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introduction: Risk behaviors commonly co-occur, typically emerge in adolescence, and 
become entrenched by adulthood. This study investigated the clustering of established 
(physical inactivity, diet, smoking, and alcohol use) and emerging (sedentary behavior 
and sleep) chronic disease risk factors among young Australian adults, and examined 
how clusters relate to mental health.

Methods: The sample was derived from the long-term follow-up of a cohort of 
Australians. Participants were initially recruited at school as part of a cluster randomized 
controlled trial. A total of 853 participants (Mage = 18.88 years, SD = 0.42) completed an 
online self-report survey as part of the 5-year follow-up for the RCT. The survey assessed 
six behaviors (binge drinking and smoking in the past 6 months, moderate-to-vigorous  
physical activity/week, sitting time/day, fruit and vegetable intake/day, and sleep duration/
night). Each behavior was represented by a dichotomous variable reflecting adherence 
to national guidelines. Exploratory analyses were conducted. Clusters were identified 
using latent class analysis.

results: Three classes emerged: “moderate risk” (moderately likely to binge drink and 
not eat enough fruit, high probability of insufficient vegetable intake; Class 1, 52%); 
“inactive, non-smokers” (high probabilities of not meeting guidelines for physical acti vity, 
sitting time and fruit/vegetable consumption, very low probability of smoking; Class 2, 
24%), and “smokers and binge drinkers” (high rates of smoking and binge drinking, 
poor fruit/vegetable intake; Class 3, 24%). There were significant differences between 
the classes in terms of psychological distress (p = 0.003), depression (p < 0.001), and 
anxiety (p = 0.003). Specifically, Class 3 (“smokers and binge drinkers”) showed higher 
levels of distress, depression, and anxiety than Class 1 (“moderate risk”), while Class 2 
(“inactive, non-smokers”) had greater depression than the “moderate risk” group.

Discussion: Results indicate that risk behaviors are prevalent and clustered in 
18-year old Australians. Mental health symptoms were significantly greater among the 
two classes that were characterized by high probabilities of engaging in multiple risk 
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behaviors (Classes 2 and 3). An examination of the clustering of lifestyle risk behaviors 
is important to guide the development of preventive interventions. Our findings reinforce 
the importance of delivering multiple health interventions to reduce disease risk and 
improve mental well-being.

Keywords: clustering, risk behavior, emerging adulthood, chronic disease, mental health

inTrODUcTiOn

Chronic diseases, such as cardiovascular disease, diabetes, and 
cancers, are the leading cause of death in Australia (1) and world-
wide (2). Physical inactivity, poor diet, smoking, and alcohol use 
are consistently identified as major behavioral risk factors for 
chronic disease (3–5). More recently, sedentary behavior and 
poor sleep have also emerged as key risk factors for poor health. 
For example, sitting time has been associated with an increased 
risk of all-cause, cardiovascular-, and cancer-related mortality  
(6, 7). Furthermore, short and long sleep duration has been 
shown to predict a greater risk of developing cardiovascular 
disease, coronary heart disease, and stroke (8, 9).

Emerging adulthood, typically defined as 18–25 (10, 11), is a 
critical developmental period when young people have increased 
exposure to risk behaviors, such as alcohol use and smoking  
(12, 13), while also acquiring greater autonomy over their food and 
lifestyle choices (14). Alarmingly, population data indicates that 
95% of 18–24-year olds in Australia do not eat the recommended 
amount of vegetables, 59% do not eat the recommended amount 
of fruit, 47% do not meet guidelines for physical activity, over 
two-thirds drink alcohol at risky levels, 36% are overweight or 
obese, 29% are sedentary, and 16% are current smokers (15). Sleep 
disturbance is the fourth most common mental health problem 
for Australians aged between 12 and 24, after depression, anxiety 
and substance use, with the greatest sleep deprivation reported 
for the age group 20–24 years (16). In addition to being highly 
prevalent, these lifestyles risk behaviors commonly co-occur as 
clusters, as people engage in multiple risk behaviors concurrently 
(13). Risk behaviors typically have a synergistic effect, such that 
the co-occurrence of multiple risk behaviors increases the risk of 
chronic disease incidence and mortality, more so than the addi-
tive effects of single behaviors (8, 17–19).

The clustering of multiple risk behaviors is an area of growing 
research, with the majority of existing studies focusing on general 
adult populations (20). Although less studied, research focusing 
on emerging adults has been conducted, most notably in college 
or university student populations (21–26). Previous research 
has found distinct risk clusters, characterized by engagement in 
different risk behaviors and varying prevalence, and consistently 
concludes that risk behaviors, such as diet, physical inactivity, and 
substance use, co-occur in young adults.

Risk behaviors acquired or maintained during emerging 
adulthood often track into later adult life, influencing future adult 
health. For example, risk factor profiles in young adulthood have 
been shown to be strongly predictive of long-term coronary heart 
disease risk (27), whilst the maintenance of a healthy lifestyle 
throughout young adulthood is strongly associated with a low-
cardiovascular disease risk profile in middle age (28). In addition 
to impacting future risk for physical disease, multiple health 

risk behaviors have been found to be associated with mental 
health problems among young adults. Specifically, young adults 
engaged in multiple lifestyle risk behaviors have been shown to 
exhibit higher rates of depression, anxiety, and distress than their 
counterparts who engage in fewer risk behaviors (22, 23, 29). 
Taken together, it is clear that prevention and early intervention 
strategies are needed among young people to reduce the risk of 
chronic physical diseases and mental disorders.

To date, there has been limited research examining the co-
occurrence of multiple risk behaviors among emerging adults, 
especially in Australia (30), despite the high prevalence of lifestyle 
risk behaviors in this population (15). Furthermore, most studies 
examining risk clusters have not included sleep in their analyses. 
Additionally, sedentary behavior is less studied compared with 
traditional risk behaviors, such as diet, physical activity, and sub-
stance use. An investigation of the clustering of traditional and 
emerging risk behaviors among young Australians could provide 
critical information to guide the development and tailoring of 
future interventions. Also, given that one in four Australians aged 
16–24 years experiences a mental disorder in any given year (31), 
an examination of how lifestyle risk behaviors relate to mental 
health outcomes is critical for informing holistic prevention 
approaches to improve both the physical and mental wellbeing of 
young people. An examination of the clustering of risk behaviors 
specifically among 18-year olds is important, as this age marks 
a transitional period where many young people transition out 
of school and into employment or further study. As adolescents 
transition out of school they are presented with unique challenges 
as it is a time where they acquire greater autonomy over their 
lifestyle choices (14), and are legally able to purchase alcohol and 
tobacco for the first time. As such, the aims of the present study 
were to conduct exploratory analyses to:

(i) Investigate the presence of clustering of six key risk behaviors— 
binge drinking, smoking, sleep duration, physical inactivity, 
fruit and vegetable intake, and sitting time—in a sample of 
18-year-olds in Australia.

(ii) Determine whether the identified latent classes are associ-
ated with mental health outcomes and socio-demographic 
factors.

MaTerials anD MeThODs

Participants
The sample was derived from the long-term follow-up of a cohort 
of young Australians. A total of 2,190 Year 8 students (13–14 year-
olds) from 26 Australian secondary schools were recruited to a 
cluster randomized controlled trial of a substance use prevention 
program in 2012. Participants completed baseline assessments and 
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TaBle 1 | Coding of risk behavior variables.

risk behavior coding

Binge drinking in the past 
6 months

1 = 5 or more standard drinks on one 
occasion, at least monthly

Tobacco use in the past 
6 months

1 = smoked tobacco more than once in 
the past 6 months

Physical activity/week 1 = <150 min moderate activity, <75 min 
vigorous activity,
or an equivalent combination/week

Fruit and vegetable 
consumption/day

Vegetables: 1 = <4–5 serves/day
Fruit: 1 = <2 serves/day

Sleep duration/day 1 = <6 hours or >11 hours/night
Sitting time/day 1 = sitting 8 or more hours/day

0 = adherence to guidelines, “not at-risk,” 1 = failing to adhere to guidelines, “at-risk.”
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a further four assessments between 2012 and 2015 representing 
post-test, 1-, 2-, and 3-year follow-ups [full details of the RCT are 
published elsewhere (32, 33)]. A 5-year follow-up of the cohort 
commenced in 2017, the first time participants were assessed 
since completing secondary school. The present study utilizes 
cross-sectional data collected from the 853 participants (mean 
age = 18.88 years, SD 0.42) who had completed the 5-year follow-
up assessment at the time of the analysis.

Procedure
Using multiple sources of locator information provided during 
previous assessments (including email, phone number, postal 
address, Facebook handle, and parents’ email address), partici-
pants were contacted and invited to complete the 5-year follow-up 
assessment. They were asked to complete an online self-report 
survey via the study website. Unlike previous waves of data col-
lection, participants were no longer attending secondary school 
and thus completed the survey remotely at a location of their 
choice. This study was approved by the UNSW Sydney Human 
Research Ethics Committee (HC16881). All subjects gave written 
informed consent in accordance with the Declaration of Helsinki. 
Respondents were given the opportunity to receive $30 (or an 
equivalent voucher) as reimbursement for their time.

Measures
Socio-demographic variables assessed were gender (male, 
female, and other), employment status (full-time, part-time, 
or unemployed), and current/completed tertiary education 
(none, trade/technical, and university/college). Self-reported 
body mass index (BMI) was calculated as weight (kilograms) 
divided by height (metres squared). Cut-offs from World Health 
Organization recommendations (34) were used to classify BMI 
as underweight (BMI < 18.5), normal range (BMI between 18.5 
and 25), overweight (BMI > 25), or obese (BMI > 30). Consistent 
with prior research examining the clustering of multiple health 
behaviors (22, 25), engagement in each of the six risk behaviors 
was represented by a dichotomous variable reflecting adherence 
to national guidelines (0 = adherence to guideline, 1 = failing to 
meet guideline; see Table 1).

Binge Drinking
A single item was used to assess binge drinking: “How often did 
you have five or more standard alcoholic drinks on one occasion 

in the past 6 months?” This measure is based on the Australian 
National Health and Medical Research Council guidelines 
and reflects international definitions of binge drinking (35). 
Responses were made on a six-point scale ranging from “never” 
to “daily or almost daily.” Responses were dichotomized so that 
binging monthly or more frequently was coded 1, and “never” or 
“less than monthly” coded as 0.

Tobacco Use
Smoking was assessed via the following item: “How often have 
you tried tobacco (cigarettes) in the last 6  months?” Response 
options were “none,” “once,” “tried more than once and less than 
five times,” or “tried more than five times.” Responses were binary 
coded so that using tobacco once or less in the past 6 months was 
coded 0, and using tobacco more than once was coded as 1.

Fruit and Vegetable Consumption
Fruit and vegetable intake was assessed using validated short 
items commonly used in health research (36, 37). Fruit intake 
was assessed via a single item: “About how many serves of fruit 
do you usually have each day?” Possible response options were 
“don’t eat fruit” “one serve or less,” “two to three serves,” “four 
to five serves,” “six serves or more.” Similarly, vegetable con-
sumption was assessed by the following item: “About how many 
serves of vegetables do you usually eat each day?” with responses 
made on a comparable scale to fruit intake. Participants were 
provided with written information about what constitutes one 
serve of fruit/vegetables. In line with national dietary guidelines 
(38), responses were dichotomized so that poor fruit intake was 
defined as less than two serves/day, and insufficient vegetable 
intake classified as less than four to five serves/day.

Physical Activity
To calculate self-reported moderate-to-vigorous physical activity, 
participants completed four items from the International Physical 
Activity Questionnaire-Short Form (IPAQ). The IPAQ has dem-
onstrated good psychometric properties in a diverse range of 
samples (39). Respondents were asked to indicate how many days 
during the past 7 days, and for how long each day (in hours and 
minutes), they had performed vigorous physical activities (like 
heavy lifting, digging, aerobics, or fast bicycling). Participants 
were also asked to report the number of days they did moderate 
physical activities (like carrying light loads, bicycling at a regular 
pace, or doubles tennis, excluding walking) in the past 7 days and 
how much time they usually spent doing these activities on one of 
those days (in hours and minutes). Consistent with guidelines for 
Australian adults (40), insufficient physical activity was defined as 
less than 150 minutes of moderate activity, less than 75 minutes of 
vigorous activity, or an equivalent combination (e.g., 100 minutes 
of moderate activity and 25 minutes of vigorous activity would be 
classified as sufficient, representing two-thirds, and one-third of 
the total requirement, respectively).

Sedentary Behavior
Daily sitting time (in hours) was assessed using a single item from 
the IPAQ (39): “How many hours do you spend sitting in a typical 
24-hour day (e.g., traveling to/from school, university or work; at 
school, university or work; watching television, using a computer 
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TaBle 2 | Sample characteristics (n = 853).

Male Female Other

Current education [n (%)]
None 54 (12.0) 46 (11.5) –
Trade/technical 41 (9.1) 9 (2.2) –
University/college 354 (78.8) 345 (86.2) 4 (100.0)

Current employment [n (%)]
Full-time employed 50 (11.1) 22 (5.5) –
Part-time/casual employed 292 (65.0) 303 (75.8) 2 (50.0)
Unemployed 101 (22.5) 72 (18.0) 2 (50.0)
Other 6 (1.3) 3 (0.8) –

Body mass index [M (SD)] 23.33 (4.68) 22.30 (3.47) 25.35 (2.40)
Category [n (%)]
Underweight 20 (4.5) 24 (6.0) –
Normal range 333 (74.2) 310 (77.5) 2 (50.0)
Overweight 62 (13.8) 49 (12.2) 2 (50.0)
Obese 28 (6.2) 13 (3.2) –

Psychological distress [M (SD)] 5.54 (4.98) 6.65 (4.88) 15.00 (8.04)
BSI anxiety [M (SD)] 3.40 (4.39) 5.05 (5.00) 7.75 (5.74)
BSI depression [M (SD)] 5.21 (5.33) 6.84 (5.47) 8.75 (8.77)

4

Champion et al. Risk Behaviors Among Emerging Adults

Frontiers in Public Health | www.frontiersin.org May 2018 | Volume 6 | Article 135

at home and leisure time)?” There are currently no guidelines 
for Australian adults in regard to sitting time, however, based 
on previous Australian research (8, 41), sitting for eight or more 
hours per day was coded as “at-risk” in the present study.

Sleep Duration
To assess sleep duration (in hours), respondents were asked “How 
many hours in each 24-hour day do you usually spend sleeping 
(including at night and naps).” In line with sleep recommendations 
for young adults aged 18–25 years (42), insufficient sleep duration 
was defined as less than 6, or more than 11, hours per night.

Psychological Distress
The Kessler 6 (K6) (43) is a six-item scale used to measure 
psychological distress. For each item, participants were asked to 
rate how often they had felt a specific kind of distress in the past 
4 weeks (“0 = none of the time” to “4 = all of the time”). Scores 
were summed to produce a total score (possible range: 0–24), 
with higher scores representing greater distress. The K6 has been 
found to have very good concordance with independent clinical 
ratings of psychological distress (44) and demonstrated good 
internal consistency in this study (α = 0.89).

Symptoms of Anxiety and Depression
The Brief Symptoms Inventory (BSI) (45) was used to assess 
symptoms of anxiety and depression, using the BSI Anxiety and 
Depression subscales, respectively. Both subscales showed good 
to excellent internal consistency, with α = 0.92 for the Depression 
scale and α = 0.89 for Anxiety. Participants were asked to report 
how much they had experienced symptoms of anxiety (e.g., 
“nervous or shakiness inside”) and depression (e.g., “feeling 
lonely”) and in the past 6 months on a five-point scale (0 = not at 
all to 4 = often). Scores were summed separately for the depres-
sion and anxiety subscales, yielding total scores between 0 and 24, 
with higher scores indicating greater symptoms.

statistical analysis
Descriptive statistics were generated in R, version 3.4.2 (46). Data 
were cleaned to identify invalid responses on the outcome vari-
ables. Responses were coded as missing when participants entered 
an invalid value for an item (e.g., hours greater than 24 h/day). 
Where participants gave a range (e.g., “7–8 h”) instead of a finite 
numeric response, data were converted to the midpoint (e.g., to 
7.5 h). Attrition analyses were conducted to compare participants 
who completed the 5-year follow-up assessment, to those who 
did not, in terms of gender, baseline drinking, and baseline binge 
drinking. Latent class analysis (LCA) (47) was used to identify 
clusters of behaviors among the participants, based on indicators  
of lifestyle risk. LCA models use patterns of responses on observed 
categorical variables to classify individuals into latent classes, 
where in each class there are different response probabilities 
across items. The poLCA package for R (version 1.4.1) was used 
to fit the latent class models (48). To select the number of clusters 
that best fit the data, we first fit a two-class model and successively 
increased the number of classes by one, up to a six-class model. 
Models were compared using the sample-size adjusted Bayesian 

information criterion (aBIC), Akaike information criterion 
(AIC), BIC, and relative entropy, which are widely accepted for 
LCA methods (49). The best model was selected on the basis 
of these fit statistics (with lower aBIC, AIC, and BIC indicating 
better fit), but also based on the interpretability of the estimated 
clusters. To ensure that the global maximum likelihood solution 
was found, each model was estimated 50 times with random 
initial parameters and the iteration with the lowest log-likelihood 
was selected as the final model.

Associations between class membership and mental health 
and socio-demographic factors were examined using χ2 tests 
(for categorical factors) and ANOVA analyses (for continuous 
measures). To account for uncertainty in class assignments, we 
repeated these analyses using pseudo-class draws, sampling from 
each participant’s posterior probability of class assignment (50). 
We generated 100 sets of pseudo-class draws and repeated the 
original comparisons using these predicted classes, combining 
the results of the sets using rules for multiple imputation (51). 
When ANOVA analyses revealed significant differences between 
classes, pairwise comparisons were conducted using the Tukey 
method to adjust for multiple comparisons. When examining 
associations between gender and the latent classes, participants 
who identified as “other” were excluded from comparisons due 
to low cell counts (n = 4).

resUlTs

sample characteristics
A total of 853 participants (52.6% male; mean age = 18.8 years, 
SD = 0.42) completed the online survey. Table 2 summarizes 
the full sample characteristics. Results from the attrition 
analyses indicated that participants who did not complete the 
5-year follow-up survey were more likely to be male and had 
significantly higher rates of binge drinking at baseline (see 
Table 3).
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TaBle 5 | Model fit statistics for each of the fitted latent class analysis models.

statistic 1 class 2 classes 3 classes 4 classes 5 classes 6 classes

Log-likelihood −3,234.1 −3,153.4 −3,121.6 −3,107.4 −3,097.6 −3,092.4
aBIC 6,493.2 6,360.3 6,325.4 6,325.6 6,334.6 6,352.8
AIC 6,482.1 6,336.7 6,289.3 6,276.8 6,273.2 6,278.9
BIC 6,515.4 6,408.0 6,398.5 6,424.0 6,458.4 6,502.1
Relative entropy N/A 0.62 0.68 0.74 0.65 0.70
df 7 15 23 31 39 47
G2 330.8 179.2 118.5 91.3 72.4 62.2
p(G2) <0.001 <0.001 <0.001 <0.001 <0.001 0.07

TaBle 4 | Prevalence of lifestyle risk behaviors by gender.

Male 
(n = 449)

Female 
(n = 400)

Other 
(n = 4)

Total 
(n = 853)

Behavior N % N % N % N %

Binge drinking 247 55.0 198 49.5 2 50.0 447 52.4
Insufficient fruit 
intake

216 48.1 140 35.0 1 25.0 357 41.9

Insufficient veg 
intake

368 82.0 315 78.8 1 25.0 684 80.2

Physical inactivity 82 18.5 111 27.8 0 0.0 193 22.8
Sitting time 142 31.8 131 33.2 2 50.0 275 32.5
Insufficient sleep 17 3.8 16 4.0 0 0.0 33 3.9
Smoking 130 29.0 115 28.8 1 25.0 246 28.8

TaBle 3 | Comparison of participants in the current sample compared with 
those who did not complete the 5-year follow-up assessment.

current 
sample 

(n = 853)

Did not complete 
5-year assessment 

(n = 1,337)

χ2 (1) p-Value

Full standard drink (%) 15.2 18.3 3.50 0.062
Binge drinking (%) 2.7 5.0 6.69 0.010
Male (%) 52.6 59.6 9.66 0.002
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Prevalence of lifestyle risk Behaviors
Prevalence estimates for each risk behavior are shown in Table 4. 
Overall, over three quarters of the sample had insufficient intake 
of vegetables (80.2%) and more than half reported binge drink-
ing at least monthly (52.4%). More than 40% showed inadequate 
consumption of fruit (41.9%), approximately one-third reported 
sitting for longer than recommended periods (32.5%), and 
approximately one quarter reported smoking (28.8%) or failing 
to meet physical activity guidelines (22.8%). Only a small minor-
ity (3.9%) got too little or too much sleep.

latent class analysis
Model fit statistics from each model are shown in Table 5. The best 
fitting model, based on the model fit statistics and interpretability 
of the classes, was a three-class solution. The response probabilities 
of the risk behaviors within each of these three classes are shown 
in Figure 1. The average posterior probability of assignment to 
the most likely class was high for all classes (Class 1 84.9%, Class 2 
83.0%, Class 3 87.7%), indicating good classification quality based 
on the threshold of 0.7 suggested by Nagin (52). The largest class, 
Class 1, had an estimated population proportion of 52.2% and 

was labeled “moderate risk.” This class had the lowest probability 
of engaging in most of the risk behaviors, with the exception of 
smoking and binge drinking, across the three classes. This class 
was characterized by a high probability of not eating enough 
vegetables and a moderate probability of binge drinking and poor 
fruit consumption. Participants in this group were highly likely 
to adhere to recommendations for sleep, physical activity, and 
sitting time, and were unlikely to smoke. The remainder of par-
ticipants fell into two similarly sized classes. Class 2 (23.5%) was 
labeled “inactive, non-smokers.” Participants in this class were 
likely to be non-smokers and reported the lowest probabilities of 
binge drinking than the other two classes. However, participants 
in this class were unlikely to achieve the recommended amounts 
of physical activity, sitting time, and serves of fruit and vegetables. 
Class 3 (“smokers and binge drinkers,” 24.4%), was differentiated 
from the other classes by a high probability of smoking (100%) 
and of binge drinking. Participants in this class were also likely 
to fail to consume sufficient serves of fruit and vegetables per day.

Associations of Latent Class With Socio-
Demographic Factors and Mental Health Outcomes
Means and percentages of socio-demographic factors and mental 
health outcomes are shown in Table  6. The three classes dif-
fered significantly in the proportion of males and females, with 
Class 2 (“inactive, non-smokers”) having a lower proportion of 
males, and employment, with a lower proportion of participants 
employed in Class 2. The classes did not differ significantly in 
the proportion of participants currently in tertiary education 
or BMI. Examination of mental health outcomes showed that 
the classes differed significantly in their levels of psychological 
distress, depression, and anxiety. Pairwise contrasts investigating 
these differences are shown in Table  7. Class 3 (“smokers and 
binge drinkers”) had significantly higher levels of psychological 
distress, anxiety, and depression compared with Class 1 (“moder-
ate risk”). Class 2 (“inactive, non-smokers”) also had significantly 
higher levels of depression symptoms compared with Class 1 
(“moderate risk”). As shown in Table 8, additional analyses using 
pseudo-class draws to account for the uncertainty in class assign-
ments found a similar pattern of results, although there was no 
longer a significant difference in gender across the classes.

DiscUssiOn

This study examined the clustering of six key risk behaviors—
binge drinking, smoking, physical inactivity, sitting time, poor 
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TaBle 6 | Socio-demographic factors and mental health outcomes within each class.

class 1: “moderate  
risk” (n = 458)

class 2: “inactive,  
non-smokers” (n = 166)

class 3: “smokers and  
binge drinkers” (n = 229)

comparison p-Value

Male (%) 55.2 44.6 53.3 χ2 (2): 6.08 0.048
In tertiary education (%) 90.0 94.6 88.2 χ2 (2): 4.70 0.095
Employed (%) 79.3 66.9 85.2 χ2 (2): 19.4 <0.001
BMI [mean (SD)] 23.10 (4.71) 22.43 (3.95) 22.67 (3.05) F(2, 840): 1.82 0.16
Underweight (%) 5.7 6.8 3.1 – –
Normal range (%) 74.2 75.9 81.6 – –
Overweight (%) 14.6 11.7 12.3 – –
Obese (%) 5.5 5.6 3.1 – –
Psychological distress [mean (SD)] 5.63 (4.88) 6.23 (4.79) 6.97 (5.31) F(2, 850): 5.59 0.003
BSI depression [mean (SD)] 5.33 (4.97) 6.58 (5.57) 6.89 (6.15) F(2, 850): 7.50 <0.001
BSI anxiety [mean (SD)] 3.70 (4.26) 4.52 (4.87) 4.95 (5.48) F(2, 850): 5.87 0.003

Bolded p-values indicate p < 0.05.
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FigUre 1 | Estimated response probabilities of lifestyle risk behaviors in each latent class.
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TaBle 8 | Pooled estimates from pseudo-class analyses where class 
assignments were sampled 100 times from the posterior class probabilities.

D p-Value df

Gender 0.56 0.570 2, 987.4
In tertiary education 1.69 0.185 2, 2,032.9
Employed 6.04 0.002 2, 1,818.5
BMI 0.78 0.461 2, 937.5
Psychological distress 6.56 0.002 2, 556.5
BSI depression 8.32 <0.001 2, 689.2
BSI anxiety 5.30 0.005 2, 535.1

Bolded p-values indicate p < 0.05. The test statistic D is approximately F-distributed, 
with degrees of freedom adjusted for the variance of the individual estimates.

TaBle 7 | Pairwise comparisons of socio-demographic factors and mental 
health outcomes across classes.

classes 1 vs 2 classes 1 vs 3 classes 2 vs 3

χ2 (1) p-Value χ2 (1) p-Value χ2 (1) p-Value

Gender 5.62 0.018 0.28 0.60 2.57 0.11
Employment 9.58 0.002 3.10 0.078 17.40 <0.001

t(850) p-Value t(850) p-Value t(850) p-Value

Psychological 
distress

−1.33 0.38 −3.32 0.003 −1.46 0.31

BSI depression −2.54 0.030 −3.55 0.001 −0.56 0.084
BSI anxiety −1.93 0.13 −3.28 0.003 −0.89 0.65

Bolded p-values indicate p < 0.05.
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sleep, and fruit/vegetable consumption—among a sample of 
18-year olds in Australia. It makes an important contribution 
to the literature by examining traditional chronic disease risk 
behaviors (diet, smoking, alcohol use, and physical inactivity) 
in combination with emerging risk behaviors (such as sleep and 
sedentary behavior) (8) during an important transitional life 
stage, characterized by change, uncertainty (11) and increased 
independence. Regardless of class membership, the present study 
found a high prevalence of risk behaviors among the sample, 
most notably insufficient vegetable consumption (80.2%), binge 
drinking (52.4%), and inadequate consumption of fruit (41.9%). 
These findings are largely consistent with recent national survey 
data in Australia, which found that 95% of 18- to 24-year olds did 
not consume the recommended amount of vegetables, 59% do 
not eat recommended amount of fruit, and over two-thirds drink 
alcohol at risky levels (15). In light of strong evidence that an 
increased consumption of vegetables and fruit can reduce the risk 
of many chronic diseases, including hypertension, coronary heart 
disease and stroke, and all-cause mortality (53), education about 
the importance of meeting dietary recommendations is urgently 
needed (54). On the other hand, nearly all participants reported 
getting adequate sleep (6–11 h/day), which is encouraging given 
that inadequate sleep duration has been associated with health 
problems such as obesity, cardiovascular disease, and mortality 
(9, 55–57). This finding is in contrast to recent prevalence esti-
mates in the United States in which 23% of 18- to 24-year-old 
Americans report getting insufficient sleep (58). However, it is 
important to bear in mind that previous research has demon-
strated that nearly one-quarter of young adults in Australia report 

experiencing sleep problems and over half report sleepiness or 
fatigue most days (59). Therefore, it may be important to consider 
other aspects of sleep, such as quality and sleep patterns, in future 
studies as well as extending the assessment of sleep duration to 
older aged cohorts where this disturbance generally hits its peak 
(e.g., 20- to 24-year olds).

Consistent with previous research examining multiple risk 
behaviors among emerging adults (21–26), the present study 
found risk behaviors to cluster among our sample in meaning-
ful risk profiles. Specifically, the LCA resulted in three distinct 
classes. Class 1 (“moderate risk”) was the most favorable group, 
yet was still characterized by a high probability of insufficient 
vegetable intake and a moderate probability of binge drinking 
and poor fruit consumption. Class 2 (“inactive, non-smokers”) 
was differentiated from the other two classes by high probabilities 
of physical inactivity and sitting time, and a low probability of 
smoking. The third class (“smokers and binge drinkers”) was 
characterized by high probabilities of smoking, binge drinking, 
and not consuming sufficient vegetables and fruit. The patterns 
of clustering observed in the present study are consistent with 
findings from previous studies in this field. For example, a recent 
systematic review found the strongest evidence for clustering of 
smoking and alcohol use among a general adult population (20), 
and in another review more than half of the studies reported a 
clustering of alcohol with smoking (60). The clustering of smok-
ing and risky alcohol use in our study is also consistent with 
patterns observed in national survey data in Australia (61) and in 
previous samples of emerging adults (62). In addition, activity-
related behaviors, such as physical inactivity and sedentary 
behavior, have been found to cluster with dietary behaviors, such 
as inadequate fruit and vegetable consumption (63–65).

The present findings have important implications in terms of 
prevention and early intervention. Ideally, chronic disease pre-
vention should aim to deter risk factors from emerging in the first 
place (i.e., maintain good levels of sleep in the current sample),  
as well as reducing existing risk factors/increasing health- 
pro tective behaviors (e.g., improving vegetable consumption) 
(13). To achieve this, a combination of universal (i.e., delivered 
to an entire population) and targeted (i.e., for at-risk individuals)  
prevention approaches are likely to be necessary. The high 
prevalence of many of the six risk behaviors among the 18-year 
olds assessed in this study reinforces the notion that unhealthy 
behaviors are well-established by emerging adulthood and points 
to the need for prevention approaches to be implemented early 
in life. Preventive interventions delivered in adolescence, prior 
to the escalation of many risk behaviors offer an opportunity to 
equip young people with the capacity to make healthy decisions, 
increase adherence to national health guidelines, and reduce the 
risk of later chronic disease. For example, school is an ideal set-
ting for intervention delivery, as educators can reach large youth 
audiences prior to risk behaviors becoming entrenched, and 
education about nutrition, physical activity, alcohol and smoking 
is typically included in the school curriculum (66).

Previous clustering analyses have typically identified a 
“healthy” class of participants, characterized by a low prevalence 
or absence of all risk behaviors. In fact, in a recent systematic 
review of the clustering of health behaviors, 81% of studies found 
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a “low-risk/healthy” cluster (60). Although a “healthy class” could 
have emerged if we had sufficient data to estimate more clusters, 
this pattern of results was not observed in the present study, with 
all three classes characterized by a moderate to high probability 
of engaging in more than one risk behavior. For example, poor 
vegetable intake co-occurred with other risk behaviors in all three 
classes. This finding, coupled with the high prevalence of many 
of the six risk behaviors in the overall sample, provides support 
for the implementation of universal multiple health behavior 
prevention approaches (67), in which multiple risk factors are 
targeted concurrently rather than in isolation. This approach 
capitalizes on evidence that modifying one risk behavior can lead 
to improvement in another (68). For example, research has shown 
that targeting fruit/vegetable consumption and sedentary leisure 
time together can lead to untargeted reductions in fat intake 
in adults (69). This is often referred to as the “transfer effect” 
(70–72), whereby the lessons, skills, and knowledge learned in 
one behavioral context are applied to another context, assuming 
an individual has the capacity to apply acquired competences to 
other domains (73). An understanding of the combinations of 
risk behaviors that young people commonly engage in has impor-
tant implications for the development and tailoring of universal 
multiple health behavior interventions. Previous research sug-
gests that intervening synergistically via multiple health behavior 
interventions offers a potentially efficient (74) and cost-effective 
means (24) of educating young people about key risk factors for 
chronic disease, however, further research is needed.

Our findings also point toward the implementation of targeted 
prevention and early intervention approaches. In the current 
study, three distinct classes were identified, with some classes 
reporting very high rates of a behavior (e.g., smoking in Class 3) 
and others reporting very low rates (e.g., non-smoking in Class 2).  
The identification of young people based on their unique risk 
factor profiles, and subsequent tailoring of interventions, may 
improve engagement with, and efficacy of, multiple health behav-
ior programs (75, 76). In particular, self-monitoring and tracking 
of behaviors (e.g., diet, activity, and sleep) via mobile applications 
and online interventions offer a potentially engaging and effective 
way for individuals to address behaviors for which they have been 
deemed at-risk (77). The use of mobile technologies has been 
shown to be effective in improving physical activity and smoking 
cessation among adults (78) and there is increasing evidence to 
support the use of smartphone applications to improve health 
behaviors in youth (79–81).

Although Class 2 (“inactive, non-smokers”) had significantly 
lower levels of employment than the other two classes, there were 
no differences in terms of education and overweight/obesity 
(mean BMI within normal range for all classes), and gender 
differences between the classes were not significant when taking 
into account uncertainty in class assignments. Findings from the 
present study replicate previous work which has demonstrated 
associations between multiple lifestyle risk behaviors and mental 
health outcomes (22, 23, 29). The present results indicate that 
mental health symptoms were significantly greater among the 
two classes that exhibited high probabilities of engaging in mul-
tiple lifestyle risk behaviors. Specifically, participants in Class 3 
(“smokers and binge drinkers”), which was characterized by high 

probabilities of smoking, drinking, and having a poor diet, had 
greater levels of psychological distress, anxiety, and depression, 
compared with Class 1 (“moderate risk”). In addition, Class 2 
(“inactive, non-smokers”), characterized by high probabilities of 
physical inactivity, sedentary behavior, and poor diet, reported 
greater depressive symptoms than Class 1.

Indeed, Class 1 appears to be the “healthiest” group in the pre-
sent study, exhibiting the lowest probabilities across the majority 
of risk behaviors, and therefore it is perhaps not surprising that 
this group of participants also exhibited the lowest levels of mental 
health symptoms. The comorbidity of alcohol and other drug use 
with anxiety and depression is well-established (82), and there is 
also evidence to support an association between poor diet and 
mental health problems (36, 83). The lifestyle risk profile of Class 
2, physically inactive and sedentary, might reflect some overlap 
with depressive symptoms (e.g., fatigue, low energy, and loss of 
pleasure in usual activities). However, as this study only utilized 
cross-sectional data, no conclusions about the causality of asso-
ciations between the latent classes and mental health outcomes 
can be determined. Previous research suggests that addressing 
lifestyle risk behaviors, such as diet, could lead to improvements 
in mental health symptoms (83, 84). Future research should 
examine whether interventions that jointly targeting chronic 
disease risk behaviors and mental health problems, before their 
onset, can reduce chronic disease risk and improve current physi-
cal and mental wellbeing.

limitations and Future Directions
This study employed sophisticated analytic methodology, LCA, 
and explored a wide array of risk behaviors among a sample of 
18-year olds in Australia. Despite these strengths, the present 
results should be considered in light of a number of limitations. 
Firstly, this study relied on self-report data for all six risk behaviors 
and it is possible that participants under or over reported their 
behavior. Objective data, including objective measures of physical 
activity, sitting time, and sleep via accelerometers, are needed to 
validate self-report responses. Secondly, this study focused on only 
one domain per behavior, for example, sedentary behavior was 
represented by the number of hours spent sitting, while poor sleep 
was assessed via sleep duration per day. Future research should 
assess additional domains of risk behaviors, such as screen time 
(including device-specific time, such as TV viewing, computer 
use), other aspects of diet (e.g., saturated fat and sugar sweetened 
beverages), and sleep quality and patterns (85). Thirdly, attrition 
analyses revealed that participants who did complete the current 
5-year follow-up assessment were more likely to be male and had 
higher rates of binge drinking at baseline. This suggests that the 
prevalence of binge drinking in our sample may have been an 
underestimated. In addition, although participants in the present 
sample were not recruited via universities, the vast majority 
were engaged in tertiary education at the time of the assessment. 
Although the prevalence of many risk behaviors in our sample 
were similar to national survey estimates among 18- to 24-year 
olds (15), it is possible that our sample may not be representative 
of all Australian young adults, especially those with lower levels of 
education. Previous research has demonstrated that the presence 
of multiple risk behaviors is higher among those with lower levels 
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of education and high socio-economic disadvantage (20, 60, 61). 
Therefore, future research should seek to explore the clustering 
of multiple risk behaviors among young adults from a broader 
range of socio-economic backgrounds, and should also assess 
additional factors such as income and occupation. In terms of 
model fit, it should be noted that an entropy value of 0.74 means 
that more than 25% of our sample was not optimally classified. 
Finally, as discussed previously, this study was cross-sectional 
in nature and therefore no conclusions about causality can be 
determined. Data on the majority of risk behaviors analyzed in 
this study (physical activity, diet, sitting time, and sleep) were not 
collected during previous waves of assessment; however, planned 
future data collection among this cohort will enable longitudinal 
investigations to be conducted.

cOnclUsiOn

Emerging adulthood (18–25  years) is an important develop-
mental period where several risk behaviors emerge and become 
entrenched. Results from this study indicate that lifestyle risk 
behaviors are prevalent among emerging Australian adults, and 
that risk behaviors co-occur with one another and are associated 
with different levels of mental health symptoms. An examination 
of the clustering of risk behaviors is important for guiding the 
development of interventions to prevent chronic disease, as it 
provides insights into which risk behaviors could be targeted 
together. Given that chronic disease is the leading cause of death 
and disability in Australia, it is critical to understand how and 
when to optimally intervene, to promote healthy lifestyles and 
reduce disease risk. Our findings reinforce the importance of 
delivering multiple health interventions to reduce later chronic 

disease risk and to improve current mental wellbeing among 
young people.
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