivo NC 91)

Chromosomal aberrations (CAs) on human peripheral lymphocytes; SCE on human peripheral 125+ 25,156 +5, + 92)

lymphocytes 17.5+7.5,20 + 10 mg/ml

Micronucleus (MN) tests on human peripheral lymphocytes 125+ 25,15 +5, + 92)
17.5 + 7.5 mg/ml

Excision-repairable DNA damage in ICR mouse hepatocytes - 93)

DNA strand breakage and DNA hypomethylation in ICR mouse hepatocytes + (93)

Chromosomal aberrations on human peripheral lymphocytes 5,10, 15, 20 mg/ml + (94)

SCE on human peripheral lymphocytes

Micronucleus (MN) tests on human peripheral lymphocytes 5,10 mg/ml + 94)

Chromosomal aberration (CA) in highly mitotic kidney cells; micronucleus (MN) tests in erythrocytes 0.4, 0.8, 1.2 pg/l for 48 and + (95)

of a freshwater fish 72h

DNA damage in vital organs in mouse 12.5, 25, 50, 100, 200 mg/ + (96)
kg b.w.

DNA damage using alkaline comet assay 25, 50, 75 mg/kg b.w. for + 97)

Transplacentally genotoxic 6-15 days

Peripheral blood for MN test 20, 30, 40, 50 mg/| + (98)

Excision repairable DNA lesions - (99

Long-term carcinogenesis assay, rat 75, 1,500 mg/kg b.w. - (100)

Long-term carcinogenesis assay, mouse 240, 1,600 mg/kg b.w. - (100)

16. Danex (52-68-6)

E. coli, WP2 (rat, liver S-9, aroclor 1254) 500-10,000 pg/plate + (101)

E. coli, WP2 UVRA (rat, liver S-9, aroclor 1254)

UDS Human fibroblasis (66)

Salmonella typhimurium, TA100, reverse mutation 1-5,000 pg/plate + (101)

Salmonella typhimurium, TA1535, TA1535 (rat, liver S-9, aroclor 1254), reverse mutation 1.25-5,000 pg/ml - (102)

Salmonella typhimurium, TA104, TA100 (rat, liver S-9, aroclor 1254), reverse mutation 5-25 mg/plate +

Salmonella typhimurium, TA104, TA100, TA1535, TA97, reverse mutation 1-25 mg/plate + (102)

Salmonella typhimurium, TA1535, TA97 (rat, liver S-9, aroclor 1254), Salmonella typhimurium, - 102)

TA100, TA98, TA104

Salmonella typhimurium, TA100, TA98, TA97; Salmonella typhimurium, TA100, TA98, 0.1-25 mg/plate (102)

TA104 (rat, liver S-9, aroclor 1254)

Salmonella typhimurium, TA100, TA98, TA97, TA1535, TA1537 (rat, liver S-9, aroclor 1254), reverse 500-5,000 pg/plate - (102)

mutation

Salmonella typhimurium, TA1535, TA1537, reverse mutation 100-10,000 pg/plate - (102)

Salmonella typhimurium, TA98, TA100, reverse mutation 33-10,000 pg/plate - (103)

Chromosomal aberrations, V79 0.4-4,000 mmol - (104)
0.04-0.8 mmol +

Micronucleus in vivo, mouse 100 or 200 mg/kg + (105)
3.13, 6.25, 12.5, 25 mg/kg (106)

UDS human cells - (103)

17. Deltamethrin (52918-63-5)

Salmonella typhimurium, TA98, TA100, TA1535, TA1537, and TA1538 - (70)

Salmonella typhimurium, TA98, TA100 20-600 pg/plate - (107)
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Salmonella typhimurium, TA98, TA100, TA1535, TA1537, TA1538 0-5,000 pg/plate - (108)

Chromosomal aberrations, CHO cells in vitro 0,19, 38, 75, 150 pg/l + (108)

Micronucleus test, mice bone marrow cells in vivo 8.0-90.0 mg/kg + (109)

V79/6-thioguanine, Chinese hamater V79 4-40 pg/l - (107)

Carcinogenesis assay. mouse (dermal) 0, 1, 2,4 mg/kg b.w. for - (110)
32 weeks

Long-term carcinogenesis assay. Rat (intragastric) 0, 3, 6 mg/kg for 120 weeks - (111)

Long-term carcinogenesis assay. Rat (oral) 0, 25, 125, 500, 800 mg/! in - (108)
feed for 2 years

Long-term carcinogenesis assay. Mouse (oral) 0, 10, 100, 1,000, 2,000 mg/I - (108)
in feed for 97 weeks

Long-term carcinogenesis assay. Mouse (intragastric) 0, 1, 4, 8 mg/kg in diet for - (111)
120 weeks

18. Diaveridine (5355-16-8)

Bacterial umu test, S. typhimurium, TA1535 0.1,0.3,1.0, 3.0 pg/! - (11

Salmonella typhimurium, TA100, TA98, TA97, TA102 0.5,1.0,25, 5.0, - (11
10, 25 pg/plate

E. coli, WP2 uvra/pkm101 0.5, 1.0, 2.5, 5.0, 10, 25 pg/ - (112)
plate

Chromosome aberration in cultured Chinese hamster CHL cells 12.5, 25, 50, 100 pg/! + (11

Micronucleus test in rodent bone marrow, mice and rats 500, 1,000, 1,500, - (11
2,000 mg/kg b.w.

Comet assay in five mouse organs in vivo 1,000, 1,500, + (112
2,000 mg/kg b.w.

Salmonella typhimurium, TA98 (rat, liver, S9) - (113)

Salmonella typhimurium, TA98 (Hamster, liver, S9), TA100 (rat, liver, S9) reverse mutation - (113)

Salmonella typhimurium, TA100 (Hamster, liver, S9) + (113)

Salmonella typhimurium, TA97, TA98, TA100, TA102 (rat, liver, S9) reverse mutation 0.1-3.0 pg/l - (112)

Salmonella typhimurium, TA1535, TA1535 (rat, liver, S9) 10 pg/! - (112)

Chromosomal aberrations 100 pg/1,48 h + (112)

Mouse bone marrow cells in vivo, rat - (112)

Comet assay (liver, kidney, lung, spleen) + (112)

Comet assay (bone marrow) - (112)

19. Diazinon (333-41-5)

Salmonella typhimurium, TA1535, TA1536, TA1537, TA1538 carcinogenicity studies in vivo (114)

Salmonella typhimurium (TA98, TA100, TA1535, TA1537, and TA1538), reverse mutation - (115, 116)

Salmonella typhimurium, TA98, TA97, TA102, TA1535, TA1537, TA100 reverse mutation 20-80 mg/I, - (117, 60)
100-10,000 pg/plate

E. coli WP2 uvra, tryptophan reverse gene mutation - (101)

E. coli (rat, liver S-9, aroclor 1254), mouse, Hamster 0.3-333.3, 1-100, - (81)
10-10,000 pg/plate

MNs (micronuclei) in rat lymphocytes 150 mg/kg b.w. + (118)

SCE, non-human CHO cells in vitro + (119)

SCE, human Laz-007 B lymphoid cells in vitro + (120)

DNA effects (bacterial DNA repair), Bacillus subtilis (H17 vs. M45), recombination assay, NC (79)

DNA damage in human blood lymphocytes in vitro 750 pg/! + (121)

UDS in vitro, DNA effects human diploid fibroblasts - (66)

Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)

Long-term carcinogenesis assay. mice 0, 100, 200 mg/! in diet - (122, 123)

Long-term carcinogenesis assay. rats 0, 400, 800 mg/l in diet (84, 85)

20. Dichlorvos(DDVP) (62-73-7)

Salmonella typhimurium, TA100 500-1,000 pg/plate + (124)
100-6,666 pg/plate + (125)
0.5-500 pg/plate ++ (126)
100-5,000 pg/plate + (60)
100-1,000 pg/plate + (127)

Salmonella typhimurium, TA98 100-6,666 pg/plate + (125)
100-5,000 pg/plate + (60)

Salmonella typhimurium (TA98, TA100, TA1535, TA1537, TA1538), histidine reverse gene mutation + (115, 116)

Salmonella typhimurium, forward and reverse gene mutation, mitotic recombination and gene - (128)

conversion, DNA effects, host-mediated assay

(Continued)

Frontiers in Public Health | www.frontiersin.org 7

November 2017 | Volume 5 | Article 288


http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive

Liu et al.

A Novel Strategy to Predict Carcinogenicity

TABLE 3 | Continued

Test system Dose or concentration Result Reference
(LED or HID)

SCE in vitro, human lymphocytes - (129)

SCE in vitro, non-human With dose response + (130)

SCE in vitro, human, human lymphocytes NC

E. coli (rat, liver S-9, aroclor 1254) 22.6 pg/l + (101, 131)

E. coli polA (W3119 vs. P3478), Recombination assay, DNA effects (bacterial DNA repair) + (79)

E. coli WP2 uvra, tryptophan reverse gene mutation + (101)

E. coli 5 mg/ml + (132)

+ (101)
+ (133)

Chromosome aberrations, mammalian polychromatic erythrocytes NC (134)

Chromosomal aberrations in vitro, CHO cells 16, 50, 100, 160 pg/! + (135)
50, 160, 500, 1,600 pg/l +
500, 750, 1,000 pg/I +

Chromosome aberrations, Allium cepa With dose response + (136)

Chromosome aberrations, non-human bone marrow in vivo - (40)

Chromosome aberration, mammalian germ cells in vivo - (137)

Chinese hamster V79 1.25-5 pg/l - (104)

CHO, CHO-k1-bh4 (HGPRT)/6-thioguanine 50-150 pg/l + (138)

Mitotic recombination or gene conversion, Saccharomyces cerevisiae + (44)

Mouse lymphoma, L5178Y (TK+/TK-) 0-0.33 pg/l, 0-0.12 pg/l, + (130)
0-0.24 pg/ml

Micronucleus in vivo, erythrocytes - (130)

Mouse lymphoma, L5178Y (TK+/TK-) 6.25-200 pg/!l + (125)

UDS human cells 6.5-650 mg/ml + (104)

UDS rat hepatocytes 0.005-1.25 mg/ml - (131)

UDS mouse forestomach epithelium 1-100 mg/kg - (139)

Sex-linked recessive lethal gene mutation, Drosophila melanogaster - (140)

Sperm morphology, mouse NC (45, 46)

Dominant lethal test, rodents With dose response NC (137)

Recombination assay, spot test, DNA effects, Bacillus subtilis (H17 vs. M45) + (79)

Carcinogenicity studies in vivo, non-human NC (141)

Carcinogenicity studies, mouse 0, 317, 635 mg/l in diet - (142)

Carcinogenicity studies, rat 0, 150, 318, 326, 635 mg/! - (142)
in diet

Long-term carcinogenesis assay. Rat 0, 4, 8 mg/kg in corn oil for + (125)
105 weeks

Long-term carcinogenesis assay. Mouse 0, 10, 20 mg/kg in corn oil for + (125)
105 weeks

Long-term carcinogenesis assay. Rat 0, 0.1 mg in 0.2 ml water for - (143)
111 weeks

Long-term carcinogenesis assay. Mouse 0, 10, 20 mg/kg in corn oil for + (144)
104 weeks

Long-term carcinogenesis assay. Rat 0, 4, 8 mg/kg in corn oil for + (125)
104 weeks

21. Dimetridazole (551-92-8)

Salmonella typhimurium, TA98, TA100, TA1535, TA1537, TA1538 + (145)

Salmonella typhimurium, TA100 + (146)

Salmonella typhimurium, TA97, TA98, TA100, TA102 50-200 pg/plate + (147)

Comet assay in human lymphocytes 354.3 mg/ml + (148)

22. Fenbendazole (43210-67-9)

Salmonella typhimurium (none), TA100, TA97, TA98, TA102 (rat, liver, S-9, aroclor 1254), 5-1,000 pg/plate - (149)

TA100, TA97, TA98, TA102.

Chromosomal damage in Chinese hamster lung (CHL) cells 0.78 mg/ml + (150)

Cytotoxicity to 10T1/2 cells 0.04-1.60 mg/ml + (150)

Morphological transformation in mouse embryo fibroblasts 0.08-0.4 mg/ml + (150)

23. Fenchlorphos (299-84-3)

SCE, human somatic cells in vitro + (120)

24. Fenthion (55-38-9)

Ames reverse gene mutation 0.1-20 pg/plate - (151)

Bacillus subtilis (H17 vs. M45) 20 ug/plate - (132)

E. coli polA (W3119 vs. P3478), recombination assay, DNA effects(bacterial DNA repair) NC (79)
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E. coli WP2 uvra, tryptophan reverse gene mutation - (101)
SCE, non-human V79 cells in vitro + (162)
SCE, human somatic cells in vitro NC (120)
Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)
Bacillus subtilis (H17 vs. M45), recombination assay, spot test, DNA effects (bacterial DNA repair) NC (79)
Drosophila melanogaster, sex-linked recessive lethal mutation NC (140)
UDS, human diploid fibroblasts in vitro - (66)
UDS, thymidine incorporation, rat hepatocytes 0,5.0,7.5,10.0, 15.0, + (1563)
30.0 pg/l
Chromosomal aberrations, CHO cells in vitro 0, 0.02, 0.04, 0.08, 0.15 pg/l - (153)
SCE in vivo and UDS in vitro + (154)
Chromosomal aberrations, human peripheral lymphocytes in vitro 0.5, 1.5, 2.5, 5.0 pg/ml + (151)
Long-term carcinogenesis assay. Mice 0,0.1, 1, 5, 25 mg/l in diet for (1568)
2 years
Long-term carcinogenesis assay. Rats 0, 5, 20, 100 mg/! in diet for - (153)
2 years
Long-term carcinogenesis assay. B6C3F1 male mice 10 mg/I in diet for 103 weeks + (155)
Long-term carcinogenesis assay. B6C3F1 female mice 10 mg/!l in diet for 103 weeks - (155)
Long-term carcinogenesis assay. F341 rat 200 mg/l'in diet for - (155)
103 weeks
25. Fenvalerate (51630-58-1)
Salmonella typhimurium, TA104 100-3,500 pg/plate - (156)
TA100 500-4,000 pg/plate -
TA97 100-4,000 pg/plate -
TA100 500-4,000 pg/plate -
TA98 100-3,000 pg/plate -
Micronuclei in bone marrow in mice in vivo 10, 20 mg/kg by i.p. + (157)
Peripheral blood for MN test 25, 50, 75, 100 mg/I + (98)
Chinese hamster V79 gene mutation 4-40 pg/l - (107)
Excision repairable DNA lesions - (99)
Chromosomal aberrations, Chinese hamster ovary (CHO-K1) in vitro 10, 25, 50, 100,150 pg/! + (158)
Long-term carcinogenesis assay. Rat (oral) 0, 1, 5, 25, 250 mg/l in diet (159)
for 2 years
Long-term carcinogenesis assay. Rat (oral) 1, 5, 25, 250, 1,000 mg/l in - (160)
diet for 2 years
Long-term carcinogenesis assay. Mouse (oral) 0, 10, 50, 250, 1,250 mg/l in - (161)
the diet for 2 years
Long-term carcinogenesis assay. Mouse (intragastric) 0, 40, 80 mg/kg in arachis oil (111)
for 120 weeks
26. Fipronil (120068-37-3)
Salmonella typhimurium, TA98, TA100, TA1535, TA1537 0-0.5 mg/plate of 90.6% + (162)
fipronil
Chromosomal aberrations, human lymphocytes in vitro 0, 4.69, 9.38, 18.75, 37.5, + (162)
75, 150, 300 pg/l
Sister chromatid exchanges (SCEs); DNA damage, comet assay in vitro; micronuclei (MN) 0.7,0.3 pg/l + (163)
in human peripheral blood lymphocytes
Comet assay with gillsin, the fish Rhamdia Quelen; nuclear morphological alterations 0.05, 0.10, 0.23 pg/l - (164)
Micronucleus test in the Piscine 0.10, 0.23 pg/! + (164)
Chinese hamster V79 cells, HGPRT mutations 0, 0.8, 4, 20, 100, 500 pg/l + (162)
Bone marrow polychromatic erythrocytes, mouse micronucleus in vivo 0, 1,5, 25 mg/kg b.w. + (162)
Long-term carcinogenesis assay. Rat (oral) 0, 0.5, 1.5, 30, 300 mg/I + (162)
of 95.4% fipronil in diet for
104 weeks
Long-term carcinogenesis assay. Mouse (oral) 0, 0.1, 0.5, 10, 30 mg/I of + (162)
95.4% fipronil in diet for
78 weeks
27. Flubendazole (31430-15-6)
Salmonella typhimurium (none), TA100, TA98; Salmonella typhimurium (rat, liver, S-9, aroclor 1254), 0.01-10 pg/plate - (165)
TA98, TA100
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28. Furapromide (1951-56-0)
Chromosomal aberrations, V79 cells + (166)
Salmonella typhimurium, TA98, reverse mutation Neurospora crassa, forward gene mutation + (167)
(168)
Chromosomal aberrations, V79, HPRT 10-120 pmol + (166)
Saccharomyces cerevisiae, mitotic recombination or gene conversion 7-567 pmol + (44)
Salmonella typhimurium (TA98, TA100, TA1535, TA1537, and TA1538) + (115,116, 169)
29. Furapyrimidone (75888-03-8)
Salmonella typhimurium, TA98, TA100; Salmonella typhimurium, TA98, 0.01-10 pg/plate + (170)
TA100 (S-9), reverse mutation
30. Imidacloprid (138261-41-3)
Salmonella typhimurium, TA100 (rat, Liver, S-9) 25-10 pg/plate - (171)
Salmonella typhimurium, TA98 (rat, Liver, with or without S-9) 25-100 pg/plate + (171)
Salmonella typhimurium, TA97, TA98, TA100, TA102 (S9) 40, 200, 1,000, 5,000 pg/ - (172)
plate
Micronuclei test in mouse bone marrow 23, 45, 90 mg/kg b.w. - (172)
Chromosome aberration in primary spermatocytes testicle 38, 75, 150 mg/kg b.w. - (172)
Micronucleus (MN) test in vivo, amphibian 165 mg/kg b.w. + (173)
Comet assay in vivo, amphibian 0.05, 0.1, 0.2, 0.5 mg/kg b.w.
Bone marrow polychromatic erythrocytes in rats 100, 200, 300 mg/kg b.w. + (174)
Micronucleus in vitro, Human peripheral blood lymphocytes (rat, liver, S9) 0.2,2,20 g/l + (175)
Micronuclei test in human peripheral lymphocytes SCE test in human peripheral lymphocytes 0.1, 0.5 mg/l + (176)
Comet assay, DNA damage, SCGE 0.05, 0.1, 0.2, 0.5 mg/I + (176)
Micronucleus (MN) formation in human lymphocytes in vitro 50 pg/l + (174)
SCE induction in human lymphocytes Combination with metalaxyl at + (174)
100, 200 pg/!
SCE induction in human lymphocytes 0.1, 1, 5,10, 50, 100 pg/I - (174)
Micronucleus in the rat bone marrow 200, 300, 400 mg/kg b.w. + (174)
DNA damage, Comet assay, SCGE + (177)
Micronucleus (MN) tests on Hypsiboas pulchellus tadpoles 25 mg/l for 96 h + (178)
DNA single-strand breaks on Hypsiboas pulchellus tadpoles 37.5 mg/l for 96 h + (178)
Nuclear abnormalities 12.5-37.5 mg/l - (178)
Chromosome abnormality on sperm deformity of the earthworm 0.2 mg/kg dry soil + (179)
DNA damage in human peripheral blood lymphocytes exposed in vitro + (180)
Long-term carcinogenesis assay. Rat (male) 0, 100, 300, 900, 1,800 mg/! + (181)
Long-term carcinogenesis assay. Mice 0, 100, 330, 1,000, - (181)
2,000 mg/!
31. Ivermectin (70288-86-7)
Carcinogenicity studies, rats 0, 2 mg/lin diet for 1 year - (182)
32. Lindane (58-89-9)
Salmonella typhimurium, Serratia marcescens, forward and NC (128)
reverse gene mutation, host-mediated assay
MN-forming activity in MCF-7 and PC-3 cells 10722 x 1072, 10", + (183)
2x 107", 5x 10" g/ml
Chromosomal aberrations in human peripheral lymphocytes in vitro + (184)
Micronucleus (MN) formation in bone marrow in vivo + (185)
Sex-linked recessive lethal gene mutation, Drosophila melanogaster NC (140)
Chromosome aberrations, Allium cepa + (136)
Chromosome aberrations, Hordeum vulgare (barley) + (186)
Chromosome aberrations, Vicia faba + (187)
Chromosome aberrations, Tradescantia species + (187)
Mitotic recombination or gene conversion, Saccharomyces cerevisiae + (44)
DNA damage and the risk for cancer on human tonsillar 0.5,0.75, 1.0 mg/ml + (188)
Carcinogenicity studies in mouse 12.5, 25 and 50 ppm for - (189)
80 weeks
Carcinogenicity studies in vivo, non-human + (141)
Long-term carcinogenesis assay. AVy/AVy, AVy/a, A/a mouse 160 mg/kg/day + (190)
Long-term carcinogenesis assay. Rats 0, 0.05, 0.45, 4.5, 18.7 mg/ - (54)
kg/day (male)
0, 0.06, 0.57, 5.6, 23.1 mg/
kg/day (female)
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33. Malathion (121-75-5)
Salmonella typhimurium, TA98, TA100, TA97A, TA102, TA1535, TA1537, reverse mutation 33-1,650, 80-400 mg/I - (191, 117)
E. coli WP2 uvra, tryptophan reverse gene mutation (101)
Recombination assay, spot test, DNA effect (bacterial DNA repair) NR (79)
SCE, non-human, V79 cells in vitro NR + (119)
SCE, human somatic cells in vitro NR + (120)
Chromosome aberrations NR + (186)
Micronuclei in bone marrow in vivo (mice) 2.5,5,10 mg/kg i.p. or p.o. + (157)
Chromosomal aberrations, mouse (injection) 400 mg/kg b.w. + (192)
Chromosomal aberrations, mouse (oral) bone marrow cells in vivo 240 mg/! for 4 or 8 weeks,
120 mg/I for 8 weeks
Chromosomal aberrations, CHO cells in vivo 25, 50, 76 ug/| - (193)
Chromosomal aberrations (rat, liver S-9, aroclor1254), CHO cells in vivo 303, 352,402 ug/I + (193)
Drosophila melanogaster, sex-linked recessive lethal mutation - (140)
UDS, human diploid fibroblasts in vitro - (66)
Histidine reverse gene mutation, Ames assay - (146)
Mitotic recombination or gene conversion - (44)
Micronucleus test, chromosome aberrations - (194)
Micronucleus test, mice(oral) bone marrow cells in vivo 120, 240 mg/! in diet for + (192)
2 weeks
Micronucleus test, mice (injection) bone marrow cells in vivo 200, 300 mg/kg b.w. (192)
Micronucleus test, human peripheral lymphocytes in vivo 20, 50, 75, 100 pg/! + (195)
Micronucleus test, rat peripheral blood lymphocytes in vivo 0, 25, 50, 100, 150 mg/kg - (196)
b.w.
Micronucleus test, rat peripheral blood polychromatic and normochromatic erythrocytes in vivo 150 mg/kg b.w. + (196)
Long-term carcinogenesis assay. Rats 0, 2,000, 4,000 mg/l in diet - (84, 85)
Long-term carcinogenesis assay. Mice 0, 8,000, 16,000 mg/I in diet - (122, 123)
Carcinogenicity studies in vivo - (141)
34. Mebendazole (31431-39-7)
Salmonella typhimurium (rat, liver, S-9, aroclor 1254), TA100, TA98 0.5-5, 0.5-5 pg/plate - (165)
0.01-10 pg/plate ++
Salmonella typhimurium (none), TA100, TA98 0.01-10 pg/plate - (165)
Forward and reverse gene mutation, body fluid assay, Salmonella typhimurium, host-mediated assay + (197)
Genotoxicity in a diploid mitotic recombination or gene mutation; genotoxicity in a haploid yeast - (198)
reversion assay; gene conversion assay (strain D5 of Saccharomyces cerevisiae)
35. Mefloquine (53230-10-7)
Bacterial mutation (Ames) - 47)
Cytogenetics in vivo - 47)
Long-term carcinogenesis assay, mice 30 mg/kg/day - (75, 199)
36. Metronidazole (443-48-1)
Salmonella typhimurium, forward and reversegene mutation, host-mediated assay + (197)
Salmonella typhimurium, forward and reverse gene mutation, body fluid assay + (200)
Salmonella typhimurium, TA98, TA100, TA1535, TA1537, and TA1538 + (201)
Salmonella typhimurium, TA100 25-1,000 pg/plate + (202)
300 pg/plate + (203)
50-200 pg/plate + (147)
1-66 pg/plate + (204)
50-12,800 pg/plate + (205)
Salmonella typhimurium, TA97, TA100, TA102, TA98 50-200 pg/plate + (147)
Salmonella typhimurium, TA1538, TA1537, TA100, TA98, TA1535 - (206)
E. coli, none 0.01-0.5 mg/ml + (101)
25-1,000 pg/!l + (207)
E. coli (rat, liver, S-9, Aroclor 1254) 25-1,000 pg/l, 25-500 pg/l - (207)
E. coli WP2 uvra, Tryptophan reverse gene mutation With dose response + (101)
Comet assay in human lymphocytes 292.1 mg/ml + (148)
Chromosome aberration (CA) in vivo 10, 20, 40 mg/kg b.w. + (208)
Micronucleus (MN) in the bone marrow cells of Balb/c mice in vivo 10, 20, 40 mg/kg b.w. + (208)
SCE in vivo, non-human NC (209)
SCE in vitro, human lymphocytes With dose response + (210)
Micronucleus in vivo, bone marrow polychromatic lymphocytes 23, 70, 160 mg/kg b.w. + (211)
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Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)
Micronucleus test in vivo, chromosome aberrations, mammalian polychromatic erythrocytes - (43)
Chromosomal aberrations in vitro, human lymphocytes 0.1,1,10, 50 pg/l + (119)
Forward gene mutation, Neurospora crassa + (168)
Aneuploidy, chromosome aberrations, Neurospora crassa - (168)
Neurospora crassa, human NC (45, 46)
Sex-linked recessive lethal gene mutation, Drosophila melanogaster NC (140)
Carcinogenicity studies in vivo, non-human + (141)
UDS and cytogenetics in vitro + 47)
Carcinogenicity studies, mouse + (212)
Carcinogenicity studies, rat + (212)
Tumor promotion studies, mouse (213)
37. Niclosamide (50-65-7)
Salmonella typhimurium (none), TA1978, UTH8413, TA1538, TA98; Salmonella typhimurium 1-50 pg/plate - (74)
(rat, liver, S-9, aroclor 1254), TA1978, UTH8413, TA1538, TA98
Salmonella typhimurium (rat, liver, S-9, aroclor 1254), TA98 (NR), YG1020, YG1021, YG1024 0.5-15 pg/plate - (74)

0.5-20 pg/plate + (214)
SCE in vitro, Human lymphocytes + (215)
38. Nitroscanate (19881-18-6)
Salmonella typhimurium (none), TA98, TA98(NR), TA98(1,8-Dnp6), TA100, TATOO(NR), YG1024, 1-160 pg/plate + (216)
YG1021, TA98, TA98(1,8-Dnp6), TA100 20-160 pg/plate

20-320 pg/plate +

10-80 pg/plate +

10-80 pg/plate -

0-9 ug/plate +

0-40 pg/plate +

10-320 ug/plate +
Salmonella typhimurium (rat, liver, S-9, aroclor 1254), TA98, TA98(NR), TA100, TA100(NR), 10-160 pg/plate + (216)
TA98, TA98(1,8-Dnp6), TA100 10-160 pg/plate -

10-80 pg/plate +

10-160 ug/plate - (216)

10-320 pg/plate +
39. Nitroxinil (1689-89-0)
Salmonella typhimurium (rat, liver, S-9, kanechlor 400), TA100, TA98, TA1535, TA1537, TA1538; 0.05-5 mg/plate - (61)
Salmonella typhimurium (none), TA100, TA98, TA1535, TA1537, TA1538
Chromosomal aberrations in vivo, mouse bone marrow cells 0, 10, 20, 30, 40 mg/kg once + (80)
Salmonella typhimurium (none), TA1537 0-1,000 pg/plate - (56)
Micronucleus test in vivo, chromosome aberrations, mammalian polychromatic erythrocytes - 61)
40. Oxfendazole (53716-50-0)
Chromosomal aberrations in vivo, spermatocytes and bone marrow cells 1,000 pg/kg + 217)
41. Pentamidine (100-33-4)
Salmonella typhimurium, TA98, TA100, reverse mutation; Salmonella typhimurium, TA98, TA100 0.01-1 umol/plate - (218)
(rat, liver S-9, Phenobarbital), reverse mutation
42. Permethrin (52645-53-1)
Salmonella typhimurium, TA98, TA100 100-3,000 pg/plate - (107)
Salmonella typhimurium, TA98, TA100 5-1,000 pg/plate - (219)
Salmonella typhimurium, TA98, TA100 1-20 mg/plate - (220)
Salmonella typhimurium, TA98, TA100, TA97A 39-2,730 mg/I - (191)
Salmonella typhimurium, TA1535, TA1537, TA98, TA100, E. coli 1-7,500 pg/plate - (62)
Chinese hamster V79, rat hepatocytes 4-40 pg/| - (107)
UDS in vitro, DNA effects, human diploid fibroblasts - (66)
Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)
43. Piperazine (110-85-0)
Salmonella typhimurium (none), TA100, TA1535, TA1537, TA98, TA100; Salmonella typhimurium 33-2,167 pg/plate - (221)
(rat, liver, S-9, aroclor 1254), TA100, TA1535, TA1537, TA98; Salmonella typhimurium
(hamster, liver, S-9, aroclor 1254), TA100, TA1535, TA1537, TA98
Salmonella typhimurium (rat, liver, S-9, aroclor 1254), TA100, TA1535, TA1537, TA98
Salmonella typhimurium (hamster, liver, S-9, aroclor 1254), TA100, TA1535, TA1537, TA98
Salmonella typhimurium (rat, liver, S-9, PCB), TA100, TA98 (222)
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Test system Dose or concentration Result Reference
(LED or HID)
44. Praziquantel (55268-74-1)
Salmonella typhimurium (TA98, TA100, TA1535, TA1537, TA1538) - (223)
Salmonella typhimurium (none), TA1537, TA1535, TA100, TA1538, TA98; 0-1,000 pg/plate - (56)
Salmonella typhimurium (rat, liver, S-9, kanechlor 400),
TA1537, TA1535, TA100, TA1538, TA98
Salmonella typhimurium, forward and reverse gene mutation, host-mediated assay + (197)
Forward and reverse gene mutation, body fluid assay, Salmonella typhimurium NC (224)
Forward gene mutation, Schizo saccharomyces pombe - (225)
Sex-linked recessive lethal gene mutation, Drosophila melanogaster - (140)
Mitotic recombination or gene conversion, Saccharomyces cerevisiae - (44)
Dominant lethal test, rodents - (226)
Carcinogenicity studies, Hamster 0, 300 mg/kg in corn oil for - (227)
40 weeks
45. Pyrimethamine (58-14-10)
Bacterial mutation (Ames) - 47)
Micronucleus test (MN) bone marrow in mice in vivo 40 mg/kg b.w. + (228)
The transplacental MN test in mice in vivo 40 mg/kg b.w. - (228)
Cytogenetics in vitro + 47)
DNA damage on ICR mice (oral) 50 mg/kg b.w. + (229)
Embryonic and maternal genotoxicity 50 mg/kg b.w. + (229)
Cytogenetics in vivo + 47)
DNA damage, SCGE, Comet assay in mice and rats 50, 120 mg/kg b.w., + (230)
respectively
MLA + 47)
Micronucleus assay in vitro, cultured human lymphocytes - (231)
Long-term carcinogenesis assay, B6C3F1 mice (female) 1,000 mg/l in diet (75,122,
123)
Long-term carcinogenesis assay, mice (lung tumors) 25 mg/kg i.p. + (75, 122,
123)
Long-term carcinogenesis assay, F344 rats 400 mg/lin diet - (75,122,
123)
46. Quinine (130-95-0)
Salmonella typhimurium, TA98, TA100, reverse mutation, Salmonella typhimurium, 20-50 pg/plate - (78)
TA98, TA100 (rat, liver S-9)
47. RH-5849 (112225-87-3)
Salmonella typhimurium, TA98, TA100, TA97A, TA102, TA100 reverse mutation 5, 50, 500, 5,000 ug/plate - (232)
Micronuclei test in mouse bone marrow in vivo 42, 84, 168 mg/kg b.w. - (232)
Chromosome aberration, primary spermatocytes of testis 50, 100, 200 mg/kg/d for - (232)
5days
Micronuclei test in human peripheral lymphocytes SCE test in human peripheral lymphocytes 25, 100 mg/! + (176)
Comet assay, DNA damage, SCGE 5, 25, 50, 100 mg/I + (176)
Chromosome abnormality on sperm deformity of the earthworm 100 mg/kg dry soil + (179)
Micronucleus(MN) test in human lymphocytes in vitro, Micronucleus(MN) test in rat bone marrow in vivo 50 mg/ml + (174)
300 mg/kg b.w.
SCE in human lymphocytes 100, 200 mg/ml + (174)
DNA strand breaks and DNA damage + (177)
Micronucleus(MN) test in mouse 23, 45, 90 mg/kg b.w. - (172)
Chromosome aberration Primary spermatocytes of testis 38, 75, 150 mg/kg b.w. - (172)
48. Tetramethrin (7696-12-0)
Salmonella typhimurium, TA98; Salmonella typhimurium, TA98 (rat, liver S-9, polychlorinated biphenyl) 0.1-1 mg/plate + (220)
Salmonella typhimurium, TA100; Salmonella typhimurium, TA100 (rat, liver S-9, polychlorinated biphenyl)  0.1-1 mg/plate +
Salmonella typhimurium, TA98, TA100; Salmonella typhimurium, TA98, TA100 (S9) 5-1,000 pg/plate - (219)
49. Thiophanate (23564-05-8)
Salmonella typhimurium (none), TA100, TA98, TA1535, TA1537, TA97 33-10,000 pg/plate - (204)
Salmonella typhimurium [hamster, liver, S-9, aroclor 1254 (10% or 30%)], TA100, TA1535, TA97, TA98, 100-10,000 pg/plate - (204)
TA100; Salmonella typhimurium [liver, S-9, aroclor 1254 (10 or 30%)], TA100, TA1535, TA97, TA98,
TA1537
Chromosome aberrations, aneuploidy, Aspergillus nidulans + (233)
Chromosome aberrations in vivo, mammalian germ cells - (40)
(Continued)
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Test system Dose or concentration Result Reference
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50. Tiabendazole (148-79-8)
Salmonella Typhimurium (none), TA100, TA98; Saimonella typhimurium (hamster, liver, S-9, aroclor 1254, 100-10,000 pg/plate - (60)
30%), TA100, TA98; Salmonella typhimurium (rat, liver, S-9, aroclor 1254, 30%), TA100, TA98
Salmonella typhimurium (hamster, liver, S-9, aroclor 1254, 10%), TA98 100-10,000 pg/plate + (60)
Salmonella typhimurium (none), TA98, TA100, TA97, TA104, E. coli, WP2S/PKM101 50-400 pg/l + (234)
Micronucleus test in vivo, chromosome aberrations, mammalian polychromatic erythrocytes + (235)
Mitotic recombination, Aspergillus nidulans NC (233)
Chromosome aberrations, Aspergillus nidulans, aneuploidy + (233)
Micronucleus (none) in vitro, V79 cells 0.5-700 pg/I + (236)
Micronucleus (none) in vitro, human lymphoblastoid wtk1 cells 0, 50, 100, 200 pg/! + (234)
Carcinogenicity studies, mouse 0, 0.8, 1.2, 1.6% in diet for - (237)
44 weeks
0, 0.081, 0.125, 0.5% in diet
for 78 weeks
Long-term carcinogenesis assay, rats 0, 0.05, 0.1, 0.2, 0.4% in diet - (238)
for 104 weeks
51. Tinidazole (19387-91-8)
Salmonella typhimurium, TA100, reverse mutation 10-100 pg/plate + (239)
Salmonella typhimurium, TA100 (rat, liver S-9, aroclor 1254), reverse mutation 10-100 pg/plate - (239)
Salmonella typhimurium, TA98, reverse mutation 10-100 pg/plate + (239)
Salmonella typhimurium, TA98 (rat, liver S-9, aroclor 1254), reverse mutation 10-800 pg/plate + (205)
Salmonella typhimurium, UTH8414, reverse mutation 50-12,800 nmol/plate +
Salmonella typhimurium, TA98, TA100, reverse mutation 50-3,200 nmol/plate +
Salmonella typhimurium, TA100, reverse mutation +
Salmonella typhimurium, TA100(1,8-DNP6),YG 1029, TA100 (NR), reverse mutation
Salmonella typhimurium, TA100 (NR), TA100 (rat, liver S-9, aroclor 1254), reverse mutation
52. Triclabendazole (68786-66-3)
Chromosomal aberrations in vitro, river buffalo lymphocytes 25, 50, 100 pg/l + (239)
Micronucleus in vitro, river buffalo Lymphocytes, micronucleus formation in lymphocyte 25, 50, 100 pg/l + (239)
cultures of the river buffalo
SCEs in lymphocyte cultures of the river buffalo 25, 50, 100 pg/ml
The name of each drug is followed by the CAS number. For each type of assay: “+,” positive response; “—,” negative response; NR, not reported; NT, not tested; p.o., oral; i.p.,

intraperitoneal; UDS, DNA repair synthesis; MLA, gene mutation, mouse lymphoma L5178Y cells, TK locus; HGPRT, gene mutation, hgprt locus; SCE, sister chromatid exchange;
MN, micronucleus; Trans., cell transformation;HID, highest ineffective dose; LED, lowest effective dose.

Pharmaceuticals without retrievable data: Amicarbalide, Abamectin, Acetarsone, Amprolium, Arecoline Hydrobromide, Artemether, Artemisinine, Artesunate, Avermectin,
Azamethiphos, Amprolium Hydrochloride, Bunamidine, Carbarsone, Chiniofon, Clopidol, Clorsulon, Closantel Sodium, Cyromazine, Destomycin A, Diamphenethide, Diclazuri,
Diethylcarbamazine, Diethylcarbamazine, Dihydroartemisinin, Diiodohydroxyquinoline, Diloxanide, Diminazene, Dinitolmide, Dithiazanine lodide, Doramectin, Emetine, Epsiprantel,
Ethopabate, Febantel, Fexinidazole, Fluvalinate, Hainanmycin, Halofuginone, Haloxon, Hetolin, Hexachloroparaxylene, Hydroxychloroquine, Hygromycin B, Imidocarb, Dipropionate,
Isometamidium, Levamisole, Lumefantrine, Maduramicin, Malaridine, Metrifonate, Milbemycin Oxime, Monensin Sodium, Morantel, Moxidectin, Naftalofos, Naphthalophos,
Nicarbazin, Nitazoxanide, Nitroquine, Oxantel, Oxibendazole, Oxinothiophos, Phanquinone, Phoxim, Piperanitrozole, Piperaquine, Primaquine, Propetamphos, Pyramine,

Pyrantel, Quinapyramine, Rafoxanide, Resorantel, Robenidine, Salinomycin, Secnidazole, Semduramicin, Sodium stibogluconate, Sulfaquinoxaline, Sulfur Sublimat, Tetramisole,

Thiacetarsamide, and Toltrazuril.

the number of antiparasitics in genotoxicity assays (bacterial
mutagenicity, in vitro tests for gene mutation and for chro-
mosomal damage, in vivo cytogenetic tests, and other types of
genotoxicity assays). Of 136 antiparasitics examined, 52 (38.2%)
had at least one genotoxicity or carcinogenicity test result, and
32 (23.5%) were tested only for either genotoxicity or carcino-
genicity. Among 20 antiparasitics with results available for both
genotoxicity and carcinogenicity, 16 had all the results required
by the present guidelines for testing of pharmaceuticals: 8 of
them—Albendazole, Coumaphos, Cypermethrin, Deltamethrin,
Diazinon, Fenvalerate, Malathion and Tiabendazole—tested
positive in genotoxicity assays but gave at least one negative
result in carcinogenesis assays; 8 antiparasitics (Chlordimeform,
Dichlorvos, Fenthion, Fipronil, Lindane, Metronidazole,
Pyrimethamine, and Imidacloprid) gave positive responses in

both genotoxicity and carcinogenicity. The remaining four with
both genotoxicity and carcinogenicity data were not in agree-
ment with the current guidelines: Amitraz and Praziquantel gave
positive responses in genotoxicity but were non-carcinogenic;
Atovaquone tested negative in genotoxicity but positive in mouse
carcinogenicity; and Mefloquine produced negative responses in
both genotoxicity and carcinogenicity.

Additional 32 antiparasitics were only tested in either geno-
toxicity or carcinogenicity. Only one (Ivermectin) had retrievable
results in carcinogenicity. As for the rest, 31 antiparasitics had
the data of genotoxicity. Twenty-one antiparasitics (Acriflavine,
Closantel, Chloroquine, Cyfluthrin, Danex, Diaveridine,
Dimetridazole, Fenbendazole, Fenchlorphos, Furapyrimidone,
Furapromide, Mebendazole, Nitroscanate, Nitroxinil, Niclosamide,
Oxfendazole, RH-5849, Tetramethrin, Thiophanate, Tinidazole,
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TABLE 4 | Overview of genotoxicity and carcinogenicity testing of antiparasitics.

Antiparasitics with at least one genotoxicity or carcinogenicity tests results (Table 3)

Antiparasitics without retrievable genotoxicity or carcinogenicity data

Antiparasitics with all genotoxicity and carcinogenicity data required by present guidelines (Table 3: 2, 10, 13, 15, 17, 19, 20, 24-26, 30, 32, 33, 36, 45, 50)°

Antiparasitics tested not according to present guidelines

Antiparasitics with least one genotoxicity and carcinogenicity test results (Table 3: 2, 3, 7, 10, 13, 15, 17, 19, 20, 24-26, 30, 32, 33, 35, 36, 44, 45, 50)
Antiparasitics tested only for genotoxicity (Table 3: 1, 4-6, 8, 9, 11, 12, 14, 16, 18, 21-23, 27-29, 34, 37-43, 46-49, 51, 52)

Antiparasitics tested only for carcinogenicity (Table 3: 31)

Antiparasitics with at least one results in tests for bacterial mutagenicity (Table 3: 1-11, 13-22, 24-30, 32-39, 41-51)
Antiparasitics with at least one results in tests for gene mutation in mammalian cells (Table 3: 1, 6, 7, 10, 17, 19, 20, 24-26, 28, 32-34, 36, 44, 45, 50)
Antiparasitics with at least one results in in vitro tests for SCE, chromosomal aberrations, aneuploidy, or micronucleus in animal or human cells

(Table 3: 6, 7, 9, 10, 13-26, 28, 30, 32, 33, 36, 37, 42, 45, 47, 49, 50, 52)

Antiparasitics with results in in vitro data required by present guidelines (Table 3: 1-3, 13, 17-19, 24-26, 28, 30, 42, 50, 52)
Antiparasitics with at least one results in in vivo tests for SCE, chromosomal aberrations, or micronucleus in animal or human cells

(Table 3: 6-20, 24-26, 30, 32, 33, 35, 36, 39, 40, 45, 47, 49, 50)

Antiparasitics which underwent testing for DNA damage or DNA repair synthesis (Table 3: 3, 10, 11, 14-16, 18-21, 24, 25, 30, 32, 33, 36, 42, 45, 47)
Antiparasitics which underwent testing in other types of genotoxicity assays (Table 3: 1, 10, 15, 19, 20, 22, 24, 26, 28, 30, 32-34, 36, 42, 44, 45)
Antiparasitics examined for genotoxicity in human cells (Table 3: 2, 6, 14-16, 19-21,23, 24, 26, 30, 32, 33, 36, 37, 42, 45, 47, 50)

Antiparasitics tested for carcinogenicity in mice (Table 3: 2, 3, 7, 10, 13, 15, 17, 19, 20, 24-26, 30, 32, 33, 35, 36, 45, 50)

Antiparasitics tested for carcinogenicity in rats (Table 3: 2, 3, 7, 10, 13, 15, 17, 19, 20, 24-26, 30-33, 35, 36, 45, 50)

Antiparasitics tested for carcinogenicity in both mice and rats (Table 3: 2, 3, 7, 10, 13, 15, 17, 19, 20, 24-26, 30, 32, 33, 35, 36, 45, 50)

Antiparasitics tested for carcinogenicity in other species (Table 3: 44)

52 (38.2%)
84 (61.8%
16 (11.8%
36 (26.5%
20 (14.7%
31 (22.8%

1(0.7%)
47 (34.6%)
18 (13.2%)
33 (24.3%)

)
)
)
)
)
)

15 (11.0%)
31 (22.8%)

19 (14.0%
17 (12.5%
20 (14.7%
19 (14.0%
20 (14.7%
19 (14.0%

1(0.7%)

)
)
)
)
)
)

aValues in parentheses indicate the percentage of the 136 antiparasitics considered.
bNumber and percentage in parentheses are those of antiparasitics of Table 3.

and Triclabendazole) gave positive responses in at least one
genotoxicity assay; 10 antiparasitics (Amodiaquine, Amoscanate,
Amphotericin B, Bithionol, Bromofenofos, Flubendazole,
Pentamidine, Permethrin, Piperazine, and Quinine) were found
to be negative in all the considered genotoxicity assays. With
regard to the different types of genotoxicity assays: there were 47
antiparasitics with at least one result in tests for bacterial muta-
genicity; 18 antiparasitics with at least one result in tests for gene
mutation in mammalian cells; 33 antiparasitics in in vitro tests
for SCE, chromosomal aberrations, aneuploidy, or micronucleus
in animal or human cells; 15 antiparasitics with results in in vitro
data required by present guidelines; 31 antiparasitics in in vivo tests
for SCE, chromosomal aberrations, or micronucleus in animal or
human cells; 19 antiparasitics in DNA damage or DNA repair
synthesis; 17 antiparasitics in other types of genotoxicity assays;
and 20 antiparasitics examined for genotoxicity in human cells.
With respect to carcinogenesis assays, 19 and 20 antiparasitics were
tested for carcinogenicity in mice and rats, respectively. Among the
antiparasitics with both the genotoxicity and carcinogenicity data,
19 antiparasitics tested for carcinogenicity in both mice and rats
and only 1 in hamsters.

Table 5 provides the number of antiparasitics tested for each
type of assay, including the genotoxicity and carcinogenicity stud-
ies. The results are indicated as positive, negative and discordant.
When carcinogenicity testing is considered, 57.9% of antiparasit-
ics were tested negative in mice, and 73.7% in rats. Five antipara-
sitics (nos. 7, 10, 26, 32, and 36) and three antiparasitics (nos.
10, 26, and 36) were carcinogenic in mice and rats, respectively.
The percentage of concordant results in carcinogenicity assays
between mice and rats is 85.7% (12 out of 14) and only 2 (nos. 7
and 32) antiparasitics have discordant results: no. 32 tested posi-
tive in mice and negative in rats, while no. 7 produced the opposite
result. The occurrence of discordant results between mice and
rats may be the differences in species (e.g., metabolic enzymes).

Ten antiparasitics were in IARC of 2B and 3 ground classifications
of carcinogens: Chloroquine, Danex, and Permethrin do not have
available carcinogenicity data; Deltamethrin, Fenvalerate, and
Malathion tested negative in rodents while positive results were
given by Chlordimeform and Metronidazole. Dichlorvos (DDVP)
and Pyrimethamine have discordant results of carcinogenicity in
mice and rats. To interpret the tumor findings in a carcinogenicity
study and provide a perspective on the relevance of rodents to
human, the mechanism and some investigations in tumor profile
(trans-species, trans-sex, and multisite versus single species,
single sex, and single site) were suggested by the guidelines (15).

Re-Evaluation of In Vitro

Genotoxicity Results

Table 6 presents the incidence of misleading positive effects in
in vitro cytogenicity when using the reduction in a top dose of
1 mM. Of 33 antiparasitics with at least one result in in vitro tests
for SCE, chromosomal aberrations, or micronucleus in animal or
human cells, 25 (75.8%) antiparasitics had at least one retrievable
dose in in vitro cytogenicity assays, while 8 (24.2%) antiparasitics
had no available dose. Under the current in vitro genotoxicity test-
ing guidelines for dose limits, 10 (nos. 10, 14, 15, 16, 20, 21, 22,
32, 36, and 47) antiparasitics were identified as genotoxins at dose
levels more than 1 mM. The re-evaluation results indicated the
misleading positive response in the previous reports. Fifteen (nos. 1, 2,
3,13, 17, 18, 19, 24, 25, 26, 28, 30, 42, 50, and 52) antiparasitics
had in vitro genotoxicity results consistent with ICH S2 (R1).

Correlation between the

Genotoxicity Assays

Table 7 provides the correlation among the different types of
genotoxicity assays of antiparasitics, the numbers and percentages
of antiparasitics that tested concordant and discordant between
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TABLE 5 | Summary per assays type of antiparasitics with positive, negative, and discordant results.

Bacterial mutagenitity Positive 4 (8.5%) (Table 3: 21, 26, 28, 29)
Negative 29 (61.7%) (Table 3: 2-10, 13-15, 17, 19, 22, 24, 25, 27, 32, 33, 35, 39, 41-47, 49)
Discordant 14 (29.8%) (Table 3: 1, 11, 16, 18, 20, 30, 34, 36-38, 44, 48, 50, 51)
Gene mutation in cultured mammalian cells Positive 7 (38.9%) (Table 3: 1, 20, 26, 28, 32, 45, 50)
Negative 11 (61.1%) (Table 3: 6, 7, 10, 19, 24, 25, 33, 34, 36, 42, 44)
Discordant 0
In vitro cytogenetics Positive 18 (54.5%) (Table 3: 1, 15, 16, 18, 19, 21, 22, 23, 26, 28, 32, 33, 36, 37, 45, 47, 50, 52)
Negative 7 (21.2%) (Table 3: 3, 6, 7, 9, 13, 34, 42)
Discordant 8 (24.2%) (Table 3: 2, 10, 14, 17, 20, 24, 25, 30)
In vivo cytogenetics Positive 13 (41.9%) (Table 3: 11-15, 17, 19, 24-26, 32, 40, 50)
Negative 8 (25.8%) (Table 3: 6-9, 18, 20, 35, 49)
Discordant 10 (32.3%) (Table 3: 1, 2, 10, 16, 30, 33, 36, 39, 45, 47)
DNA lesions (in vitro and in vivo) Positive 9 (47.4%) (Table 3: 3, 14, 16, 21, 30, 32, 36, 45, 47)
Negative 3 (15.8%) (Table 3: 25, 33, 42)
Discordant 7 (36.8%) (Table 3: 10, 15, 18-20, 24, 26)
Carcinogenesis in mice Positive 5 (26.3%) (Table 3: 7, 10, 26, 32, 36)
Negative 11 (57.9%) (Table 3: 2, 3, 13, 15, 17, 19, 22, 25, 30, 33, 35)
Discordant 3 (15.8%) (Table 3: 20, 24, 45)
Carcinogenesis in rats Positive 3 (15.8%) (Table 3: 10, 26, 36)
Negative 14 (73.7%) (Table 3: 2, 3, 7, 13, 15, 17, 24, 25, 31-33, 35, 45, 50)
Discordant 2 (10.5%) (Table 3: 20, 30)
Carcinogenesis in mice and rats Discordant 2 (14.3%) (Table 3: 7, 32)
Carcinogenesis in mice and rats Concordant 12 (85.7%) (Table 3: 2, 3, 10, 13, 15, 17, 25, 26, 33, 35, 36, 50)

The antiparasitic was considered as positive when it gave only positive results and as negative when it gave only negative or inconclusive results. Discordant indicates the number
of antiparasitics, of which the results of genotoxicity assays were both positive and negative or inconclusive and he results of carcinogenicity assays performed in the same species
were carcinogenic to mice or rats but not to rats or mice. In parentheses is the number of drugs in Table 3.

each other. On the whole, the degree of coincident correlation
was higher than the discordant results, which ranged from 84.6%
between bacterial mutagenicity and gene mutation in mammalian
cells to 55.6% between gene mutation in mammalian cells and
in vivo cytogenetics. When bacterial mutagenicity was compared
with the following assays: gene mutation in mammalian cells,
in vitro cytogenetics, in vivo cytogenetics and DNA lesions, 13
(nos. 3,14,15,17,19, 22, 24,25, 32, 33,45, 47, and 49) antiparasit-
ics gave negative results in bacterial mutagenicity. Among these
antiparasitics, there were 2 (nos. 32 and 45), 8 (nos. 15, 22, 24,
25, 32, 33,47, and 49), 7 (nos. 14, 15, 17, 19, 24, 25, and 32) and
5 (nos. 3, 14, 32, 45, and 47) antiparasitics that tested positive in
gene mutation in mammalian cells, in vitro cytogenetics, in vivo
cytogenetics and DNA lesions, respectively.

The highly consistent correlation between bacterial mutagen-
icity and gene mutation in mammalian cells indicated that the
same genetic end point tests might have the high consistency.
The discordance (nos. 32 and 45) may be due to the xenobiotic
metabolism in theliver and other organs between the bacteria and
animals. With the comparison between in vitro cytogenetics and
in vivo cytogenetics, 2 (nos. 18 and 49) antiparasitics gave posi-
tive responses in in vitro cytogenetics while no. 13 gave negative.
These results were inconsistent with that in in vivo cytogenetics.
With regard to the discordant results between DNA lesions and
in vitro cytogenetics of the three (nos. 3, 19 and 33) antiparasitics,

two (nos. 19 and 33) antiparasitics tested negative and no. 3 yield
positive in DNA lesions, respectively. These results were opposite
to that in in vitro cytogenetics.

A Novel Strategy for Predicting
Carcinogenicity Based on the

Genotoxicity Assays

Antiparasitics with both genotoxicity and carcinogenicity data
are reported in Table 8 to analyze the correlation between the
results of the various types of genotoxicity and carcinogenicity.
The results are marked positive or negative or inconclusive. It is
obvious that the concordant and discordant results occurred in all
the 15 pairs of assays considered. When carcinogenicity in mice or
rats was considered, the percentage of discordant results ranged
from 71.4% between in vivo cytogenetics and carcinogenicity
in both mice and rats to 10.0% between bacterial mutagenicity
and carcinogenicity in both mice and rats. The rank order of the
consistency between genotoxicity and carcinogenicity was bacte-
rial mutagenicity > DNA lesions > in vitro cytogenetics > gene
mutation in mammalian cells > in vivo cytogenetics.

Table 9 showed 2 types and 10 combinations of gene-tox assays
based on bacterial mutagenicity to indicate the predictivity for
rodentcarcinogenicity. Thesequenceofthepredictivitywas(Ames—
DNA lesions) = (Ames-DNA lesions—in vitro) = (Ames-DNA
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TABLE 6 | Re-evaluate the in vitro cytogenetic results according to the ICH S2 (R1).

Test system (in vitro cytogenetic assays) Dose or concentration Result Conversion ICH S2 (R1), 1 mM
(LED or HID) unit (mM) Concordant
1. Acriflavine (1) (259.70)
CHO, CHO-K1-BH4 (HGPRT) 0.5-4 pg/l + 1.54 x 10-° Y
2. Albendazole (2) (265.33)
MN, peripheral blood lymphocytes 10-100 pg/ml + 0.377 Y
MN, human lymphocytes 10-100 pg/ml + 0.377 Y
3. Amitraz (3) (293.23)
DNA damage on hamster cells, comet assay 3.75 g/l + 1.28 x 10-° Y
4. Chlordimeform (10) (196.68)
DNA effects (human diploid fibroblasts FL cell) 10°to 10~ g/ml + 5.08 N
5. Coumaphos (13) (362.78)
CA in vitro, CHO cells (rat, liver, S-9, aroclor 1254) 100, 300, 1,000 pg/! — 2.76 x 10°° Y
CA in vitro, CHO cells (none) 99.5, 299, 995 ug/! - 2.7x10°° Y
6. Cyfluthrin (14) (434.29)
CA, human peripheral blood lymphocytes 1,000, 2,000 mg/mi + 4.61 x10° N
SCE, human peripheral blood lymphocytes 500, 1,000, 2,000 mg/mi — 4.61 x10° N
MN, human peripheral blood lymphocytes 500, 1,000, 2,000 mg/ml + 4.61x10° N
DNA damage, epithelial cells of human nasal mucosa 0.05, 0.1, 0.5, 0.75, 1.0 mg/ml + 2.303 N
DNA damage and comet assay in fish 5.6 mg/I beta-cyfluthrin for 48 h + 1.29 x 102 Y
CA in vitro 500, 1,000, 2,000 pg/l - 4.61x10°° Y
SCE in blood lymphocytes 500, 1,000, 2,000 pg/I — 4.61x10°° Y
Mouse bone marrow cells in vitro 1,000 pg/l + 2.30x 107 Y
7. Cypermethrin (15) (416.32)
CAs, human peripheral lymphocytes 5,10, 15, 20 mg/ml + 48.0 N
SCE, human peripheral lymphocytes 5,10, 15, 20 mg/ml + 48.0 N
MN, human peripheral lymphocytes 5,10 mg/ml + 24.0 N
CA in highly mitotic kidney cells 0.4,0.8,1.2 g/l for 48 and 72 h + 2.88 x 10°° Y
MN, erythrocytes of a freshwater fish 0.4,0.8,1.2 pg/l for 48 and 72 h + 2.88 x 10 Y
Peripheral blood for MN test 20, 30, 40, 50 mg/I + 0.120 Y
8. Danex (16) (257.45)
UDS human cells 0.4-4,000 mmol + 4.0x 10° N
CA, V79 cell 0.04-0.8 mmol - 8.0 x 102 N
9. Deltamethrin (17) (505.20)
CA, CHO cells in vitro 0,19, 38, 75, 150 pg/l + 2.97 x 10 Y
V/79/6-thioguanine, Chinese hamater V79 4-40 pg/l — 7.92 x 10 Y
10. Diaveridine (18) (260.29)
CAin cultured CHL cells 12.5, 25, 50, 100 pg/! + 3.84 x 10~ Y
CA 100 pg/1,48 h + 3.84 x 10 Y
11. Diazinon (19) (304.35)
DNA damage, human blood lymphocytes 750 pg/l + 2.46 x 1078 Y
12. Dichlorvos(DDVP) (20) (220.98)
CA in vitro, CHO cells 16, 50, 100, 160 pg/I + 7.24 x 10 Y
50, 160, 500, 1,600 pg/! + 7.24 x 1078 Y
500, 750, 1,000 pg/I + 453 x 107 Y
CA, V79 1.25-5 g/l - 2.26 x 10° Y
CHO, CHO-k1-bh4 (HGPRT)/6-thioguanine 50-150 pg/! + 6.79 x 10~ Y
Mouse lymphoma, L5178Y (TK+/TK-) 0-0.33 pg/l, 0-0.12 pg/l, + 1.49 x 10-° Y
0-0.24 pg/ml + 1.09 x 108 Y
Mouse lymphoma, L5178Y (TK+/TK-) 6.25-200 pg/l + 9.05 x 10 Y
UDS human cells 6.5-650 mg/ml + 2.94 x 10° N
UDS rat hepatocytes 0.005-1.25 mg/ml — 5.66 N
13. Dimetridazole (21) (141.12)
Comet assay, human lymphocytes 354.3 mg/ml + 2.51 x10° N
14. Fenbendazole (22) (299.34)
Chromosomal damage in CHL cells 0.78 mg/ml + 2.61 N
Cytotoxicity to 10T1/2 cells 0.04-1.60 mg/ml + 5.35 N
Morphological transformation in mouse embryo fibroblasts 0.08-0.4 mg/ml + 1.34 N
(Continued)
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TABLE 6 | Continued

Test system (in vitro cytogenetic assays) Dose or concentration Result Conversion ICH S2 (R1), 1 mM
(LED or HID) unit (mM) Concordant

15. Fenthion (24) (278.33)

UDS, thymidine incorporation, rat hepatocytes 0, 5.0, 7.5,10.0, 15.0, 30.0 pg/| + 1.08 x 10~ Y
CA, CHO cells in vitro 0, 0.02, 0.04, 0.08, 0.15 pg/I — 5.39 x 1077 Y
CA, human peripheral lymphocytes 0.5,1.5,2.5,5.0 yg/ml + 1.80 x 102 Y
16. Fenvalerate (25) (419.90)

Peripheral blood for MN test 25, 50, 75, 100 mg/I + 0.238 Y
Chinese hamster V79 gene mutation 4-40 pg/! - 9.53 x 10° Y
CA, CHO-K1, in vitro 10, 25, 50, 100,150 pg/l + 3.57 x 10 Y
CA, CHO-K1, in vitro 5,10, 25, 50 pg/! + 1.19x 10 Y
17. Fipronil (26) (437.20)

CA, human lymphocytes in vitro 0, 4.69, 9.38, 18.75, 37.5, 75, 150, 300 pg/! + 6.86 x 10~ Y
SCEs, DNA damage, comet assay 0.3,0.7 pg/l + 1.60 x 10-¢ Y
MN, human peripheral blood lymphocytes 0.3, 0.7 pg/l + 1.60 x 10-° Y
Comet assay with gillsin, the fish Rhamdia quelen 0.05, 0.10, 0.23 pg/l - 5.26 x 1077 Y
Nuclear morphological alterations 0.05, 0.10, 0.238 pg/! — 5.26 x 1077 Y
CA, V79 cells, HGPRT mutations 0, 0.8, 4, 20, 100, 500 pg/l + 1.14 x10°° Y
18. Furapromide (28) (224.22)

CA, V79 cell 10-120 pmol + 1.20 x 10~ Y
19. Imidacloprid (30) (255.70)

MN, human peripheral blood lymphocytes 0.2,2,20 pg/l + 7.82 x10°° Y
MN, human peripheral lymphocytes 0.1,0.5 mg/l + 1.96 x 10 Y
SCE, human peripheral lymphocytes 0.1,0.5 mg/l + 1.96 x 10-° Y
Comet assay, DNA damage, SCGE 0.05, 0.1, 0.2, 0.5 mg/l + 1.96 x 102 Y
MN, Human lymphocytes in vitro 50 pg/l + 1.96 x 10 Y
SCE in human lymphocytes Combination with metalaxyl at 100, 200 pg/| + 7.82x 10 Y
SCE induction in human lymphocytes 0.1, 1, 5,10, 50, 100 pg/! — 3.91 x 10 Y
20. Lindane (32) (290.82)

Comet-forming activity in MCF-7 cells 10~ g/ml + 3.44 N
DNA damage and the risk for cancer on 0.5, 0.75, 1.0 mg/ml + 34.4 N
human tonsillar

21. Metronidazole (36) (171.16)

Comet assay in human lymphocytes 292.1 mg/ml + 1.71 x 108 N
CA in vitro, human lymphocytes 0.1,1,10, 50 pg/l + 2.92 x 10 Y
22. Permethrin (42) (391.28)

Chinese hamster V79, rat hepatocytes 4-40 pg/l — 1.02 x 10~ Y
23. RH-5849 (47) (296.40)

MN, human peripheral lymphocytes 25, 100 mg/I + 0.337 Y
SCE, human peripheral lymphocytes 25, 100 mg/I + 0.337 Y
Comet assay, DNA damage, SCGE 5, 25, 50, 100 mg/I + 0.337 Y
MN, human lymphocytes in vitro 50 mg/ml + 1.69 x 102 N
SCE, human lymphocytes 100, 200 mg/ml + 6.75 x 10? N
24. Tiabendazole (50) (210.19)

MN (none) in vitro, V79 cells 0.5-700 pg/l + 3.33x 107 Y
MN, human lymphoblastoid wtk1 cells 0, 50, 100, 200 pg/! + 9.52 x 10 Y
25. Triclabendazole (52) (359.66)

CA in vitro, river buffalo lymphocytes 25, 50, 100 pg/l + 2.78 x 10 Y
MN in vitro, river buffalo lymphocytes 25, 50, 100 pg/l + 2.78 x 104 Y
CA in lymphocyte 25, 50, 100 pg/l + 2.78 x 10 Y
SCEs in lymphocyte 25, 50, 100 pg/ml + 0.278 Y
MN in lymphocyte 25, 50, 100 pg/ml + 0.278 Y
The name of each antiparasitic is followed by the number in the Table 1 and molecular weight. For each type of assay: “+,” positive response; “—,” negative response; “Y,”

consistent with results of the current guideline of ICH S2 (R1); “N,” discordant with results of the current guideline of ICH S2 (R1); UDS, DNA repair synthesis; M, micronucleus;
MLA, gene mutation, mouse lymphoma L5178Y cells, TK locus; HGPRT, gene mutation, hgprt locus; SCE, sister chromatid exchange; Trans., cell transformation; HID, highest
ineffective dose; LED, lowest effective dose; CHO, Chinese hamster ovary; CHL, Chinese hamster lung. Pharmaceuticals with in vitro cytogenetic results but without the retrievable
dose: Amphotericin B, Atovaquone, Bromofenofos, Fenchlorphos, Malathion, Niclosamide, Pyrimethamine, Thiophanate.
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TABLE 7 | Correlation between the results of genotoxicity assays of antiparasitics.

Couples of assays considered

No. of drugs with

Concordant results

Discordant results

Bacterial mutagenicity —gene mutation in mammalian cells

Bacterial mutagenicity—in vitro cytogenetics
Bacterial mutagenicity —in vivo cytogenetics
Bacterial mutagenicity—DNA lesions

Gene mutation in mammalian cells—in vitro cytogenetics
Gene mutation in mammalian cells—in vivo cytogenetics

Gene mutation in mammalian cells—DNA lesions
in vitro cytogenetics—in vivo cytogenetics

DNA lesions—in vitro cytogenetics

DNA lesions—in vivo cytogenetics

7
9
5
5
3
6
4

84.6%) (6
60 0%) (3
57.9%)
58.3%)
75.0%)
55.6%)
)
)
)
)

83.3%
81.2%
66.7%
80.0%

, 7,10, 19, 20, 24-26, 28, 33, 42)

,6,7,10, 13, 16, 20, 26, 28, 30, 36, 42)
1,6-9, 16, 26, 30, 35, 36, 49)
16, 18, 20, 21, 25, 33, 42)
1,6,7,10, 26, 28, 32, 42, 50)
6,7, 26, 32, 50)

25, 32, 33, 42, 45)

2,6,7,15,16, 19, 25, 26, 30, 32, 36, 45, 50)
16, 20, 24, 32, 42, 47)
10,

14, 16, 32)

16.7%) (32, 45)

40.0%) (15, 19, 22, 25, 32, 33, 47, 49)

42.1%) (13-15, 17, 19, 24, 25, 32)

41.7%) (3, 14, 32, 45, 47)

25.0%)

44.4%)
)
)
)
)

(

(

(

(

(19, 25, 33)
(19, 20, 24, 25)
(

(1

G

(

16.7%) (36)
18.8%
33.3%
20.0%) (25)

3,18, 49)
25, 39)

In these comparisons, the drug gave only positive result (s) or only negative or inconclusive result (s) in the considered assays. In parentheses are indicated the number and

corresponding percentages, as well as the numbers of Table 3.

TABLE 8 | Correlation between the multiple genotoxicity and carcinogenicity in mice and rats assays of antiparasitics.

Couples of assays considered

No. of antiparasitics with

Concordant results

Discordant results

Bacterial mutagenicity —carcinogenicity in mice
Bacterial mutagenicity —carcinogenicity in rats

Bacterial mutagenicity —carcinogenicity in both mice and rats
Gene mutation in mammalian cells—carcinogenicity in mice
Gene mutation in mammalian cells—carcinogenicity in rats
Gene mutation in mammalian cells—carcinogenicity in both

mice and rats

In vitro cytogenetics —carcinogenicity in mice
In vitro cytogenetics —carcinogenicity in rats

In vitro cytogenetics —carcinogenicity in both mice and rats

In vivo cytogenetics—carcinogenicity in mice
In vivo cytogenetics —carcinogenicity in rats

In vivo cytogenetics —carcinogenicity in both mice and rats

DNA lesions —carcinogenicity in mice
DNA lesions—carcinogenicity in rats
DNA lesions —carcinogenicity in both mice and rats

11 (78.6%) (2, 3, 13, 15, 17, 19, 20, 25, 26, 33, 35) 3(21.4%) (7, 10, 32)
15 (93.75%) (2, 3, 7, 13, 15, 17, 20, 24-26, 30, 32, 33, 35, 45) 1 (6.25%) (10)

9(90.0%) (2, 3, 13, 15, 17, 20, 25, 33, 35) 1(10.0%) (10)

5 (55.6%) (19, 25, 26, 32, 33) 4 (44.4%) (7, 10, 36, 50)

5 (50.0%) (7, 24, 25, 26, 33) 5 (50.0%) (10, 32, 36, 45, 50)

3 (50.0%) (25, 26, 33) 3(50.0%) (10, 36, 50)

7 (53.8%) (3, 13, 20, 24, 26, 32, 45) 6 (46.2%) (7, 15, 19, 25, 33, 50)

7 (58.3%) (3, 7, 13, 19, 20, 26, 30) 5 (41.7%) (15, 25, 32, 33, 50)

4 (50.0%) (3, 13, 20, 26) 4 (50.0%) (15, 25, 33, 50)

4 (36.4%) (26, 32, 35, 45) 7 (63.6%) (7, 13, 15,17, 19, 25, 50)
5 (41.7%) (7, 19, 26, 30, 35) 7 (58.3%) (13, 15, 17, 24, 25, 32, 50)
2 (28.6%) (26, 35) 5 (71.4%) (13, 15, 17, 25, 50)

6 (75.0%) (20, 24, 25, 32, 33, 36) 2 (25.0%) (3, 30)

4 (57.1%) (20, 25, 33, 36) 3 (42.9%) (3, 32, 45)

4 (80.0%) (20, 25, 33, 36) 1 (20.0%) (3)

In these comparisons, the antiparasitics gave only positive results or only negative or inconclusive results in genotoxicity assay and tested positive in at least one sex of mice or rats
or gave negative or inconclusive results in both species in carcinogenicity assays. The following indicated the number and corresponding percentages, as well as the numbers of

drugs of Table 3.

TABLE 9 | Predictivity of multiple combinations with Ames for rodent carcinogenicity assays of antiparasitics.

Couples of assays
considered

No. of antiparasitics with concordant results

Carcinogenicity

Concordant results

Discordant results

Without results

Ames-Gene
Ames-In vitro

Ames-In vivo
Ames-DNA
Ames-Gene-In vitro
Ames-Gene-In vivo
Ames-Gene-DNA
Ames-In vitro—In vivo
Ames-In vitro-DNA
Ames-In vivo-DNA

1(6,7,10, 19, 20, 24-26, 28, 33, 42)
16 (1,8,6,7,10, 13,16, 18, 20, 26, 28,

30, 36, 37, 42, 50)

13 (1, 6-9, 11, 16, 26, 30, 35, 36, 49, 50)
10 (16, 18, 20, 21, 25, 26, 30, 33, 36, 42)

76,7, 10, 20, 26, 28, 42)
6,7, 26)

20, 25, 26, 33, 42)

1,6, 7, 16, 26, 30, 36, 50)
16, 18, 20, 26, 30, 36, 42)
26

3
5(
8(
7(
1(26)

5 (62.5%) (19, 20, 25, 26, 33)
6 (66.7%) (3, 13, 20, 26, 30, 36)

26, 30, 35, 36)

(20, 25, 26, 30, 33, 36)
20, 26)

26)

(20, 25, 26, 33)
26, 30, 36)
(
(

4(66.7%)
6(100.0%
2 (50.0%)
1 (50.0%)
4(100.0%
3(60.0%)
4(100.0%
1 (100.0%

20, 26, 30, 36)
20)

3(37.5%) (7, 10, 24)
3(33.3%) (7, 10, 50)

(33.3%) (7, 50)

(50.0%) (7, 10)
(50.0%) (6)

2
0
2
]
0
2 (40.0%) (7, 50)
0
0

3(6, 28, 42)
71,6, 16,18, 28, 37, 42)

1,6,8,9, 11,16, 49)
16, 18, 21, 42)

Ames, bacterial mutagenicity; Gene, gene mutation in mammalian cells; In vitro, in vitro cytogenetics; In vivo, in vivo cytogenetics; DNA, DNA lesions. In these comparisons, all the
combinations took the Ames as center. The antiparasitics gave only positive results or only negative or inconclusive results in genotoxicity assay, and tested positive in at least one
sex of mice or rats or gave negative or inconclusive results in both species in carcinogenicity assays. The following indicated the number and corresponding percentages, as well as
the numbers of antiparasitics of Table 3.
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lesions-gene mutation in mammalian cells) = (Ames-In vivo-
DNA) > (Ames-in vitro) = (Ames—in vivo) > (Ames-gene muta-
tionin mammalian cells) > (Ames—-in vivo-in vitro) > (Ames-gene
mutation in mammalian cells-in vivo) = (Ames-gene mutation
in mammalian cells-in vitro).

Table 10 presents the number and the percentage of
antiparasitics that were classified as non-genotoxic non-carcin-
ogens, genotoxic non-carcinogens, non-genotoxic carcinogens,
and genotoxic carcinogens according to the genotoxicity assays
considered. An antiparasitic was regarded as genotoxic when a
positive response was given in at least one genotoxicity assay, and
carcinogenic when it was tested positivein atleast onerodent sex. Of
the 20 antiparasitics with retrievable results of both genotoxicity and
carcinogenicity, Malathion, Diazinon, Deltamethrin, Fenvalerate,
Coumaphos, Tiabendazole, Albendazole, Cypermethrin, Amitraz
and Praziquantel might be classified as genotoxic non-carcino-
gens; Fenthion, Lindane, Chlordimeform, Fipronil, Dichlorvos,
Metronidazole, Pyrimethamine, and Imidacloprid can be classi-
fied as genotoxic carcinogens; Mefloquine was considered a non-
genotoxic non-carcinogen, while the non-genotoxic carcinogens
only contained Atovaquone, which tested negative in bacterial
mutagenicity, in vitro and in vivo cytogenetic assays, but was
found to induce liver tumors in mice in a long-term carcinogen-
esis assay (75, 122, 123).

The bacterial mutagenicity has the highest specificity but the
lowest sensitivity (Table 8), while DNA lesions (in vitro and/
or in vivo) have the highest sensitivity and a lower specificity.
A test with a low specificity induced a high proportion of mis-
leading positive results. Therefore, the combination of bacterial
mutagenicity and DNA lesions has high accuracy in relation to
rodent cancer, which is consistent with the above analysis results.
A proportion of 5.3% of antiparasitics gave positive in bacterial
mutagenicity and was classified as non-carcinogens. There were
31.6% of antiparasitics that were regarded as carcinogenic while
gave a negative result in bacterial mutagenicity.

DISCUSSION

The economic importance of parasitic infections in livestock
and humans has long been recognized. Meanwhile, the most

important advances in antiparasitics have come from the animal
health area. Although many antiparasitics have been developed
and applied to control parasitism in humans and animals, geno-
toxicity and carcinogenicity studies have not been conducted on
alarge proportion of them. Since a relationship between exposure
to genotoxic compounds and carcinogenesis has been established,
genotoxicity tests have been proposed for all medicinal products
for human use except for some compounds (e.g., anticancer) that
can interact with DNA (11). Therefore, this review was to assess
the extent of antiparasitics that have been tested for genotoxic
and carcinogenic activity. In addition, the ability of various types
of genotoxicity assays was summarized to discriminate rodent
carcinogens, which benefit to analyze the relative predictivity of
carcinogenicity in rodents and humans. Furthermore, it is neces-
sary to re-evaluate in vitro genotoxicity according the present
revised guidelines.

With regard to the genotoxicity assays, compared to the posi-
tive and discordant results, the incidence of negative responses
is 61.7, 61.1, 21.2, 25.8, and 15.8% for bacterial mutagenicity,
gene mutation in cultured mammalian cells, in vitro cytogenet-
ics, in vivo cytogenetics, and DNA lesions (in vitro and in vivo),
respectively. It was observed that the incidence of negative
responses was higher than the positive and discordant results in
bacterial mutagenicity and gene mutation in cultured mamma-
lian cells. Kasper et al. (240) reviewed the advantages and limita-
tions of the standard genotoxicity tests in predicting the ability
and the mode of action for carcinogens, which demonstrated
that a totally negative response in all the standard genotoxicity
assays was sufficient to prove the non-genetic toxicity of the
chemicals, while the presence of a positive response in some
genotoxicity assays, particularly in Ames and in vitro genotox-
icity studies, did not afford support for the genetic definition
of the chemicals. There have been a number of experiences in
the literature regarding the high correlation among the various
types of genotoxicity assays with respect to carcinogens
(241, 242), which suggested that a chemical that tested positive
in Salmonella tended to yield positive responses in any other
in vitro genotoxicity studies, for instance, chromosome aber-
rations (CA), SCEs, and mutations in mouse lymphoma cells
(MLA) (243).

TABLE 10 | Correlation between the results of genotoxicity and carcinogenicity assays of antiparasitics.

Assay type  No. of non-genotoxic No. of genotoxic No. of non-genotoxic No. of genotoxic carcinogens
non-carcinogens non-carcinogens carcinogens

Ames 8(42.1%) (2, 3,13,17, 19,25, 1 (5.3%) (50) 6(31.6%) (7, 10, 19, 24, 32, 45) 4 (21.1%) (20, 26, 30, 36)
33, 35)

Gene 2 (16.7%) (25, 33) 1(8.3%) (50) 5(41.7%) (7, 10, 19, 24, 36) 4 (33.3%) (20, 26, 32, 45)

In vitro 2(11.1%) (3, 13) 6 (33.3%) (2, 15, 17, 25,33,50) 2 (11.1%) (7, 10) 8 (44.4%) (19, 20, 24, 26, 30, 32, 36, 45)

In vivo 1(5.6%) (35) 7 (38.9%) (2, 13, 15, 17, 25, 2 (11.1%) (1, 20) 8 (44.4%) (10, 19, 24, 26, 30, 32, 36, 45)

33, 50)
DNA lesions 2 (15.4%) (25, 33) 2 (15.4%) (3, 15) 0 9(69.2%) (10, 19, 20, 24, 26, 30, 32, 36, 45)

Ames, bacterial mutagenicity; Gene, gene mutation in mammalian cells; In vitro, in vitro cytogenetics; In vivo, in vivo cytogenetics. The data show the number of antiparasitics that
classified as non-carcinogens and carcinogens, which were examined in each genotoxicity assay and the result was negative (non-genotoxic) and positive (genotoxic) in the same
assay. In this analysis, the antiparasitics that did not increase tumor incidence in mice and/or rats of both sexes were considered as non-carcinogens, and that increased tumor
incidence in at least one sex of mice or rats were considered as carcinogens. An antiparasitic was considered non-genotoxic when it gave a single negative result, and genotoxic
when it gave a single positive or concordant positive result in the indicated genotoxicity assay. The following indicated the number and corresponding percentages, as well as the

numbers of antiparasitics of Table 3.
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A high percentage of antiparasitics tested positive in the
following assays: in vitro cytogenetics, in vivo cytogenetics, and
DNA lesions (in vitro and in vivo). It is worth noting that the
proportion of positive responses in in vitro cytogenetics is higher
than in other types of assays. The in vitro cytogenetics seems to be
more sensitive to genetic substance. However, the in vitro assays
always lead to a number of false-positive results in genotoxicity
and the carcinogenicity in rodents (244, 245). It was learned from
the literature that the massive positive results only occurred at
high levels of concentration. Recent surveys for in vitro cytoge-
netics were taken from compilations such as that of Miiller et al.
(246), Kirkland and Miiller (247), Miller and Kasper (248), and
Hilliard et al. (249). The conclusion was that the highest testing
concentrations might lead to an increase in the emergence of
misleading, toxicity-related positive results. In cytotoxicity and
chromosome aberrations in vitro, Galloway (250) found that
the positive response in genetic toxicology was caused by the
cytotoxicity rather than the true drug or DNA interactions. Parry
etal. (251) examined 24 carcinogens that gave positive results in
in vitro genotoxicity at 1-10 mM, yet almost half of them were not
mechanistically genotoxic carcinogens or had carcinogenic effects
only in excessive doses. In the present review, we re-evaluate the
in vitro genotoxicty according to current ICH S2 (R1) guidance.
We find that the percentage of antiparasitics in agreement with
the current ICH S2 (R1) guidance for in vitro genotoxicity data
acceptance was 15 (45.5%). Thus, it is essential to re-evaluate
in vitro genotoxicty that conducted prior to the update guideline
of ICH S2 (R1) to provide a comprehensive assessment of the
genotoxic effects.

Misleading positive results were found not only in in vitro but
also in in vivo genotoxic assays. Increasing experience suggested
that the occurrence of a positive response in rats and mice micro-
nucleus tests was not the consequence of intrinsic genotoxicity
but drug-related disturbances in the physiology (252), such as
lysosomal damage, ATP depletion or impairment of mitochon-
drial function and the release of DNA endonucleases. However,
at the time of writing, there has still been no amendment to the
guidelines requirements of in vivo genotoxicity for dose limita-
tions and toxicity to avoid irrelevant physiological responses.
Furthermore, there is no consensus as to the highest testing
concentration in in vitro genotoxicity assays. The method for the
detection of toxicity has greatly changed in recent years, and the
limitations of dose and toxicity in genotoxicity testing in OECD
and ICH should be adjusted to adapt to the new changes. The
standard genotoxicity system also needs to identify the cytotoxic-
ity and genotoxicity clearly.

There are many explanations that could account for the exist-
ence of different results in the various types of genetic tests. The
differencesare the following: the detection of the genetic end point;
the xenobiotic metabolism between bacterial mutagenicity and
mammalian cells; the effective dose between in vitro and in vivo,
especially the in vivo decomposition; the relative sensitivities of
various genotoxicity assays to genetic damage; the metabolic
activation pathway and metabolizing enzymes among species.
In vivo activity, which is designed to study the mechanisms of
mutagenicity in the potential target organs of rodents, is the best
method to confirm the differences in cytogenetics between in vivo

and in vitro. Except for the irrelevant biological reaction at high
doses, it is also accepted that the metabolic activation process and
metabolites could induce genetic toxicity. Some evidence sug-
gested that the genetic toxicity of compounds may be prototypes
or metabolites. For the drugs that are theoretically nitrosatable in
the presence of amine, the interaction resulted in the formation of
genotoxic—carcinogenic N-nitroso compounds (253). However,
the current standard of genotoxicity assays cannot distinguish
whether the positive results are derived from the drugs or their
metabolites directly.

In Table 7, the percentage of concordant results between
bacterial mutagenicity and carcinogenicity in both mice and
rats is 90.0%, which is higher than any other correlation pairs.
The same conclusion was drawn by Snyder and Green (19) in
a review of the genotoxicity of marketed pharmaceuticals. Data
from 467 marketed drugs were collected and no combination
of gene-tox assays provided a higher predictivity of rodent
carcinogenesis than the bacterial mutagenicity test itself (19). In
two studies conducted by Zeiger, one identified 172 chemicals
that gave negative or equivocal results in 2-year rodent assays,
yet 38 (22.1%) chemicals produced positive results in Salmonella
(243). Another found that among 158 drugs that tested negative
in carcinogenicity assays, 33 (21%) were Salmonella mutagens
(254). However, a chemical that tested negative in Salmonella
testing cannot be regarded as a non-carcinogenicity because the
percentage of rodent carcinogens that are not mutagenic is about
50% (254). It was also reported that the predictivity for rodent
carcinogenicity of bacterial mutagenicity ranged from approxi-
mately 77 to 98% (254, 255). The remaining 2-23% was classified
as non-carcinogen with positive result in bacterial mutagenicity,
which demonstrated the flaw and insufficiency on the prediction
carcinogenicity of bacterial mutagenicity.

Therefore, it requires efforts to overcome the deficiencies
of bacterial mutagenicity and improve the predictivity for
carcinogenicity. We try to find which genotoxicity assay(s) con-
sidered could enhance the prediction of bacterial mutagenicity
to rodent carcinogenicity. Our approach has many differences
and improvement compared to Snyder and Green (19), who
examined only five combinations of gene-tox assays, such as
Ames—in vitro cytogenetics, Ames—in vivo cytogenetics, In vitro
cytogenetics—in vivo cytogenetics, MLA-in vivo cytogenetics,
and MLA-in vitro cytogenetics (19). These combinations have no
DNA lesions tests and no taking bacterial mutagenicity as center.
A review suggested that DNA lesion alone could contribute to the
prediction of carcinogenicity in mice (255). In the present article,
as shown in Table 8, DNA lesion testing can significantly increase
the predictivity of Ames from 90 to 100%, suggesting that the
combination of DNA lesions and bacterial mutagenicity obtained
higher prediction of carcinogenicity.

There are three types of DNA lesions: (a) the formation of
DNA adducts; (b) DNA repair synthesis (UDS); and (c) the
induction of DNA strand breaks and cross-links. An analysis
of correlations between the induction of DNA lesions and
carcinogenic activity was conducted in 2010 (256). It noted
that the carcinogenic activity of some drugs can be correctly
predicted by DNA lesion assays, yet neglected in the standard
3-test battery. Thus, DNA lesion assays were considered the best
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supplement for the standard 3-test battery. The occurrence of the
highest predictivity in a combination of bacterial mutagenicity
and DNA lesions in our review suggested a close relationship
between genotoxicity and carcinogenic activity. The bacterial
mutagenicity test was often used to measure the ability of a drug
to cause mutations rather than a definitive test of the carcinogens.
The in vivo DNA lesion tests can detect the chemicals that reach
the appropriate target with an effective dose to convert into a
permanent mutation by reacting with DNA. In a few cases,
the mutation escaped monitoring to survive and subsequently,
carcinogenicity was generated through a loss of restriction of
cell division. The in vivo DNA lesions can identify this “survived
mutation.” Thus, the combination of bacterial mutagenicity and
DNA lesions showed a higher and more accurate predictivity of
carcinogenicity.

The correlation between the results of genotoxicity and
carcinogenicity assays of antiparasitics was indicated in Table 9.
Among the antiparasitics that were classified as genotoxic
carcinogens, 69.2% tested positive in in vitro and/or in vivo
DNA lesions exhibiting a greater sensitivity to carcinogens than
any other types of genotoxicity assays. Eight out of 19 (42.1%)
antiparasitics gave negative results in bacterial mutagenicity and
were identified as non-carcinogens. Sensitivity and specificity are
commonly used to describe the capability of in vitro genotoxicity
assays (257). Sensitivity is defined as the percentage of genotoxic
carcinogens that produced positive results in the considered test,
and specificity is regarded as the ratio of non-carcinogens that
gave negative responses. The ability of a battery of three in vitro
genotoxicity tests to discriminate between rodent carcinogens
and non-carcinogens was made by Kirkland et al. to increase
the specificity of a valid test (258). The conclusion was that the
“profile” of the genotoxicity results, such as the concentration, the
level of toxicity and magnitude of response, provided a body of
evidence to predict the carcinogenic results (259).

The rodent bioassays were useful and relevant for predicting
risks of human cancers (260). The epigenetic changes with a loss
of restriction of cell division (261) and the DNA oxidative stress
damage were likely to produce cancer. Trosko and Upham found
that the changes in gene expression caused by cell communica-
tion systems play a key role in the imbalance of cell proliferation,
differentiation, and apoptosis, eventually promoting the tumor
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