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Background and objectives: Studies that examined geographic variation in heart 
failure (HF) and its association with risk factors at county and state levels were limited. 
This study aimed to test a hypothesis that HF mortality is disproportionately distributed 
across the United States, and this variation is significantly associated with the county- 
and state-level prevalence of high blood pressure (HBP), diabetes, obesity and physical 
inactivity.

Methods: Data from 1,723 counties in 51 states (including District of Columbia as a 
state) on the age-adjusted prevalence of obesity, physical inactivity, HBP and diabetes in 
2010, and age-adjusted HF mortality in 2013–2015 are examined. Geographic variations 
in risk factors and HF mortality are analyzed using spatial autocorrelation analysis and 
mapped using Geographic Information System techniques. The associations between 
county-level HF mortality and risk factors (level 1) are examined using multilevel hierar-
chical regression models, taking into consideration of their variations accounted for by 
states (level 2).

results: There are significant variations in HF mortality, ranging from the lowest 11.7 
(the state of Vermont) to highest 85.0 (Mississippi) per 100,000 population among the 
51 states. Age-adjusted prevalence of obesity, physical inactivity, HBP, and diabetes are 
positively and significantly associated with HF mortality. Multilevel analysis indicates that 
county-level HF mortality rates remain significantly associated with diabetes (β = 2.7, 
95% CI: 1.7–3.7, p < 0.0001), HBP (β = 3.6, 2.1–5.0, p < 0.0001), obesity (β = 0.9, 
0.6–1.3, p < 0.0001), and physical inactivity (β = 1.2, 0.8–1.5, p < 0.0001) after con-
trolling for gender, race/ethnicity, and poverty index. After further controlling obesity and 
physical inactivity in diabetes and HBP models, the effects of diabetes (β = 1.0, −0.3 to 
2.3, p = 0.12) and HBP (β = 2.4, 0.9–3.9, p = 0.003) on HF mortality had a considerable 
reduction.
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FigUre 1 | Conceptual model and analysis framework for specific aims (SA) 1 and 2.
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conclusion: HF mortality disproportionately affects the counties and states across 
the nation. The geographic variations in HF morality are significantly explained by the 
variations in the prevalence of obesity, physical inactivity, diabetes, and HBP.

Keywords: heart failure, mapping, risk factors, mortality, United states

inTrODUcTiOn

Heart failure (HF), one of the major forms of cardiovascular 
diseases, is a complex clinical syndrome that results in the 
impairment of heart’s ability to fill or to pump out blood 
(1, 2). HF has posed a serious public health problem, with 
a prevalence of over 5.8 million in the United States (U.S.) 
and over 23 million worldwide. HF is rising nationally and 
internationally (1, 3). About half of people who develop HF 
die within 5 years of diagnosis. HF costs the U.S. an estimated 
$30.7 billion each year, which includes the cost of health care 
services, medications to treat HF, and missed days of work 
(1, 3–7). The risk factors for HF include diseases that damage 
the heart, such as coronary heart disease, high blood pres-
sure (HBP), diabetes and unhealthy behaviors (i.e., unhealthy 
dietary patterns, physical inactivity, smoking tobacco, etc.) 
(7). Most studies of the associations between risk factors 
and HF have been conducted at a personal level, which adds 
essential information to modify individual health behaviors 
and improve clinical treatments (5, 8–11). However, control 
of risk factors and diseases at population and community 
levels across the counties and states would play a critical role 
in moving toward the goal of healthy counties and states. 
Furthermore, health policy and population-based prevention 
programs have been designed and made at county- and state 
levels. In the last two decades, HF has become a new epidemic 
in the nation and worldwide (3, 6, 12). However, studies that 
examined geographic variations in HF and its determinants 
across the counties and states were insufficient (6). In this 
study, we aimed to test a hypothesis that a significant geo-
graphic disparity in HF mortality exists across the nation, 
and this geographic disparity is significantly associated with 
four preventable behavior- and disease-related risk factors.  
To test this hypothesis, we used data from three nation-
ally representative data sources to examine the geographic 
variations in HF mortality and to examine the associations 

between the risk of HF mortality and the prevalence of obe-
sity, physical inactivity, diabetes and HBP at the county- and 
state levels. Findings from the study may add new evidence 
to the body of the literature and provide substantial evidence 
to health policymakers and practitioners for control of HF at 
community and population levels.

sTUDY Design anD MeThODs

study Design
To address the geographic variations in risk factors and HF mor-
tality, we applied spatial and ecological analyses approaches. 
The current knowledge suggests that one of the biological 
pathways by which behavior risk factors increase the risk of 
heart diseases may go through an increased risk for diabetes 
and HBP (2, 6, 13–15). On the basis of a temporal causal-effect 
association between exposures and outcomes, we examined 
the association for risk factors that were measured in 2010 
(diabetes, HBP, obesity and physical inactivity), and outcomes 
(i.e., HF mortality) that were measured in 2013–2015. Figure 1 
illustrates the study conceptual model and data analysis 
framework.

study Population and Data
In the study, we collected data from 51 states (including the 
District of Columbia as a state) in the U.S. County-level sex-
specific and age-adjusted HF mortality rates were collected 
from the U.S. CDC WONDER (Wide-ranging Online Data for 
Epidemiologic Research) (16). Data for risk factors were collected 
from U.S. CDC County Data report, the National Health and 
Nutrition Examination Surveys (NHANES), and the national 
Behavior Risk Factor Surveillance System (BRFSS) (Table S1 
in Supplementary Material) (17–19). All data used in the study 
are de-identified and released publicly by the U.S. CDC for  
researchers (16–19).
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Outcomes
County- and state-level age-adjusted HF mortality rates 
were estimated in residents aged 35 and older for the period 
2013–2015 using direct standardization method. The U.S. 2000 
standard population was used in the direct standardization (16).  
We included those who were aged 35 and older because HF 
mainly affects adults and older people. We calculated an average  
of 3-year HF mortality to have a relatively stable and representa-
tive estimate of HF mortality for each county because as compared 
with the other major forms of cardiovascular diseases (coronary 
heart disease and stroke), HF mortality rate was much lower. For 
example, the average age-adjusted mortality rates were 209.8 per 
100,000 population for coronary heart disease, 80.4 per 100,000 
population for stroke, and 51.6 per 100,000 population for HF 
during the period of 2013–2015 (16).

Exposures
We focus on two groups of exposures: (1) Behavior-related fac-
tors, including county- and state-level age-adjusted prevalence 
of obesity and physical inactivity. Obesity is defined as body 
mass index [weight (kg)/height (m)*height (m) ≥  30  kg/m2]. 
Physical inactivity is defined as a “no” response to the ques-
tion, “During the past month, other than your regular job, did 
you participate in any physical activities or exercises such as 
running, calisthenics, golf, gardening, or walking for exercise?” 
(19) (2) Health conditions for clinical treatments, including the 
age-adjusted prevalence of HBP and diabetes. We focused on 
these four risk factors because they have high frequency and 
are largely preventable at community and population levels. 
Data for the county- and state-level age-adjusted prevalence 
of diabetes, obesity and physical inactivity were collected from 
the U.S. CDC County Data report (17). However, because data 
for the county- and state-level age-adjusted prevalence of HBP 
was not directly available from the CDC County Data report, 
we applied a multiple stage regression prediction method to 
estimate the prevalence of HBP using data from BRFSS and 
NHANES (18, 19). This estimation method is briefly described 
below. The details have been discussed in Ezzati and colleagues’ 
report (20).

Estimate of the State-Level Prevalence of HBP
We first estimated the state-level prevalence of HBP as BRFSS 
has the most data for the measures of HBP at the state level, 
but it has no exact measures of systolic and diastolic blood 
pressure (SBP and DBP). If we estimated the prevalence of 
HBP using the data from BRFSS only, we would miss cases for 
those who did not know whether they had HBP due to without 
exact measures of SBP and DBP. To estimate SBP and DBP, we 
applied multi-stage regression analysis approach (20). We first 
estimated the associations (assessed by regression coefficients, 
βis) between BP (SBP and DBP) and predictors (i.e., BP = β1*
age  +  β2*BMI  +  β3*DM  +  β4*Physical inactivity) using these 
measured variables in NHANES (SBP, DBP, age, BMI, diabetes, 
and physical inactivity). We then applied the estimated β1–4 by 
using data from NHANES to estimate SBP and DBP using data 
from BFRSS.

Estimate of the County-Level Prevalence of HBP
Behavior Risk Factor Surveillance System has personal health 
behavior and health condition data by states, but not by county. 
Therefore, we further estimated the county-level prevalence of 
HBP using the estimated state-level prevalence of HBP and 
using data on the prevalence of obesity, physical inactivity, and 
diabetes from the CDC County Data system. In the first step, we 
calculated the associations (assessed by regression coefficients, βi)  
of state-level HBP (estimated from the above section) with 
state-level obesity, diabetes and physical inactivity using data 
from BRFSS (i.e., HBPBR-NHANES_S  =  a  +  βBR_SO*XBR_SO  +  βBR_

SDM*XBR_SDM + βBR_SPIA*XBR_SPIA), where XBR represents data from 
BRFSS. HBPBR-NHANES_S represents the estimated HBP from both 
BRFSS and NHANES (see the above section), XBR_SO, XBR_SDM, 
and XBR_SPIA represent the state-level prevalence of obesity, 
diabetes, and physical inactivity from BRFSS. The estimated 
regression coefficients of obesity (βBR_SO), diabetes (βBR_SDM), 
and physical inactivity (βBR_SPIA) were then applied to estimate 
county-level HBP using country-level obesity (XCDC_CO),  
diabetes (XCDC_CDM), and physical inactivity (XCDC_CPIA) represent 
data from CDC County Data system (i.e., HBPES_C = a + βBR_SO* 
XCDC_CO  +  βBR_SDM*XCDC_CDM  +  βBR_SPIA*XCDC_CPIA), where 
HBPES_C represents the estimated county-level prevalence  
of HBP.

Covariates
In the multilevel hierarchical linear regression models, we tested 
the associations between risk factors and HF mortality, adjusting 
demographic factors (i.e., male-to-female ratio and % of African 
Americans), and socioeconomic status (assessed by poverty 
rate in adults aged 18 and older), because these factors are the 
strongest confounders in the study of the associations between 
the predictors and outcomes of the study (21).

statistical analysis
A serial analysis was conducted. In the first group analysis, we 
described the characteristics of the study samples by regions 
(Northeast, Midwest, South, and West) and tested the differ-
ence in the characteristics using analysis of variance for con-
tinuous variables, and chi-square test for categorical variables. 
Geographic variations in the study variables of interest were 
examined using spatial autocorrelation and mapped using the 
Geographic Information System technique (GIS, ArcGIS version 
12) (22). The spatial autocorrelation is a measure of the degree to 
which a set of spatial features (i.e., latitude and longitude) and 
their associated data values (i.e., risk factors and HF mortality) 
tend to be clustered together (positive spatial autocorrelation) 
or dispersed geographically (negative spatial autocorrelation). 
Two statistics, Moran’s I, and Geary’s C (i.e., spatial correlation 
coefficients) are used to evaluate the spatial correlation. Moran’s 
I ranges from −1 to +1, where values between 0 and +1 indicate 
a positive association between variables, and values between 0 
and −1 indicate a negative association and 0 indicates there is no 
correlation between variables. Geary’s C is always positive and 
usually ranges from 0 to (+2), where a positive autocorrelation 
is less than 1, and a negative autocorrelation is greater than 1. 
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TaBle 1 | Characteristics of study population by regions.

county-level variables  
of interest

all total sample 
(N = 1,723)

Mean (min–max)

By regions

northeast 
(N = 194)

Mean (sD)

Midwest 
(N = 486)

Mean (sD)

West 
(N = 193)

Mean (sD)

south 
(N = 850)

Mean (sD)

p-Values for regional and overall diff

regional diff (ref: south) Overall

ne vs. s MW vs. s W vs. s

hF mortality (per 100,000 population)
HF mortality in both gender 51.6 (5.2–367.0) 36.3 (12.2) 50.3 (24.5) 35.4 (19.5) 59.6 (32.2) <0.0001 <0.0001 <0.0001 <0.0001
HF mortality in men 58.9 (6.0–261.4) 42.9 (13.7) 58.2 (25.7) 36.7 (17.8) 70.5 (42.1) <0.0001 <0.0001 <0.0001 <0.0001
HF mortality in women 48.1 (3.7–304.8) 34.1 (12.5) 49.0 (24.9) 31.3 (18.8) 56.1 (32.3) <0.0001 0.001 <0.0001 <0.0001

Prevalence of factors in both gender (%)
Diabetes 9.6 (3.9–15.9) 8.4 (1.2) 8.8 (1.3) 7.6 (1.4) 10.8 (1.6) <0.0001 <0.0001 <0.0001 <0.0001
High blood pressure 31.5 (25.1–38.7) 29.8 (1.4) 30.7 (1.5) 29.0 (1.5) 32.9 (1.9) <0.0001 <0.0001 <0.0001 <0.0001
Obesity rate 30.4 (13.9–47.6) 27.2 (3.8) 30.6 (3.0) 25.6 (4.3) 32.0 (4.0) <0.0001 <0.0001 <0.0001 <0.0001
Physical inactivity rate 26.5 (10.4–43.1) 23.9 (3.4) 25.7 (4.0) 19.4 (3.7) 29.1 (4.6) <0.0001 <0.0001 <0.0001 <0.0001

Demographics and economic status
Male-to-female ratio, % 97.1 (93.4–108.5) 94.7 (1.0) 96.9 (1.3) 97.2 (3.5) 99.4 (1.6) <0.0001 0.306 <0.0001 <0.0001
% of African Americans 10.4 (0.2–82.3) 5.3 (6.5) 3.8 (5.2) 2.0 (2.3) 17.4 (16.7) <0.0001 <0.0001 <0.0001 <0.0001
Poverty rate in adults aged 
≥18, %

23.8 (3.8–57.1) 17.9 (6.4) 20.7 (6.9) 22.1 (7.5) 27.2 (8.5) <0.0001 <0.0001 <0.0001 <0.0001

HF, heart failure.
Annual average age-adjusted mortality (100,000 population) in residents aged ≥35 in the periods of 2013–2015.
Age-adjusted prevalence of diabetes, high blood pressure, obesity, and physical inactivity were estimated in adults aged ≥18.
Demographic and economic status (assessed by the % of poverty rate) variables were estimated in 2010 census.
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SAS procedure of variogram was used to test spatial autocor-
relation (23–25).

In the second group analysis, we examined associations of age- 
adjusted HF mortality with age-adjusted prevalence of hyperten-
sion, diabetes, physical inactivity, and obesity using correlation 
analysis (assessed by correlation coefficients and its 95% confi-
dence intervals) (26).

In the third group analysis, we estimated the impacts of 
county-level risk factors (obesity, physical inactivity, HBP, 
and diabetes) on the age-adjusted HF mortality (level 1) 
with adjusting covariates (male-to-female ratio, % of African 
Americans and poverty rate) and considering the variations  
accounted for by states (level 2) using multilevel hierarchical 
linear regression analysis techniques (27–29). We evaluated the 
fitness of models using Akaike information criterion (AIC), the 
smaller value of the AIC, the better a model is fitted. We calcu-
lated Pseudo R2 to test the proportional reduction in residual 
variance between two nested models when adding additional 
predictors and covariates (30, 31).

Finally, we repeated the above correlation analyses by trans-
ferring the study variables of interest to z-scores to use data with 
standardized normal distributions (32). The results are similar 
to those using non-transformed variables. Therefore, to easily 
interpret the findings, we reported the results of the analysis 
using the non-transformed datasets.

All data analyses were analyzed and are presented separately 
for men and women because sex is considered as a biological 
variable. However, the mapping presentations are presented for 
sex combined because they had similar distributions in the study 
samples. In multilevel models, we initially analyzed by sex, and 
then for a combined sample of both sexes while adjusting for 
sex (male-to-female ratios) to present a summary finding. In the 

study, we were unable to calculate county-level age-sex-adjusted 
mortality rates, because we had no individual-level data by age 
and sex. We used ArcGIS (version 10.31, Esri, Redlands, CA, 
USA) and SAS (version 9.4, SAS Institute, Cary, NC, USA) in 
mapping and statistical analyses. A two-sided p-value ≤ 0.05 was 
considered as having statistical significance.

resUlTs

characteristics of the study samples  
by regions
Table  1 shows that of the four U.S. Census regions, residents 
who lived in the counties located in the South had the highest 
age-adjusted HF mortality (59.6 per 100,000 population), fol-
lowed by those who lived in the Midwest (50.3 per 100,000), the 
Northeast (36.3 per 100,000), and West (35.4 per 100,000) in 
the period 2013–2015. A similar distribution of risk factors was 
seen. Residents who lived in the counties located in the South 
had the highest age-adjusted prevalence of diabetes (10.8%), 
HBP (32.9%), obesity (32.0%), and physical inactivity (29.1%). 
Meanwhile, the South had the highest male-to-female ratio 
(99.4%), the highest proportion of African Americans (17.4%), 
the highest poverty rate in adults aged 18 and older (27.2%) than 
the other three regions.

Mapping the Variations in risk Factors 
and hF Mortality across the states  
and counties
Significant variations in age-adjusted HF mortality across 
the 51 states were observed in men and women (Table S2 in 
Supplementary Material). Of the 51 states, the top three states 
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that had the highest HF mortality rates (per 100,000 popula-
tion) were Mississippi (85.0), Alabama (84.7), and Louisiana 
(71.2), the three states that had the lowest HF mortality were 
Vermont (11.7), Arizona (13.0), and Washington (15.9), 
respectively. Figure 2 depicts the state-level variations in the 
age-adjusted HF mortality rates and four risk factors of study 
interest. Overall, states located in the South and East had higher 
age-adjusted HF mortality rates [HF mortality, quantile (Q) 
5:59.4–85.0 per 100,000 population], and higher age-adjusted 
prevalence of obesity (Q5: 30.7–34.1%), physical inactivity 
(Q5: 27.9–33.0%), diabetes (Q5: 10.1–11.7%), and HBP (Q5: 
32.6–37.0%).

Figure  3 depicts the disproportionate distributions of HF 
mortality and the study risk factors of interest across the counties 
in the U.S. Spatial autocorrelation analysis (Table  2) indicates  
that the values of Moran’s I  >  0, and Geary’s C  >  0 and <1, 
which suggest that the variations in age-adjusted HF mortality, 
age-adjusted prevalence of obesity, physical inactivity, HBP, and 
diabetes by counties were positively and geographically clustered.

Binary analysis of the associations 
Between risk Factors and hF Mortality
Table 3 shows that the age-adjusted prevalence of diabetes, HBP, 
obesity and physical inactivity were positively and significantly 
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TaBle 2 | Spatial autocorrelation analysis of the study factors across the 
counties.

Moran’s I geary’s C

β sD p-Value β sD p-Value

Obesity 0.128 0.0001 <0.0001 0.822 0.003 <0.0001
Physical inactivity 0.148 0.0001 <0.0001 0.764 0.003 <0.0001
High blood 
pressure

0.155 0.0001 <0.0001 0.806 0.003 <0.0001

Diabetes 0.137 0.0001 <0.0001 0.821 0.003 <0.0001
Heart failure 0.098 0.0001 <0.0001 0.894 0.003 <0.0001

β: Spatial autocorrelation (dependency) coefficients.
Moran’s I coefficients (β) > 0 and Geary’s C coefficients > 0 and <1 indicate a positive 
spatial correlation (i.e., similar values cluster together in a region).
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TaBle 3 | Correlation coefficients (r and 95% CI) between risk factors and HF mortality.

risk factors hF mortality correlated with risk factors

in both sexes in men in women

r 95% ci p-Value r 95% ci p-Value r 95% ci p-Value

Diabetes rate, % 0.42 0.38–0.46 <0.0001 0.46 0.41–0.51 <0.0001 0.44 0.40–0.49 <0.0001
HBP rate, % 0.46 0.43–0.50 <0.0001 0.51 0.46–0.55 <0.0001 0.50 0.46–0.55 <0.0001
Obesity rate, % 0.41 0.37–0.44 <0.0001 0.47 0.41–0.51 <0.0001 0.44 0.40–0.49 <0.0001
Phy. Inact. rate, % 0.45 0.41–0.48 <0.0001 0.50 0.45–0.54 <0.0001 0.50 0.46–0.54 <0.0001

HF, heart failure; HBP, high blood pressure; Phy. Inact., physical inactivity.

associated with the risk of HF mortality in both sexes, and in men 
and women (p < 0.0001). Of the four risk factors, HBP shows to 
have the strongest correlation with the risk of HF mortality. The 
correlation coefficients are 0.46 (95% CI: 0.43–0.50, p < 0.0001) 
in both sexes, 0.51 (0.46–0.55, p  <  0.0001) in men, and 0.50 
(0.46–0.55, p < 0.0001) in women.

Figure  4 depicts a linear relationship of the county-level 
age-adjusted prevalence of HBP (Figure  4A) and diabetes 
(Figure  4B) with age-adjusted HF mortality. It also illustrates 
that counties in the South had a higher age-adjusted prevalence 
of HBP and diabetes (Figures 4A,B), and higher HF mortality  
(in red).

Figure 5 shows a linear relationship between the county-level 
age-adjusted prevalence of obesity (Figure 5A), physical inactiv-
ity (Figure  5B), and age-adjusted HF mortality. It also depicts 
that counties in the South had a higher age-adjusted prevalence 
of obesity and physical inactivity (Figures 5A,B), and higher HF 
mortality (in red).

Multilevel regression analysis
In multilevel hierarchal regression analysis (Table 4), Model 1 
indicates that 42.84% of the variation [347/(347 + 463.1)*100] 
in HF mortality (treated as level 1 in the multilevel model) was 
accounted for by the differences across states (level 2) (27). 
Model 2 indicates that counties with an elevated prevalence of 
diabetes, HBP, obesity, and physical inactivity had significantly 
higher HF mortality, as indicated by regression coefficients, 
β  =  3.05 (95% CI: 2.21–3.90, p  <  0.001), 3.80 (2.30–5.29,  
p < 0.0001), 1.20 (0.89–1.51, p < 0.0001), and 1.47 (1.17–1.76, 

p < 0.0001) for diabetes, HBP, obesity, and physical inactivity, 
respectively. Model 3 shows that the effects of the four risk 
factors on HF mortality were attenuated after adjustment for 
demographic and socioeconomic variables (male-to-female 
ratio, % of African Americans, and poverty rate). With a 
further adjustment for obesity and physical inactivity, Model 
4 shows that the effects of diabetes on HF mortality become 
non-statistically significant (p = 0.121). The effect of HBP on 
HF mortality decreased as well (β = 3.56 in Model 3 and 2.41 
in Model 4, a 32.3% reduction), but it remains statistically 
significant (p = 0.003). It suggests that for an estimated every 
1% increase in the prevalence of HBP, HF mortality increases by 
2.41 units. The values of AIC (with a smaller value) and Pseudo 
R2 (with a larger value) suggest that the models with adjusting 
covariates have a better fitness of the regression between the 
risk factors and HF mortality than the other models (30, 31). 
For example, for Models 3 and 4, in the relationship between 
diabetes and HF mortality, the values of Pseudo R2 from 3.64 to 
4.68% represents the proportional reduction in residual varia-
tion from Model 3 to Model 4.

DiscUssiOn

Three main findings of this study are (1) it is one of the first 
studies that maps the burden of HF mortality and examines 
the associations between four preventable risk factors and the 
risk of HF mortality across the counties and states of the U.S. 
It highlights that an estimate of 42.8% of the variations in HF 
mortality is accounted for by the differences across 50 states. (2) 
The study further highlights that the geographic disparity in HF 
mortality is significantly associated with the disproportionate 
distributions of the prevalent obesity, physical inactivity, diabe-
tes and HBP across the counties and states. These associations 
are independent of gender, race/ethnicity and socioeconomic 
status (assessed by poverty rate). (3) After controlling for obesity 
and physical inactivity, the effects of diabetes and HBP on HF 
mortality are hugely attenuated, which further confirms the 
importance of changes in behavior risk factors in disease control.

An increasing burden of HF has been reported by several 
studies, including our own reports (3, 5, 33–36). Few studies 
paid attention to the geographic disparities in HF. Most previous 
studies focused on individual risk factors at the personal level, 
which are undoubtedly important to provide information to 
precision medicine at an individual level (37–40). However, it 
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FigUre 5 | Correlation of age-adjusted prevalence of obesity (a) and physical inactivity (B) with age-adjusted heart failure (HF) mortality in 1,724 counties  
by regions.

is known that health policy and health programs are made and 
implemented at county- and state levels in the U.S. Therefore, 
in addition to having the studies at a personal level, studies at 
the county and state levels are needed to provide important evi-
dence for making better policy. Findings from this study further 
address the geographic disparity in HF mortality and provide 
new insights into the disease and risk factors control, which is 
critical in evaluating, improving and moving toward the goal of 
the healthy counties and states in the nation.

In the multilevel hierarchal regression analysis, findings from 
Model 3 highlight the significant independent effects of each risk 

factor on the risk of HF mortality. In Model 4, the association 
between diabetes and HF mortality became non-significant after 
further adjusting for obesity and physical inactivity. Given a high 
correlation of obesity and physical inactivity with diabetes (data 
not shown), it is very likely that this non-significant result is 
largely explained by the adjustment for a possible pathway of 
these two factors for the risk of diabetes, then subsequently to 
the risk of HF. It should be noted that although this study does 
not necessary to interpret any cause inference relationship due to 
the nature of the ecological study design, the pathway of obesity 
and physical inactivity with the risk of diabetes and HBP, and 
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TaBle 4 | Multilevel hierarchical linear regression models of the effects of risk factors on risk of heart failure mortality.

Model 1 Model 2 Model 3 Model 4

β se p β se p β se p β se p

Diabetes
Fixed effects

Intercept 45.0 2.8 <0.0001 17.87 4.6 0.0001 −105.31 71.0 0.068 −131.3 75.4 0.088
Diabetes 3.05 0.4 <0.0001 2.70 0.5 <0.0001 1.00 0.6 0.121

Random effects
Residual (Cty) 463.1 16.0 <0.0001 454.1 15.7 <0.0001 446.3 14.4 <0.0001 441.5 15.3 <0.0001
Intercept (state) 347.0 75.8 <0.0001 255.9 57.6 <0.0001 243.4 45.6 <0.0001 417.4 51.2 <0.0001

Model fit, AIC 15,609 15,562 15,433 15,411
Pseudo R2, % 1.95 3.64 4.68
V. acc for by state, % 42.8 36.0 35.3 48.6

high blood pressure (hBP)
Fixed effects

Intercept 69.97 23.4 0.005 −261.59 79.4 0.002 −249.6 78.8 0.003
HBP 3.80 0.8 <0.0001 3.56 0.7 <0.0001 2.41 0.8 0.003

Random effects
Residual (Cty) 464.1 16.1 <0.0001 451.6 15.7 <0.0001 442.2 15.4 <0.0001
Intercept (state) 220.8 51.5 <0.0001 185.9 44.8 <0.0001 183.5 44.3 <0.0001

Model fit, AIC 15,554 15,404 15,369
Pseudo R2, % −0.2 2.5 4.5
V. acc for by state, % 32.2 29.2 29.3

Obesity
Fixed effects

Intercept 10.19 5.2 0.052 −99.4 81.0 0.23
Obesity 1.20 0.2 <0.0001 0.96 0.2 <0.0001 Adjusted

Random effects
Residual (Cty) 451.6 15.6 <0.0001 445.2 15.5 <0.0001
Intercept (state) 267.0 59.7 <0.0001 257.6 59.4 <0.0001

Model fit, AIC 15,556 15,433
Pseudo R2, % 2.5 3.9
V. acc for by state, % 37.2 36.6

Physical inactivity
Fixed effects

Intercept 8.85 4.5 0.048 −122.8 76.2 0.113
Physical inactivity 1.47 0.2 <0.0001 1.19 0.2 <0.0001 Adjusted

Random effects
Residual (Cty) 444.5 15.4 <0.0001 442.4 15.4 <0.0001
Intercept (state) 235.7 53.2 <0.0001 223.1 52.5 <0.0001

Model fit, AIC 15,524 15,417
Pseudo R2, % 4.02 4.5
V. acc for by state, % 34.6 33.5

Model 1: test for variation accounted for by states.
Model 2: test fixed effect of risk factor on HF mortality.
Model 3: adjusted for male/female ratio, % of African American, and poverty rate in adults aged 18 and older.
Model 4: adjusted for male/female ratio, % of African American, poverty rate in adults, % of obesity, and % of physical inactivity.
AIC, Akaike information criterion; BIC, Bayesian information criterion.
Pseudo R2 represents the proportion reduction in residual variance between two nested models.
For example, analysis of the association between diabetes and HF, M1,2 Pseudo R2 = (463.1 − 454.1)/463.1*100 = 1.95%. M1,3 Pseudo R2 = (463.1− 446.25)/463.1*100 = 3.64%.
V. acc for by state: variation in HF mortality accounted for by states.
Significant values for the associations between risk factors and HF are in bold.

diabetes and HBP as independent risk factors for cardiovascular 
diseases are well established (2). Given a relatively cost-effect 
approach of controlling obesity and improving physical activity 
for multiple diseases prevention, findings from the study high-
light the importance of behavior changes and primary health 
care for controlling HF.

The mechanisms by which the behavioral-related and disease 
risk factors cause the development of HF and risk of HF mor-
tality have been established at personal levels. For example, the 

associations of obesity and physical inactivity with an increased 
risk of HF may go through their effects on an increased risk for 
HBP and diabetes. However, at a population level, the geographic 
variations in HF mortality may indicate an even wider range of 
risk factors, including tobacco control and health-care support 
systems. Presently, we did not examine the associations between 
these factors and risk of HF mortality because of the lack of the 
relevant and valid data. Further studies are needed to confirm the 
current findings and extend the current work.
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