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Corynebacterium diphtheriae (C. diphtheriae) is a relatively rare pathogen in most

Western countries. While toxin producing strains can cause pharyngeal diphtheria with

potentially fatal outcomes, the more common presentation is wound infections. The

diphtheria toxin is encoded on a prophage and can also be carried by Corynebacterium

ulcerans and Corynebacterium pseudotuberculosis. Currently, across Europe, infections

are mainly diagnosed in travelers and refugees from regions where diphtheria is

more endemic, patients from urban areas with poor hygiene, and intravenous drug

users. About half of the cases are non-toxin producing isolates. Rapid identification

of the bacterial pathogen and toxin production is a critical element of patient and

outbreak management. Beside the immediate clinical management of the patient, public

health agencies should be informed of toxigenic C. diphtheriae diagnoses as soon as

possible. The collection of case-related epidemiological data from the patient is often

challenging due to language barriers and social circumstances. However, information on

patient contacts, vaccine status and travel/refugee route, where appropriate, is critical,

and should be documented. In addition, isolates should be characterized using high

resolution typing, in order to identify transmissions and outbreaks. In recent years, whole

genome sequencing (WGS) has become the gold standard of high-resolution typing

methods, allowing detailed investigations of pathogen transmissions. De-centralized

sequencing strategies with redundancy in sequencing capacities, followed by data

exchange may be a valuable future option, especially since WGS becomes more

available and portable. In this context, the sharing of sequence data, using public

available platforms, is essential. A close interaction between microbiology laboratories,

treating physicians, refugee centers, social workers, and public health officials is a

key element in successful management of suspected outbreaks. Analyzing bacterial

isolates at reference centers may further help to provide more specialized microbiological

techniques and to standardize information, but this is also more time consuming

during an outbreak. Centralized communication strategies between public health

agencies and laboratories helps considerably in establishing and coordinating effective

surveillance and infection control. We review the current literature on high-resolution

typing of C. diphtheriae and share our own experience with the coordination of a

Swiss-German outbreak.
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INTRODUCTION

In recent years, rare but hypervirulent pathogens have been
increasingly reported in specific geographic regions (1, 2), often
associated with refugees and asylum seekers (3), but also in other
high-risk populations including hospitalized patients (4, 5), the
elderly, and newborns (6, 7). Reports of infections in refugees
over the past decade have included Borrelia recurrentis (8),
methicillin resistant Staphylococcus aureus (S. aureus) (MRSA)
(9, 10), and toxigenic Corynebacterium diphtheriae (11). In

2016, the European Center for Disease Control (ECDC) warned
about increased rates of cutaneous C. diphtheriae infections in

Europe due to the refugee crisis (12). This pathogen came back
into the focus of attention as it is (i) associated with severe
infections in humans, including respiratory diphtheria (13–15);
(ii) highly transmittable, indicated by the basis reproduction
number with mean 7.2 (16); and (iii) known to cause larger
outbreaks (17–19). For nearly two decades, in most high-
income countries, cases have been reported rarely, occasionally
in travel returners (20–24), drug users and homeless people
(25–29). In the last few years, in contrast, cutaneous, and
respiratory infections have predominantly been reported in
refugees (16, 30–38).

Providing state-of-the-art diagnostics for rare and unexpected
pathogens can be a challenge for the clinician (39) and the routine
microbiology laboratory (40–42). Often specific diagnostic
tests are only available in reference laboratories, thus further
delaying efficient therapy, surveillance reporting, and outbreak
management. Once the pathogen is cultured and identified,
molecular typing technologies, such as whole genome sequencing
(WGS), allow a detailed comparison on the genomic level with
high resolution (43–45). In the case of C. diphtheriae, high-
resolution typing is helpful to (i) provide the epidemiological
broader context (35) and (ii) include or exclude transmission
events between patients (30, 31).

WGS specifically, gives the highest resolution typing, and can
help to identify potential sources and transmission routes as part
of modern surveillance technologies. Recent comparisons using
WGS data analyzed by core genome MLST (cgMLST) or single
nucleotide polymorphisms (SNP)-based methods have shown
significant improvements over older technologies (46, 47). The
advantages of using WGS for high-resolution typing has been
seen in several pathogens, being particularly helpful in settings
with (i) highly similar isolates over a long time period e.g.,
Legionella pneumophila within a city (48) or C. difficile (49, 50),
(ii) a low endemic epidemiological background, but multiple
clusters of patients from high endemic region with potential
transmission events e.g., C. diphtheriae (31) or M. tuberculosis
(51), and (iii) high endemic burden, where transmission events
cannot easily be separated based on classical epidemiological
information alone.

Alongside the availability of rapid diagnostic tests and
high-resolution typing, surveillance programs are an important
cornerstone of public health, as the associated framework allows
data collection, communication, and coordination of public
health interventions. Of note, to date no global or European
surveillance network exists which integrates both classical and

molecular epidemiological data into a single real-time updated
platform. Future surveillance programsmay not only incorporate
baseline features of an isolate such as sequence type and presence
or absence of the tox gene, but also more detailed genomic
analysis and a virulence factor profile. The aim of this would
be to better assess the potential of a strain to cause outbreaks
with more severe clinical phenotypes. In this review article,
we will focus on C. diphtheriae as a re-emerging but rare
pathogen, and will discuss the various aspects of classical and
molecular epidemiology utilizing new sequencing technologies
for surveillance.

MICROBIOLOGY AND PATHOGENICITY OF
C. diphtheriae

Corynebacterium diphtheriae was first isolated in 1884 by
Loeffler (52). The classical presentation is pharyngeal diphtheria,
a toxin-mediated infectious disease of the upper respiratory
tract. The hallmark feature is an inflamed pseudo-membrane
on the pharynx, potentially causing asphyxia (13). Beside
respiratory infections, C. diphtheriae may cause skin infections
and other invasive diseases such as endocarditis, osteomyelitis,
and septic arthritis (53–58). At the moment, non-toxigenic
cutaneous diphtheria is the most prevalent clinical presentation
(24, 39, 57, 59, 60). Wound infections often occur with
other skin pathogens, such as Streptococcus pyogenes or S.
aureus (28, 31). Cutaneous diphtheria may be a source of
toxigenic pathogens and may be transferred to other body sites
then potentially causing respiratory diphtheria. Therefore, even
wound infections with non-toxigenic strains might ideally be
considered to be reported to surveillance programs in order
to identify carriers, clusters of potential transmissions, and
high-risk groups.

Microbiology
The species C. diphtheriae is divided into four biochemical
biovars—belfanti, gravis, intermedius, and mitis (15, 61).
Although the biochemical distinctions are not reliable, for
historical reasons reference laboratories still use them. Recently,
two distinct subspecies have been proposed based on genomic
features: C. diphtheriae subsp. diphtheriae and C. diphtheriae
subsp. lausannense. Of interest, members of the newly described
subspecies lausannense show a larger genome size and are
enriched in genes related to transport and metabolism of lipids
and inorganic ion (62). On the other hand, the new subspecies
lacks all genes involved in the synthesis of pili, molybdenum
cofactor, and nitrate reductase. Closely related to C. diphtheriae
are two zoonotic pathogens,C. ulcerans andC. pseudotuberculosis
(63), both of which can acquire the toxin gene via a phage
(64). Increasing numbers of toxigenic C. ulcerans infections have
been reported (65, 66) e.g., in the UK (67), but these pathogens
remain rare in the clinic. Host jumps from domesticated and wild
animals to humans have been postulated (63, 68, 69). If either
C. ulcerans or C. pseudotuberculosis is diagnosed, the isolate
should be tested for the presence of the toxin and reported in
surveillance programs.
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Virulence Factors
The ß-corynephage encodes the diphtheria toxin, and can be
transmitted between isolates. The ß-corynephage may pose a
survival benefit for the bacterium by increasing the effectiveness
of transmission by helping to cause local tissue damage (14, 70).
The DtxR regulator is present elsewhere in the genome, and
controls the transcription of the toxin gene (tox). This regulator
is a key determinant for iron homeostasis (71). Iron is crucial
for a number of cellular functions and the expression of a toxin
in situations with low iron concentrations might help pathogens
to compete with the host for iron or release iron via lysis of
host cells. Of particular importance are pili encoded by spa
operons (spaABC, spaDEF, and spaHIG), which contribute to
the interaction with the host. Gain or loss of the function of
these genes correlate to the number and expression of pili on
the cell surface—especially the major pilin genes spaA, spaD,
and spaH. The spaA- spaD- and spaH-type pili interact with the
pharyngeal, laryngeal, and lung epithelial cell types, respectively
(72). Pilus expression may strongly influence the virulence of a
strain (73–78), especially in combination with the presence of the
tox gene.

Diagnostic Aspects
Specific culture media such as tellurite agar improves the
culture of C. diphtheriae (61, 79)—although the agar adds
some selection, most diagnostic laboratories do not carry the
agar as part of routine stock. The three species of interest, C.
diphtheriae, C. ulcerans, and C. pseudotuberculosis, can be reliable
identified with matrix-assisted laser desorption ionization time-
of-flight mass spectrometry (MALDI-TOF MS) (80–82). More
specialized laboratories have the capacity to detect the presence
of the diphtheria toxin either by PCR or measurement of toxin
production by a modified Elek test (31, 83, 84). Other virulence
factors such as pili are generally not determined in routine
diagnostics. A survey of the diphtheria surveillance network
(DIPNET) indicated that many centers were not able to isolate
the target organisms, and most found difficulties differentiating
them from specimens that contained Corynebacterium striatum,
a commensal contaminant (85). More recently, an ECDC
technical report on the diagnostic gaps has been published
(86). Regular workshops and external quality assessments are
important aspects in maintaining diagnostic quality for rare
pathogens in the context of a surveillance program.

THE RETURN OF AN OLD FOE

Importance of Vaccination
In 2016 the EDSN reported 47 laboratory confirmed cases
of C. diphtheriae and C. ulcerans in European countries—
corresponding to an overall notification rate below 0.01 cases
per 100,000 people (66). In contrast, worldwide, 7097 diphtheria
cases were reported in 2016, mainly in low-income countries
(www.who.it). In the 1900s−1950s, infections with C. diphtheriae
were among the most severe infections during childhood,
especially in pre-school children where case fatality rates of 2–
25% were reported (87, 88). Prior to the availability of toxoid-
vaccines, nearly 70% of the cases were in children younger than

15 years of age (89). With the introduction of vaccines in the
1940s and 1950s, a significant decrease in incidence was observed
(87, 88, 90–93), although no controlled clinical trial to evaluate
the efficacy of the toxoid-vaccines in preventing diphtheria has
ever been performed.

The current WHO recommendation states that a series of
three toxoid-vaccine doses should be provided, starting at six
weeks of age, with additional booster doses based on local
epidemiology (94). Vaccine effectiveness is high after three or
more doses, ranging from 96 to 98% (95, 96). Although not
assessed in routine, an antitoxin level of 0.01 IU/mL provides the
lowest level of protection, 0.1 IU/mL is considered a protective
level, and levels of >1.0 IU/mL result with long term protection
(61). Interestingly, two cases of fatal diphtheria in patients with
antitoxin levels above 30 IU/mL have been reported, suggesting
that no absolute protection exists (97). Although immunization
programs of infants started in the late 1970s, the vaccine coverage
rates of infants in developing countries increased only slowly
from 46% in 1985 to 79% in 1992 (98). If vaccines rates in
the general population are too low, herd immunity fails to
protect the non-vaccinated population, resulting in outbreaks
with the potential for high mortality in younger and older
age groups. An assessment of the immunity against a series of
pathogens in adult asylum seekers in the Netherlands showed
median 82% seroprotective anti-toxin titers against diphtheria
(99). Although diphtheria vaccine rates in infants range from
89 to 98% in most European countries, a recent meta-analysis
showed that vaccine rates against diphtheria and tetanus toxoids,
and acellular pertussis (dTap) in healthcare workers was only
45.1% in the US and 63.9% in France (100). In Luxembourg only
2.5% of individuals under the age of 20 were seronegative, while
42% of individuals over the age of 40 years were seronegative
(101). Similar low seroprotection rates have been documented
in China, where only 34.1% of subjects older than 40 years were
seroprotected (102). The reason for low seroprotection in some
population groups in countries, where the vaccine is available,
may result in a decrease in circulating toxigenic C. diphtheriae
isolates (89), resulting in (i) an increase in non-toxigenic cases
(103), and (ii) lower natural boost effects of antibody titers
against the toxin (104). Especially in the adult population,
gaps in herd immunity have been described due to waning
of protective antibodies either from lower natural exposure
or booster-vaccination. It has been found that the diphtheria
vaccination only prevents symptomatic infection, and does not
inhibit carriage or transmission of the pathogen. Miller and
colleagues have shown that a high percentage of C. diphtheriae
carriers were fully vaccinated, suggesting that antibodies against
the toxin does not inhibit nasopharyngeal colonization (93).
Based on this data, we may conclude that adults and the elderly
are at higher risk of C. diphtheriae infection. Regular assessment
of seroprotection rates in a given population should be a part of
surveillance programs.

Changing Epidemiology
In the 1960–1970s, any outbreaks described in high income
countries were smaller (92, 105–108) in comparison to the larger
outbreaks which occurred in the late 1990s and early 2000s,
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particularly in countries of the former Soviet Union (17–19, 109–
113). A very large outbreak affected states of the former Soviet
Union with more than 150,000 infected people and between
3,000 and 5,000 deaths (18). In this outbreak, a high proportion
of adults were affected, potentially due to disruption of health
services resulting in poor vaccine coverage (114, 115) and
reduced “natural” exposure over the preceding decades, resulting
in antibody titers below protective levels (116–118). In recent
years, multiple outbreaks, or potential transmission clusters have
been reported in: Bangladesh (119, 120), Brazil (121), Colombia
(122), Germany (30, 35), India (123–125), Indonesia (126), Laos
(127), Norway (128), Nigeria (129), Poland (130), Spain (38),
South Africa (36, 131), Syria (132), Switzerland (31), Thailand
(114), the United Kingdom (37), Venezuela (133, 134), and
Yemen (135). The global list of affected countries indicates that (i)
the disease is remains poorly controlled, (ii) the main burden lies
in low-income countries, and (iii) local and global surveillance
should be intensified in order to better control the disease.

EPIDEMIOLOGY: FROM CLASSICAL TO
MOLECULAR

Some of the key factors driving the spread of hypervirulent
pathogens include poor vaccine rates, waning antibody titers,
reduced access to healthcare, failing, or collapsing healthcare
systems, poor hygiene, transfer of patients between healthcare
institutions, changes in travel behaviors, increased traveling to
high endemic regions, and migration from high endemic regions
due to violent conflicts or for economic reasons (136–138).
The development of effective preventative strategies to reduce
the impact of hypervirulent bacteria should, as for multidrug
resistant (MDR) pathogens, have a top global priority among
public health experts, clinical microbiologists, and infectious
diseases physicians. The basis for preventative strategies relies on
two key elements: classical and molecular epidemiological data.

Classical epidemiological methods are used to investigate
an unexpected frequency of specific pathogens clustering
within a certain time and/or geographical range. Determining
a case definition is an important first step. Cases have
to be confirmed, background rates established, and patient
data collected via, for example, structured questionnaire, and
accessing detailed medical history. Thus, a hypothesis for
the disease transmission can be formulated and potential
sources named (139, 140). Although classical epidemiological
methodologies provide tremendously important information,
data collection is often challenging due to delayed or incomplete
reporting of cases, lack of centralized communication strategies,
especially at the beginning of an outbreak, vague medical history,
language barriers, and cultural differences. Especially in the case
of refugees, where classical epidemiological data are often not
reliable, available or re-constructible, in many cases classical
methods cannot provide the required data.

Molecular epidemiological methods are based on detailed
comparison of pathogens, using some or all of the genomic
information. The relatedness of pathogens can be visualized
in trees, thereby helping to cluster isolates and provide

information on potential molecular epidemiological links.
Several genotyping approaches have been used for C. diphtheriae
including ribotyping, amplified fragment length polymorphisms,
PFGE, random amplified polymorphic DNA (RAPD), clustered
regularly interspaced short palindromic repeat (CRISPR)-based
spoligotyping and MLST (141–149). Some typing methods show
better resolution than others: ribotyping outperforms PFGE
and AFLP in terms of discriminatory power (143). Ribotyping
was for many years considered the gold-standard before the
introduction of a robust MLST approach. Many ribotypes were
allocated a geographical name based on the location of the initial
isolate, however some followed an arbitrary nomenclature (144).
CRISPR-based spoligotyping can offer additional resolution
within ribotypes, and be used successfully to further characterize
outbreak-associated strains (147, 148): the epidemic strains
from the former Soviet Union belonged to two ribotypes
(St. Petersburg and Rossija) that could be subdivided into 45
additional spoligotypes (146, 147). Data from various outbreaks
shows the relative high molecular diversity of isolates indicating
that new strains are emerging regularly within this species (150).

A robust MLST scheme was developed in 2010, including
the genes atpA, dnaE, dnaK, fusA, leuA, odhA, and rpoB (www.
pubmlst.org/cdiphtheriae). The advantages of an MLST scheme
include transferability and comparability. The sequence types
were shown to be consistent with the previously determined
ribotypes and offered higher resolution in most cases (141).
MLST diversity has grown continuously, with 608 types currently
categorized (March 2019). Of note, the MLST scheme lacks the
biochemical correlation of the biovar system and STs have not
been able to be associated with a more severe clinical phenotype
(141, 151, 152).

Comparison of the performance of various typing techniques
is important, as low resolution typing methods may overcall
transmission events masking the real transmission steps and
potentially delaying the identification of the source. Stucki
et al. showed this for M. tuberculosis transmissions events
in Switzerland, where a VNTR low-resolution typing gave
evidence of a significantly higher rate of transmissions events
in comparison to WGS based typing on the same set of isolates
(153). Similarly, C. diphtheriae SNP-based WGS comparisons
improved the typing resolution in comparison to cgMLST (35).

WHOLE GENOME SEQUENCING OF C.

diphtheriae

The first complete genome sequence of C. diphtheriae (strain
NCTC13129) was analyzed in 2003, a UK clinical isolate
containing a series of pathogenicity factors including iron-uptake
systems, adhesins and fimbrial proteins (154). The genome of
C. diphtheriae is 2.45 Mbp with a G+C content of 53.5%
(154). Through WGS analysis we can determine the presence of
virulence factors such as the toxin gene (and ß-corynephage) and
pili, and genes encoding antimicrobial resistance determinants
(62, 155, 156). During outbreak and public health investigations,
WGS SNP-based typing clearly shows important benefits due
to its high resolution (31). Although MLST may be more cost
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effective, MLST data can also be extracted from WGS data,
providing the ST as well as high resolution phylogeny and
additional important genetic information. WGS can identify
additional toxins and adherence factors, which may allow the
generation of a specific risk profile for the pathogen.

Comparative studies have shown that the species has a
set of ∼1,630 core genes which almost every representative
of this species possesses [60% of the genome], and a
relatively large, open pan-genome (155, 156). The difference
in genome content across the species is largely due to the
presence of genomic islands, prophages, transposons, restriction-
modification systems, and CRISPR elements. Horizontal transfer
substantially helps to shape the bacterial genome (62, 155).
Some of the identified genomic islands carry genes for
siderophore synthesis and transportation and degradation
of polysaccharides, and heavy metal resistance. Interestingly,
prophages are genetically more similar within specific clusters
of bacterial isolates than between clusters, suggesting that
prophages do not randomly mix between isolates, but rather
cluster within specific clades (31, 157, 158).

While MLST analysis first suggested, that there is significant
recombination within C. diphtheriae (141), this has been
confirmed through analysis of whole genome sequences (159).
Recombination plays an important role in bacterial evolution
and has been linked to increased virulence in some pathogens
(160–162). Especially in the upper respiratory tract, where C.
diphtheriae can form a colonizing state, horizontal gene transfer
can commonly happen (163). WGS allowed to study genetic
ancestry of multiple bacterial species—including C. diphtheriae.
This challenged sometimes our current understanding and
groups based on biochemistry or serotypes may change. As an
example, it has also been shown that biovars of C. diphtheriae
do not correlate to genetic ancestry (152, 159). In recent years,
several cohorts ofC. diphtheriae isolates have been analyzed using
WGS (30, 31, 35, 36, 62, 152, 155, 156, 164–167). Comparison of
WGS data across a species generally uses one of two approaches:
cgMLST, or SNP-based variant calling across the whole genome
based on a reference, which provides more information and
higher resolution. Dangel et al. have generated a cgMLST scheme
including 1553 target loci and an extended cgMLST scheme
including 2154 target loci, providing higher resolution (35).

cgMLST and SNP-based analyses of all publicly
available whole genome sequences (Figures 1, 2 and
Supplementary Table 1) shows vast diversity, and geographic
mixing: isolates identified in Malaysia, India, Australia, and
Switzerland are found throughout the trees. Relatively few
cgMLST clusters are defined at the five allele cut off, yet some
clades/clusters clearly show geographic association, such as those
from South Africa, Belarus and Germany (35), suggestive of
local outbreaks. The largest clade of highly related isolates, at
the top of Figure 2, includes those from Germany, Poland, the
UK and the former Soviet Union, suggesting that these may
have had a common source, but spread prior to diagnosis (This
clustering is not represented in the minimum spanning tree
of Figure 1). However, the dates of the isolates in this clade
range from 1996 to 2017, also suggesting some stability of the
isolates over time. This is also evidenced as closely related

isolates throughout the tree may have been isolated many
decades apart.

Clustering and Likelihood of Transmission
There is an ongoing debate about defining diversity thresholds
to separate clusters of pathogens. Determining a threshold
of diversity to reliably describe a transmission cluster is a
question commonly asked, yet difficult to answer, particularly in
recombinogenic bacteria. Dangel et al. defined a cluster in their
cgMLST scheme as five or fewer allele differences, with higher
resolution of subclusters analyzed through an extended cgMLST
scheme (35).

In order to determine a reliable cut-off, it is beneficial
to combine the genomic analysis with more classical
epidemiological data, which significantly contributes to
understanding the transmission risks. However, in the literature
and epidemiological data associated with WGS, few such
cases have been described: in one case of direct transmission
between siblings, the isolates show no allele differences in the
defined core genome or accessory genome (30); and one case
of direct transmission from mother to twin newborns showed
a single SNP between the isolates on a whole genome level
(unpublished data) and zero allele differences in the cgMLST
scheme (Figure 1).

During our study on isolates from refugees in Basel, we asked
ourselves if the observed whole genome diversity of 50–150 SNPs
within clusters could represent a recent transmission event. We
considered two different mutation rates representing extremes
of plausible ranges, and estimated the approximate transmission
dynamic. Even using a very high mutational rate of 0.00018
substitutions/bp/year, the estimation indicated that transmission
occurred more than four to 6 weeks prior to sampling. In
that paper, we played with substitution rates an picked the
mutation rate of Helicobacter pylori, in order to have a highly
conservative estimated if the transmission occurred on European
ground to trigger potential outbreak investigations. This helped
to exclude a transmission event within Europe, as the affected
refugees arrived 2 weeks prior in South Italy (31). Analyzing these
clusters by cgMLST shows that the isolates diverge by 0–4 alleles
(Figure 1), within the cluster threshold, despite possessing at
least 50 SNP differences and not representing recent transmission
(31). This exemplifies the increased resolution of using whole
genome SNP-based methods, and the difficulty of inferring direct
transmissions from cgMLST data alone. As C. diphtheriae can
also undergo recombination, it is crucial to consider a recent
recombination by studying the distribution of SNPs across the
genome: if many SNPs cluster in one or more genomic loci, then
a recombination event is likely to have occurred, bringing the
putative transmission event more recent.

SURVEILLANCE

Although country specific surveillance systems for hypervirulent
pathogens such asC. diphtheriae exist, the interoperability of data
and the exchange across countries presents problems (170). In
2014, a WHO-recommended surveillance standard of diphtheria
was published. This included a case definition, laboratory

Frontiers in Public Health | www.frontiersin.org 5 August 2019 | Volume 7 | Article 235

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Seth-Smith and Egli WGS Diphtheria Surveillance

1171

12
15

5
148

1121 309

23687

25
27999

1125

560
1136

19
930

1151

958

1
12
24

13

88
516

13
301023043

551

380

115

432

717

664

157

152

823

615

411

572

1012

900

728

947

460

107611441147

985

28

26

918

787

910
1115

928

1112

804

1125

957

1
3

223
265707

1038

1142

1093

11291150

995

964

22

15

769

324

27

663

13

79

43

1017

6
2

47

29

13

15
167

17

39

67 1516

2
62050

14

21

10

49

5

16

9
12121422

31
6
5177

45

217

102

169

81246

138

19

998

13

32

1004

56

2

68

69

709

10181068

1

10

190

1088
12

33

2
13

14
13120

11
8 5 9028

3

11111
54

27
32

1112 814

3

6
1979514

778

785

814
714 829
7856441426819

1112
341123

1123

11281127

1821
11341134

34
4

1135

21
1108

1138

128

1142

599

27983875431

1026

42
43

3
46

35
128
136
131945

6 2
7
8155729

24

1425
5514

17

10
13
1517

1829

15
4

40
16

1

17
27

22
3

11441

112
5

3 1420
27

122
121

2
2345

3

3247

34
13

45
5

344046
53

30
10

29

2739

52

6569

20

49

58

79

640

97

937

225264

1036
1103

271

1107

995
293539

39

1027

559

363738

54694

328

3

10661086

1

1099

19

34
813575

10981110

34

15

5990

173

443

743

507

10401121

11151
1129

21 1134

2
856

22

304

78524

1129

1149

340

751
156

136

431

436
507

626

139

621

872

1158
962

1026

11621166

1169

12
11

4
2 12 5

19

19

1163

12
11831177

825

753

723

418

199

9

992

3

Key:

Australia

Belarus

Brazil

France

Germany

India

Italy

Japan

Malaysia

New Caledonia

Poland

Russia

South Africa

Switzerland

United Kingdom

USA

no data

Cluster 3, 

Meinel et al.

Siblings,

Berger et al.

Mother and children

Cluster 1, 

Meinel et al.

Cluster 2, 

Meinel et al.

FIGURE 1 | Minimum spanning tree showing relationship of all available Corynebacterium diphtheriae genomes by cgMLST. All C. diphtheriae assemblies

available from NCBI on 27.02.2019 were retrieved, and compared to isolates from our laboratory, as well as all reads available from NCBI on 08.10.2018, and those

published, which were assembled using unicycler (168), and duplicate samples removed, giving n = 419 genomes. The cgMLST scheme of (35) was used within

Ridom SeqSphere+ v4.1.6, with clusters given between nodes with five or fewer differences. Nodes are colored according to country of isolation.

criteria for diagnosis, and minimum data elements which
should be collected (171). Similarly, the ECDC has established
a surveillance program for diphtheria. Founded in 1993 as
European Laboratory Working Group in Diphtheria in 2006 it
became the European Diphtheria Surveillance Network (EDSN,
www.ecdc.europa.eu) (172). The network provides valuable
information and aims to standardize surveillance activities and
ensure availability of more comparable data between countries.
It also includes laboratory components focusing on trainings
and external quality assessments (EQAs), strengthening the
laboratory capacity to characterize isolates and develop novel
tools for molecular typing of C. diphtheriae.

While the EDSN provides an important framework for
surveillance of C. diphtheriae, in the current refugee crisis,

multi-national coordination of outbreak investigation is clearly a
challenge. Rapid and effectivemechanisms of communication are
crucial. Patients may be evaluated several times on their journey,
and the same pathogen may be isolated in different countries. A
recent report on the tracing of an MDR M. tuberculosis cluster
was very well-coordinated by a joint effort from multiple centers
(51). Similarly, for C. diphtheriae, we directed an investigation
with multiple refugees presenting with wound infection across
different hospitals and diagnostic laboratories in Switzerland
in 2015 (31). In both situations, a multi-national taskforce
organized a coordinated effort to collect isolates and information,
using case report forms to collect structured epidemiological
information on migration routes, vaccine status, and other
affected travelers.
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FIGURE 2 | Phylogenetic overview of all available C. diphtheriae genomes. All C. diphtheriae reads available from NCBI on 08.10.2018 were retrieved, and those

published, and compared to isolates from our laboratory, as well as all assemblies available from NCBI on 27.02.2019, which were shredded to reads using wgsim in

samtools (https://github.com/lh3/wgsim), and duplicate samples removed, giving n = 419 genomes. All reads were mapped against the reference genome

CP003210 (155) within CLC Genomics Workbench 10.1.1, also used to generate a single nucleotide polymorphism (SNP) phylogeny with parameters that differed

from the default as: variant calling with 10x minimum coverage, 10 minimum count and 70% minimum frequency, and SNP tree creation with 10x minimum coverage,

10% minimum coverage, 0 prune distance and including multi-nucleotide variants (MNVs). Metadata was retrieved from the NCBI database and was associated with

the phylogeny using phandango (169). Colors use the same key as Figure 1; years are shown on a continuous scale. The bottom clade shows the clearly separate

cluster proposed as C. diphtheriae subsp. lausannense.

Individual responsible experts, such as representatives of the
EDSN or reference laboratories, should be assigned in each
country in order to keep track of potential movements of
refugees. In the C. diphtheriae situation, refugees were rapidly
lost to follow-up, for example due to relocation in other
refugee centers. Communication to refugee center responsible
personnel and physicians should be established. The molecular
epidemiology of diphtheria would certainly benefit from

implementation ofWGS. Such analysis offers improvements over
the current model of global tracing of large clonal clusters toward
fine-tuned strain discrimination. At the same time, a multicenter
evaluation of recently developed inexpensive and discriminatory
VNTR and CRISPR methods is warranted to see if and how
they could complement regional surveillance (150). Beside the
molecular definition of an outbreak, a centralized database
allows running the standardized bioinformatic algorithms and
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thereby may provide a benefit for investigations. Isolates could
be registered with particular coded identifiers to avoid re-
sequencing the same isolate (173).

To date, no database can integrate classical epidemiological
data in the form of coded patient identification, vaccine
status, potential exposures, spatiotemporal information of
cases, socioeconomic and immunological data on a population
level, with high-resolution molecular epidemiological data
from sequenced strains. We are developing such a platform,
initially for MDR pathogens (173), which could easily be
expanded to hypervirulent species including C. diphtheriae. This
Swiss Pathogen Surveillance Platform (www.spsp.ch) aims to
integrate all relevant data in the near future, thereby providing
various stakeholders with important information in real-time.
Such a platform may provide a public health data sharing
hub not only for Switzerland, but for European countries
and beyond.

Warning Systems
In many countries, reporting of C. diphtheriae cases to public
health authorities is mandatory. Information is collected and
reported back to the diagnostic laboratories and infectious
diseases specialist in order to heighten awareness. Various
email alerting system for surveillance exists, one of the most
well-known being PROMED (https://www.promedmail.org/), a
subscription service which has been in place since the early
2000s (174). Those warning systems collect information from
media reports, official reports, online summaries, local observers,
subscribers, and others. However, those services rely on reporting
toward the service and also inaccurate interpretation and
privacy issues may be an issue. Nevertheless, there is still
room for faster, more targeted and international ways of
communication to be established. The connection of various
data sources will require the usage of standardized and specific
epidemiological ontologies being used across various databases
such as SNOMED CT (www.snomed.org) or IRIDA (www.irida.
ca). The ethical and legal implications of such big-data driven
surveillance programs need to be clarified in the near future.
Clearly individual patient data should be protected, but those
rights should be balanced in situations where outbreaks with
hypervirulent pathogensmay put the general population at risk—
in the case of C. diphtheriae the risk for the general healthy
population in Western countries seems rather low and therefore
surveillance efforts should rather focus on at-risk populations.
Social media may be used to generate epidemiological data
but could also be used as a tool to inform the general
public and health care specialists. We could imagine internet-
based warning systems being combined with a more detailed
platform allowing clinicians to assess classical and molecular
epidemiological aspects.

Machine Learning for Investigation and
Surveillance of Rare Pathogens
In the near future, we can foresee interconnected databases
containing epidemiological data on individual cases, incidence
rates of particular infections, spatiotemporal clusters, WGS data,

travel and migration information, social and print media reports,
and vaccine rates in populations. These may then be used for
machine learning based epidemiological surveillance, such as that
recently published on prediction of dengue outbreaks (175).

Machine learning based algorithms may also be used to
predict the case severity of a particular infection based on NGS
and other clinical data, as similar performed by Njage et al.
in the case of shigatoxigenic E. coli (176). Bacterial genome
wide association studies (GWAS) using machine learning in
C. diphtheriae may help to identify critical biomarkers, linking
bacterial genomic features such as virulence or resistance with
specific host outcomes. Such work often requires hundreds to
thousands of bacterial genomes to compensate for host variability
effects (177) as shown for M. tuberculosis, Campylobacter spp.
and Bordetella spp. (178–180).

The advances in machine learning algorithms may allow the
development of revolutionary surveillance programs, potentially
providing valuable information to public health policy makers
about potential epidemiological trends and risks for the
general public. Although such databases are likely to first
be established for more common epidemic scenarios such as
annual influenza, MDR pathogens, and foodborne pathogens,
particular risks may also be calculated for rare pathogens
such as measles, ebola, or hypervirulent bacteria such as
C. diphtheriae. As we live in an increasingly globalized
world with rapid spread of pathogens, new concepts for
epidemiological surveillance are needed, to enable rapid and
effective interventions.

CONCLUSIONS

Corynebacterium diphtheriae is reemerging in clinics in high
income countries, partly as a result of refugee movement,
and requiring greater awareness of the issue. WGS offers
the opportunity to describe potential transmission events
and infection sources with the highest resolution. Data
provided from molecular typing methods should, where
possible, be analyzed in the context of classical epidemiological
information, for which information has to be rapidly shared
with local public health authorities. In addition, surveillance
for C. diphtheriae and other re-emerging hypervirulent
pathogens would benefit from rapid data collection and
sharing platforms sharing information on classical and
molecular epidemiology.
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