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Objective: The endocannbinoid system and cannabis exposure has been implicated

in emotional processing. The current study examined whether regular cannabis users

demonstrated abnormal intrinsic (a.k.a. resting state) frontolimbic connectivity compared

to non-users. A secondary aim examined the relationship between cannabis group

connectivity differences and self-reported mood and affect symptoms.

Method: Participants included 79 cannabis-using and 80 non-using control emerging

adults (ages of 18–30), balanced for gender, reading ability, and age. Standard multiple

regressions were used to predict if cannabis group status was associated with

frontolimbic connectivity after controlling for site, past month alcohol and nicotine use,

and days of abstinence from cannabis.

Results: After controlling for research site, past month alcohol and nicotine use, and

days of abstinence from cannabis, cannabis users demonstrated significantly greater

connectivity between left rACC and the following: right rACC (p = 0.001; corrected p =

0.05; f2 = 0.55), left amygdala (p = 0.03; corrected p = 0.47; f2 = 0.17), and left insula

(p = 0.03; corrected p = 0.47; f2 = 0.16). Among cannabis users, greater bilateral rACC

connectivity was significantly associated with greater subthreshold depressive symptoms

(p = 0.02).

Conclusions: Cannabis using young adults demonstrated greater connectivity within

frontolimbic regions compared to controls. In cannabis users, greater bilateral rACC

intrinsic connectivity was associated with greater levels of subthreshold depression

symptoms. Current findings suggest that regular cannabis use during adolescence is

associated with abnormal frontolimbic connectivity, especially in cognitive control and

emotion regulation regions.

Keywords: cannabis, resting state fMRI, young adults, adolescents, affective symptoms, depressive symptoms,

connectivity analysis
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INTRODUCTION

Cannabis remains one of the most popular used substances
worldwide (1). Approximately, 35% of high school seniors and
young adults ages 19–28 reported using cannabis in the past
year (2). Cannabis use during youth has been a recent focus in
public health research, as it may influence one’s risk for reporting
symptoms of anxiety and depression (3–14). A potential
mechanism underlying cannabis’ influence onmood and affective
symptoms may involve frontolimbic functioning [see (15, 16)].
Understanding differences in frontolimbic connectivity among
young adults with frequent cannabis use may provide insight into
the etiology of associated mood or affective risk.

Cannabinoids in cannabis, such as 19-tetrahydrocanabidiol
(or THC) and cannabidiol (CBD), are chemicals that mimic
endogenous neurotransmitters anandamide and 2AG by binding
to endocannabinoid (eCB) receptors CB1 and CB2 (17–20).
THC is the main psychoactive component of cannabis and
is responsible for the subjective “high” individuals experience
[see (20–22)]. CB1 activity modulates the release of the
neurotransmitters GABA and glutatmate (GLUT) [see (23)]. The
eCB system modulates several functions related to physical (e.g.,
sleep, pain, and inflammation) and mental health, including
regulation of emotional and stress responses [see (24–29)].

More specifically, the eCB system plays a role in mood

and affect (28, 30–35), integrating reward feedback (36), and
threat related signals (37–39). Brain regions primarily involved

in the affective processing system include several interacting

cortical and subcortical regions (e.g., amygdala, anterior
cingulate gyrus or ACC, medial and inferior orbito-frontal,
ventromedial or vmPFC, dorsomedial prefrontal cortex, ventral
striatum, and insula) (40–44). This system is highly innervated
with CB1 receptors (45–49) and animal models demonstrate
developmental changes in CB1 expression within the mPFC,
ACC and insula (50), suggesting the system demonstrates
plasticity during adolescence. Therefore, repeated THC exposure
during development may impact naturally occurring changes in
eCB functioning within mesocorticolimbic regions (16). Indeed,
daily cannabis users have shown decreased CB1 receptor density
within frontolimbic regions (prefrontal cortex (PFC), ACC,
and insula) compared to non-users which recovered after a
month of abstinence (51). Further, acute THC administration
has resulted in abnormal performance on behavioral measures
of emotional processing (52–54), amygdala reactivity (38), and
altered functional connectivity and signaling in PFC regions
(15, 16, 53, 55–58). However, additional research is needed to
confirm the influence of repeated THC exposure on affective
outcomes in adolescents and young adults.

Due to the neuromodulatory role of the eCB system,
examining brain functional connectivity is an important
outcome to study in regular cannabis users. These relationships
can be examined during tasks and also at rest, when individuals
are not actively engaging in any specific cognitive tasks, called
resting state, or intrinsic functional connectivity (ifcMRI)
(59). Connectivity patterns in frontolimbic regions continue
to develop into late adolescence and emerging adulthood;
prefrontal maturation purports enhanced emotion regulation

and behavior inhibition capabilities [see (60–68)], giving
rise to a functional coupling between frontal and limbic
regions (i.e., the frontolimbic network) (69). Collectively, the
developmental changes in frontolimbic connectivity are thought
to enhance socioemotional regulation [see (70–72)], specifically
via functioning within the amygdala, medial PFC, vmPFC,
ACC, insula, and inferior frontal gyrus (43, 73). A particular
region within the PFC, the ACC, also undergoes significant
age-related changes in intrinsic functional connectivity,
particularly in rostral ACC (rACC) subregions involved in
social cognition and emotion regulation (74). Therefore, this
system may be particularly vulnerable to repeated THC exposure
during development.

Thus far, studies have found slower response times in
users when identifying emotional faces and more liberal
criterion for selecting sadness (75), poorer facial recognition
and emotion matching (76), and emotion identification and
discrimination impairments (77) compared to non-users; though
accuracy in emotion identification may not display a dose-
dependent relationship (78). fMRI studies have found aberrant
amygdala and ACC activity in young cannabis users during
affective processing tasks, including blunted ACC and amygdala
activation during sub-conscious facial viewing (79), blunted
amygdala response among youth with comorbid cannabis
dependence and depression (80), and greater amygdala reactivity
to angry faces in young adolescents (81).

However, to date very few studies have examined intrinsic
functional connectivity (ifcMRI) in adolescents and emerging
adults (82–86). Studies to date in adolescent and young adult
cannabis users (primarily male) have demonstrated increased
intrinsic connectivity in frontal (superior, inferior frontal
gyrus)-temporal gyrus-cerebellar regions (83), frontal-parietal-
cerebellar network (84), increased middle-frontal and cingulate
gyrus connectivity (85), and increased frontal gyrus activity
along with reduced middle temporal activity (82). Increased
connectivity patterns were linked with increased symptoms of
cannabis dependence (83) and recent cannabis use frequency
(84). In young adult males, cannabis use was linked with
increased connectivity in insula and decreased connectivity in
the anterior cingulate and midbrain, even after a month of
abstinence (86). Thus, overall, young cannabis users appear to
demonstrate increased intrinsic connectivity patterns, especially
in frontal-limbic regions. Still, these studies were primarily in
men (83, 84, 86), thus findings may not generalize to female
users (87–90). Further, two studies did not control for comorbid
alcohol use (83, 86) and despite the aforementioned link between
cannabis use and affective processing, no studies to date have
specifically examined affective processing networks in cannabis
users. Therefore, additional research is needed to examine
intrinsic connectivity in affective processing networks in larger
samples that include both males and females, controlling for
comorbid alcohol use.

The purpose of the current study was to explore whether
regular cannabis use in adolescents and young adults was
associated with aberrant ifcMRI frontolimbic connectivity at
rest. We employed a priori region of interest analysis focusing
on regions with reported cortical differences between young
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cannabis users and controls, including: vmPFC (91, 92), ACC
(81, 93, 94), insula (95), and amygdala (88, 96, 97). This
project utilized ifcMRI data from three collection sites from
the Imaging Data in Emerging Adults with Addiction (IDEAA)
Consortium (University of Wisconsin-Milwaukee or UWM;
McLean Hospital/Harvard University or McLean; University of
Texas—Dallas or UTD). The strength of utilizing multi-site data
sets include excellent reliability and validity when combining
multi-site ifcMRI data (98–107), increased generalizability of
more heterogenous groups (i.e., improving sex, ethnicity,
and geographic diversity), and larger sample sizes. It was
hypothesized that cannabis users would demonstrate increased
intrinsic connectivity patterns in regions subserving emotional
expression [amygdala, insula, and caudal (cACC) and rostral
ACC (rACC)]. Lastly, in order to interpret the findings, a
secondary aim examined if group differences in connectivity
were associated with cannabis users’ self-reported anxiety and
depressive symptoms.

MATERIALS AND METHODS

Participants
Participants included 79 cannabis users (42 men and 37
women) and 80 (45 men and 35 women) controls aged 18–
30 year old young adults devoid of major medical, psychiatric
or neurologic comorbidities. This age restriction is to reduce
potential differences in developmental stage since adolescents
and emerging adults may have greater PFC and limbic
development compared to adult participants (60–64, 68, 108).
Study participants were selected from the IDEAA consortium
subject pool (PIs: Krista Lisdahl, Ph. D., UWM; Staci Gruber,
Ph. D., McLeanHospital/Havard, Susan Tapert, Ph.D., University
of California-San Diego, and Francesca Filbey Ph.D., UTD; data
fromDr. Tapert’s lab did not include resting-state fMRI collection
and therefore was not used in the current study).

Inclusion criteria included: right-handedness; had usable
intrinsic ifcMRI data; fluency in English; and fit one of two
groups: cannabis users (at least weekly cannabis use within the
past 3 months, duration of use >1 year) and controls (never had
a history of regular (>monthly) use; no recent past month use;
no history of cannabis use disorder). Exclusion criteria included
history of neurological illness or loss of consciousness >2min;
MRI contraindications (pregnancy, claustrophobia, weight over
250 lbs., ferromagnetic implants of any kind, pacemakers, or
other devices in body); current use of psychoactive medication;
current DSM-IV-TR (109) independent Axis I disorders (aside
from substance use disorders); regular other illicit drug use (>20
times); and inability to remain abstinent from all drugs and
alcohol for at least 12 h (ranged from 12 h to 21 days monitored
abstinence across sites).

Procedures
The Institutional Review Board for each site approved all
aspects of data collection. Participants underwent site-specific
IRB-approved consenting procedures, and completed screening
sessions to ensure inclusion/exclusion criteria. Following
study inclusion, the participants completed psychological

questionnaires, underwent substance toxicology screening, and
received an MRI at the individual collection sites. The ifcMRI
data was collected before any fMRI task for each site.

Inventories and Questionnaires
Substance Use
Drug use prior to study participation was recorded by interview
using temporal memory cues from a modified version of the
Time-Line Follow-Back at each study site (110). Drug categories
included quantity-standardized collection of: nicotine cigarettes
(total number), alcohol (total standardized drinks), cannabis
(total number of grams of dried flower1), and other illicit drugs
(days used). Time-period covered for substance use assessment
was 1 month [original data collected from each site ranged from
2 weeks (McLean), past 30 days (UTD), to past year (UWM);
thus, total past month substance use was averaged for each
participant collected from McLean, though all McLean users
reported consistent daily patterns of use during this time].

Depressive Symptoms
The Beck Depression Inventory—second edition (BDI-II)
(collected from all sites) measured self-reported symptoms of
past 2-week depressive symptoms with a possible range of 0–63
total scores (111, 112). Low scores on the BDI-II are interpreted
as ≤16 and elevated ≥17.

Estimated Verbal IQ
The Wechsler Abbreviated Scale of Intelligence (WASI)—
Vocabulary subtest (113) (collected from McLean and UTD)
and the Wide Range Achievement Test−4th edition (WRAT-
IV). Reading subtest (114) (collected from UWM) measured
verbal intelligence (115) and quality of education [see (116)].
Standardized (age-corrected) T-scores for each participant were
used in the analyses.

MRI Acquisition and Preprocessing
MRI Acquisition Parameters
Image processing followed standardized recommendations for
fMRI processing (117, 118). ifcMRI scans were combined
from three research sites; de-identified raw DICOM files were
uploaded to the McLean Hospital server. UWM: Structural MRI
(sMRI) scans were collected using a 3T GE MR750 scanner
and SPGR sequence with the following parameters: TR/TE/TI =
8.2/3.4/450ms, flip angle = 12◦, FOV = 240, matrix size: 256 ×
256mm, slice thickness= 1mm (along left-right direction), voxel
size = 1 × 1 × 1mm, 150 slices, total scan time = 8min. ifcMRI
scans were collected using a gradient echo, echoplanar sequence
with ramp sampling correction using the intercomissural line
(AC-PC) as a reference (TR: 2,000ms, TE: 25ms, FOV: 240, flip
angle = 77◦, matrix size: 64 × 64, 40 slices, reps: 240, thickness
3.7mm).McLean: sMRI scans were collected using a 3T Siemens
Magnetom TrioTim sngo MR B17 and MPRAGE sequence with
the following parameters: TR/TE/TI = 2,000/2.15/1,100ms, flip
angle = 12◦, FOV = 256 × 256mm, slice thickness = 1.33mm
(along left-right direction), voxel size=1.5× 1.0× 1.3mm, total

1Cannabis concentrate usage was very low in the sample (n = 3); cannabis

concentrates were converted into estimated equivalent grams of flower.
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scan time = 9min. ifcMRI scans were collected using a gradient
echo, echo-planar sequence (TR: 2,500ms, TE: 30ms, flip angle:
82◦ degrees, matrix size: mm, 41 slices, voxel size: 3.5 × 3.5
× 2.5 mm3). UT Dallas: sMRI images were collected using a
3T Philips whole body scanner equipped with Quasar gradient
subsystem (40 mT/m amplitude, a slew rate of 220 mT/m/ms). A
32-channel receive head phased array coil combined with body
coil transmission to achieve greater sensitivity in cortical areas.
sMRI scans utylized an MPRAGE sequence with the following
parameters: TR/TE/TI = 2,100/3.70/1,100ms, flip angle = 12◦,
FOV = 256 × 256mm, slab thickness = 160mm (along left-
right direction), voxel size = 1 × 1 × 1mm, total scan time
= 3min 57 s. fMRI scans were collected using a gradient echo,
echo-planar sequence with the intercomissural line (AC-PC) as a
reference (TR: 2.0 s, TE: 29ms, flip angle: 75 degrees, matrix size:
64× 64, 39 slices, voxel size: 3.44× 3.44× 3.5 mm3).

Preprocessing Details
All images were preprocessed utilizing an identical pipeline,
computing system, and software versions (no updates were
conducted during data analysis) at UWM. Anatomical
preprocessing utilized the CPAC analysis software for large
multisite datasets (see: https://fcp-indi.github.io/), which utilized
pre-existing imaging software, including AFNI (119), FSL
(120), and ANTS (http://stnava.github.io/ANTs/). Data were
deobliqued to align with X, Y, and Z coordinates; resampled
to FSL friendly RPI anatomical convention; skull stripped;
anatomical segmentation; and binarized threshold masks were
created utilizing FSL’s FAST; functional images were linearly
registered to anatomical native space using FSL’s FLIRT;
anatomical images underwent non-linear transformation to
MNI152 (voxel size = 2 mm3) standard brain template using
ANTS. fMRI was also preprocessed using the CPAC software
using the following steps: removal of the initial 5 time points to
allow T1 stabilization; deoblique; resampling to RPI space; skull
stripping; data was “scrubbed” using Framewise Displacement
(121) with a maximum TR displacement set to 4mm; image
intensity normalization; linear and quadratic detrending to
remove residual drift due to scanner heating and/or slower head
movement; nuisance regression (white matter and cerebrospinal
fluid) using 6 displacement and motion correction parameters
using CompCor (applied prior to smoothing); spatial smoothing
(Gaussian Kernal= 4mm FWHM; Sigma = 2.54); and temporal
filtering (Band Pass filter = 0.1–0.01Hz). Frontolimbic ROI’s.
Cortical and subcortical ROI’s were created using FreeSurfer’s
(122) cortical parcellation atlas [DKT40 atlas; (123)] and
subcortical segmentation (124). ROI’s included the bilateral
rostral anterior cingulate (rACC), caudal anterior cingulate
(cACC), ventral medial PFC (vmPFC), insula, and amygdala.

Data Analysis
fMRI Data Analysis; Primary Aim 1
For each subject, the average time series was extracted for
all aforementioned ROI’s using the CPAC software. Next, the
correlation coefficients for the time series were created using
MATLAB (Version 8.0.0.783 64-bit maci64, 2012). Lastly, a
series of standard multiple regressions were run to predict

correlation coefficients between each set of ROIs; the primary
predictor variable (cannabis group status), and covariates (past
month nicotine use, past month alcohol use, MRI collection
site, and duration of abstinence from cannabis prior to
scan) were entered utilizing standard least squares multiple
regression in SPSS (version 24). Specifically, the first block
included all covariates (past month nicotine use, past month
alcohol use, behavioral/MRI collection site, and duration of
abstinence) and the second block included cannabis group
status. False Discovery Rate correction [FDR; (125)] was
implemented to correct for multiple comparisons. All correlation
coefficients between ROIs were visually inspected for normality
in distribution. Skewed distributions were transformed using
a log10 transformation and used in the regression in place of
the skewed correlation coefficients. There was no evidence of
multicollinearity or homoscedasticity following inspection of the
standardized residual for the variables of interest. Interpretations
of statistical significance were made if p < 0.05. For ease
of interpretation, regions with connectivity differences after
correction for multiple comparisons were also displayed on an
average template brain provided by BrainNet Viewer software
[(126); see Figure 2 below].

Brain-Behavior Relationships: Secondary Aim
Pearson r correlations were run between connectivity coefficients
and total depressive symptoms among cannabis users (in regions
predicted by cannabis use).

RESULTS

Demographic Variables
ANOVAs and χ2’s tests examined whether cannabis users
and controls differed in demographic variables (see Table 1).
Cannabis users and controls did not differ in age [F(1, 157)= 1.1,
p= 0.3], ethnicity group [64.6%Caucasian for cannabis users and
52.5% for controls, χ2 (1)2.4, p= 0.12], gender [46.8% female for
cannabis users and 43.8% for controls, χ2 (1)0.15, p = 0.7], and
premorbid intelligence [F(1, 156)= 0.46, p= 0.5].

Substance Use
As expected, cannabis users differed from controls in past
month total grams [F(1, 157) = 91.1, p < 0.01], past month
total days of cannabis use [F(1, 85) = 9,208.4, p < 0.01], past
month total standard alcohol drinks [F(1, 157) = 20, p <

0.01], and past month total cigarettes [F(1, 157) = 7.3, p =

0.01]. The cannabis users were abstinent from cannabis for 12–
24 h (27.8%); 2–3 days (39.2%); 4–7 days (5.1%); or 8 days
or greater (27.8%).

Depressive Symptoms
Cannabis users reported significantly greater total BDI-II
[F(1, 124) = 5.7, p = 0.02] scores compared to controls,
although both groups’ total BDI-II scores remained in the
subclinical range.

Primary Aim: ROI Intrinsic Connectivity
After controlling for MRI collection site, past month alcohol
and cigarette use (in standard units), and days abstinent from
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TABLE 1 | Demographics by group status.

Cannabis users

(n = 79)

Controls

(n = 80)

Age 23.4 (3.4)

[18–30]

22.9 (2.6)

[18–29]

Premorbid intelligence

Reading standardized score

53.1 (9.7)

[31–74]

54.1 (8.9)

[30–72]

Gender (% female) 46.8% 43.8%

% Caucasian 64.6% 52.5%

Beck depression inventory

(BDI-II) total-2

7.1 (9.3)*

[0–53]

3.9 (4.4)*

[0–19]

Past month cannabis use

Total grams

57.9 (54.3)**

[0–217.5]

0 (0)**

[0]

Past month total cigarettes

Total number

6.9 (22.1)**

[0–121]

0.24 (1.4)**

[0–12]

Past month alcohol use

Total standard drinks

22.3 (28.4)**

[0–137]

7.1 (10.9)**

[0–62.5]

*p < 0.05 and **p < 0.01.

FIGURE 1 | Region displaying group differences: bilateral rostral anterior

cingulate.

cannabis, cannabis users demonstrated significantly increased
connectivity between left rACC and the following: right rACC
[t(80) = 3.3, beta = 0.59, p = 0.001; FDR corrected p = 0.05;
Cohen’s f 2 = 0.55], left amygdala [t(80) = 2.2, beta = 0.45, p =

0.03; FDR corrected p= 0.47; Cohen’s f 2 = 0.17], left insula [t(80)
= 2.2, beta = 0.45, p = 0.03; FDR corrected p = 0.47; Cohen’s f 2

= 0.16]. There were no group differences where cannabis users
demonstrated significant decreases in connectivity compared to
controls (see Figure 1 for an image of the bilateral rACC).

Brain-Behavior Relationships
Among cannabis users, greater bilateral rACC connectivity was
significantly associated with greater total depressive symptoms [r
= 0.29, n= 66, p= 0.02] (see Figure 2).

DISCUSSION

The current study examined whether cannabis use was associated
with frontolimbic intrinsic connectivity using a cross-sectional
design in a sample devoid of independent Axis I anxiety

FIGURE 2 | Scatterplot between total depression symptoms and bilateral

rAcc connectivity (log transformed) in cannabis users.

or mood disorders. After controlling for MRI collection
site, recent alcohol, and nicotine use, and abstinence from
cannabis use, cannabis users demonstrated increased intrinsic
connectivity between the left rACC and the following: left
insula, left amygdala, and right rACC in comparison to
controls, though only group differences between bilateral rACC
survived after correcting for multiple comparisons. Further,
we found that increased bilateral rACC connectivity was
associated with greater subclinical depressive symptoms in
cannabis users.

Current findings parallel previous intrinsic functional studies
indicating frequent cannabis use among youth is associated
with greater connectivity between frontal and temporal regions
(83), and increased ACC connectivity in males (85). Resting
state connectivity increases in comparison to controls was also
reported within the medial frontal gyrus among a high-risk
mostly male adolescent group (82). The present study adds
to existing literature by including more females, controlling
for other substance use and cannabis abstinence period, and
relating the observed connectivity differences to mood-related
symptoms. Task-based studies also report altered medial PFC
activity associated with cannabis use among emerging adults
(79, 127–134), suggesting chronic cannabis use is associated
with region-specific changes in brain activity and connectivity
among regions implicated in emotion regulation, identification,
and modulation.

The current findings of abnormal functional connectivity
in the rACC and limbic regions, which is consistent with
our previous structural findings. Our team recently reported
that greater cannabis use was related to reduced left rACC
volume among young cannabis users, and smaller rACC volumes
were also significantly associated with lower performance in
an emotional discrimination task (94). Further, we also found
reduced right ACC cortical thickness in a sample of young
cannabis users, including a subset of cannabis users with a
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history of childhood attention deficit hyperactivity disorder,
compared to non-using controls (93). The ACC undergoes
significant developmental shifts in functional connectivity during
young adulthood (74), has been implicated in ones’ ability to
detect and monitor self-produced errors (135, 136) whether one
is conscious/aware of the error or not (137, 138). The ACC
may be less engaged in cannabis users compared to controls
during tasks requiring inhibitory control and error monitoring
(131). The rostral subdivision of the ACC is functionally
connected with the amygdala (139), forming a network for
processing affective facets of behavior (140, 141). In concert
with the insula, the ACC also serves to incorporate perceptual
information with autonomic and emotional information (142).
More specifically, the rACC has been posited to have top-
down control influence, serving as a gatekeeper, between regions
processing negative affective information and those integrating
environmental stimuli [see (143, 144)], and demonstrates
protracted development during young adulthood (74). The
rACC is involved in implicit or automatic emotion regulation
that occurs at a subconscious level (42). Indeed, lesions
in the rACC are posited to impair ones’ sensitivity to
adjustments in personal performance during a cognitive control
task (145). For example, cannabis users have demonstrated
reduced P300 (attention to emotion) during implicit and
empathic emotional processing paradigms, particularly for the
highest using cannabis users that also demonstrated deficits
in explicit processing of negative emotions (146). Thus,
abnormalities in rACC structure and function may impact
various behavioral aspects, including cognitive control and
emotional regulation.

The current study suggests that chronic cannabis use may
increase intrinsic connectivity between emotion regulation
regions, which was opposite of our original hypothesis. A
potential interpretationmay include the inefficiency of prefrontal
top-down regulation, as hypothesized by Behan et al. (84),
suggesting reduced intrinsic amygdala responsiveness. Further,
Pujol et al. (86) found reduced ACC and insula connectivity;
however, the study did not examine subcomponents of the ACC
and used seed-based rather than region of interest approaches.
Thus, disruptions in rACC function may lead to challenges
in modulating ones’ mood, consistent with the current study
findings, or adjusting to emotionally salient internal and external
information. Indeed, we also found that increased depressive
symptoms among cannabis users were associated with greater
connectivity between the bilateral rACC. Alterations in rACC
structure (147–150) and function [see (151–153)] have been
previously linked with depressive and affective symptoms and
antidepressant resonse (154). Though the current sample did not
meet criteria for an Axis I mood or anxiety disorder, cannabis
use may impact regions implicated in symptom manifestation.
Although cannabis users reported significantly greater subclinical
levels of depression, we are unable to determine whether the
endorsed symptoms predated the initiation of cannabis use or
whether the endorsed symptoms occurred during the course of
regular cannabis use among users. Indeed, cross-sectional (8, 11–
13) and longitudinal (5, 6, 13, 99, 155) studies among cannabis-
using youth have found increased risk of mood and affective

symptoms. Even casual cannabis using young adults report
greater depressive symptomatology (156). Thus, structural and
functional abnormalities within the rACC observed in cannabis
users may result in mood dysregulation. Alternatively, subtle
mood dysregulation may be a risk-factor for riskier cannabis
use consumption.

Proposed theories accounting for these functional and
behavioral differences in cannabis users may have multiple
underlying etiologies. Chronic young adult cannabis users
demonstrate abnormal CB1 receptor density in the ACC
(51); thus, frequent cannabis use may influence continued
white matter myelination and gray matter pruning within
this region, impacting structural integrity (81, 91, 93, 157).
Further, altering CB1 availability and eCB signaling may
impact GABA and GLUT signaling, which is observed in
the ACC of adolescents with chronic cannabis use (158,
159), suggesting continued cannabis use may impact healthy
ACC functioning. Indeed, rACC glutamate levels have been
associated with interactions between task-positive (supragenual
ACC) and task-negative (perigenual ACC) subregions (160),
suggesting excitatory activity at rest may alter one’s ability to
engage networks involved in environmental interaction. Thus,
altered inhibitory eCB activity may account for changes in
intrinsic ACC connectivity among users. It is also possible that
abnormalities in rACC and increased symptoms of depression
place adolescents and young adults at increased risk for regular
cannabis use. Prospective longitudinal studies are needed to
address causality.

In terms of youth treatment, there are potential interventions
that may target ACC functioning to improve emotional
regulation and mood in cannabis users. For example, activation
within the ACC was associated with positive treatment outcomes
following change talk among a diverse group of cannabis-using
youth (161). Mindfulness-based mediation and a combination of
mindfulness with aerobic exercise have also been associated with
ACC specific changes [see (162)].

Findings from the current study should be considered
in light of potential limitations. Although comorbid use
of nicotine products was measured, some participants
may have smoked cannabis with nicotine mixed in (e.g.,
blunts); this was not measured in the current study. Given
the cross-sectional nature of the current study, potential
differences in frontolimbic connectivity and subclinical
mood symptoms may exist prior to the onset of frequent
cannabis use and serve as a risk factor for regular cannabis
use during adolescence (163, 164). The relationships between
such factors and substance use patterns among youth have
previously been investigated [see (165–175)]. Therefore,
prospective, longitudinal studies are necessary to determine
timing and causality.

In conclusion, the present multisite imaging study found that
among otherwise healthy young adults devoid of independent
mood or affective disorders, regular cannabis users had greater
intrinsic connectivity between left and right rACC. The current
study also found that greater intrinsic bilateral rACC connectivity
was associated with greater subthreshold depressive symptoms
among cannabis users. Results coincide and expand upon
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prior intrinsic and task-based imaging projects among young
adults with chronic cannabis use, suggesting altered connectivity
between regions with high cannabinoid receptor density that are
imperative for emotional inhibition, recognition, and regulation.
As THC content continues to rise (176–178), today’s users may be
at increased risk for elevated mood or anxiety symptoms (179–
181). Considering these findings, it is recommended that youth
delay regular use of cannabis until after peak brain maturation
is achieved [see (182)]. In light of the current paper, cannabis
interventions for youth may target improving anterior cingulate
functioning, including aerobic exercise and mindfulness-based
approaches [see (162, 183, 184)].
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