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Background: Antiretroviral therapy (ART) impact has prolonged survival of people living

with HIV. We evaluated HIV disease progression among ART patients using routinely

collected patient-level data between 2004 and 2017 in Zimbabwe.

Methods: We partitioned HIV disease progression into four transient CD4 cell counts

states: state 1 (CD4 ≥ 500 cells/µl), state 2 (350 cells/µl ≤ CD4 < 500 cells/µl), state 3

(200 cells/µl≤CD4 < 350 cells/µl), state 4 (CD4 < 200 cells/µl), and the absorbing state

death (state 5). We proposed a semiparametric time-homogenous multistate Markov

model to estimate bidirectional transition rates. Covariate effects (age, gender, ART

initiation period, and health facility level) on the transition rates were assessed.

Results: We analyzed 204,289 clinic visits by 63,422 patients. There were 24,325

(38.4%) patients in state 4 (CD4 < 200) at ART initiation, and 7,995 (12.6%) deaths

occurred by December 2017. The overall mortality rate was 3.9 per 100 person-years.

The highest mortality rate of 5.7 per 100 person-years (4,541 deaths) was from state 4

(CD4 < 200) compared to other states. Mortality rates decreased with increase in time

since ART initiation. Health facility type was the strongest predictor for immune recovery.

Provincial or central hospital patients showed a diminishing dose–response effect on

immune recovery by state from a hazard ratio (HR) of 8.30 [95% confidence interval

(95% CI), 6.64–10.36] (state 4 to 3) to HR of 3.12 (95% CI, 2.54–4.36) (state 2 to 1)

compared to primary healthcare facilities. Immune system for male patients was more

likely to deteriorate, and they had a 32% increased mortality risk (HR, 1.32; 95% CI,

1.23–1.42) compared to female patients. Elderly patients (45+ years) were more likely to

immune deteriorate compared to 25–34 years age group: HR, 1.35; 95% CI, 1.18–1.54;

HR, 1.56; 95% CI, 1.34–1.81 and HR, 1.53; 95% CI, 1.32–1.79 for states 1 to 2, state

2 to 3, and states 3 to 4, respectively.

Conclusion: Immune recovery was pronounced among provincial or central hospitals.

Male patients with lower CD4 cell counts were at a higher risk of immune deterioration and
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mortality, while elderly patients were more likely to immune deteriorate. Early therapeutic

interventions when the immune system is relatively stable across gender and age may

contain mortality and increase survival outcomes. Interventions which strengthen ART

services in primary healthcare facilities are essential.

Keywords: antiretroviral therapy, disease progression, human immunodeficiency virus, mortality, multistate

Markov models, Zimbabwe

INTRODUCTION

Over the last 15 years, remarkable strides have been
made to tackle the human immunodeficiency virus (HIV)
pandemic globally. The Sub-Saharan Africa (SSA) region is
disproportionately affected by the pandemic, accounting for
more than 50% of people living with HIV (PLHIV) (1, 2).
Antiretroviral therapy (ART) treatment remains the backbone of
HIV treatment and prevention. Globally, it was estimated that
59% of PLHIV were receiving ART in 2017 (2).

Zimbabwe is one of the countries in SSA affected by HIV
infection. The country had an estimated 1.3 million PLHIV and
an adult prevalence of 13.3% in 2017 (3). The country’s ART
coverage was estimated at 84% for adult patients in the same
year (3). There has been a reduction in the number of new
HIV infections and HIV-related deaths between 2010 and 2016
(4), and this can be attributed to ART as the main driver. ART
drugs help boost the immune system of the PLHIV (5), which
leads to viral load suppression, and an increase in CD4 cell
counts. Both CD4 cell counts and viral load are key prognostic
markers in measuring HIV disease progression (6). The World
Health Organization (WHO) recommends the use of viral load
in monitoring HIV disease progression among ART patients.
Viral load suppression has been incorporated as one of the
ultimate indicators in the UNAIDS 90-90-90 fast track targets (7).
However, over the years, CD4 cell counts have been extensively
used as a marker for HIV disease progression.

Disease progression and immune recovery can be evaluated
using either time homogenous or time inhomogenous
semiparametric multistate Markov models using CD4 cell
counts (8). Application of these models in the assessment of HIV
progression has been used in the past decades (9), and many
studies have recently employed them (9–14). The use of CD4 cell
counts as a prognostic marker for HIV disease progression has
been well-documented (11, 12, 15–17). However, across studies,
there is variation in terms of the number of discrete multistate
model states, the cutoff points defining each state, the type of
transitions which can either be reversible or irreversible, and the
number of transitions to be estimated.

In this new era of “test and treat all” regardless of CD4
cell counts, HIV patients are initiated on ART as soon as
they are tested positive. However, this does not rule out the
possibility of having patients who present late for HIV diagnosis
with an advanced immune deterioration. This put forward the
importance of understanding the HIV disease progression across
all possible disease states since patients are initiated on ART
with different immune stages. Once the HIV-infected patients are
initiated on ART, they are still exposed to difference factors which

may still affect their ART adherences. Therefore, it is important
to understand the different trajectories that patients follow in
HIV disease progression to inform policy makers on possible
interventions to be carried out and encourage the patients on the
need to adhere on ART for their own improved health outcomes,
all in the quest to achieve zero HIV incidences by 2030 (18).

Zimbabwe adopted the WHO recommendation on the
decentralization of ART services from higher levels of care to
primary healthcare (PHC) facilities to increase ART coverage,
access and uptake to those in need, and increase ART patient
retention. This approach resulted in lessening the work burden
in the higher levels of care (19) through task shifting of HIV
management and ART service cascading down to PHC facilities
(20–23). As a result, the ART sites in Zimbabwe increased from
282 in 2008 to 1,556 in 2017 (3). However, in primary health care,
patient turnaround time is increased, there is lack of resources
and skilled personnel, which may compromise the quality of
service delivery; consequently, ART outcomes are compromised.
Therefore, there is a gap to understand HIV progression patterns
among ART patients after ART decentralization since the health
facility type that a patient is enrolled in may influence their
progression or recovery patterns.

This study aims to describe HIV disease progression and
immune recovery implementing the multistate model approach
based on CD4 cell counts intermediate states among adult
patients on ART in Zimbabwe using patient-level data adjusting
for the health facility type. The multistate model provides an
in-depth understanding on the general immune deterioration
(decrease in CD4 cell count) patterns, immune recovery (increase
in CD4 cell count) patterns, and death outcome. Unique to
this study is the inclusion of the health facility type in the
analysis to account for ART services decentralization effect on
transition rates.

MATERIALS AND METHODS

The study was carried out in Zimbabwe, a country with
eight provinces and two metropolitans. The country is land-
locked bordered by South Africa, Botswana, Mozambique,
and Zambia. We conducted a retrospective analysis of cohort
data from a sample of PLHIV receiving ART under the
Zimbabwe national ART program. We used individual records
from 538 health facilities linked to the electronic patient
management system (ePMS) (3). From patients attending these
health facilities, all routine clinic visits with CD4 count data
were used from 1st January 2004 to 31st December 2017 in
this analysis.
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We included patients aged 15 years and above at ART
initiation (baseline) with complete ART initiation dates, gender,
and subsequent follow-up information from the dataset. We
excluded patients with no information on CD4 cell counts
and patients with baseline CD4 measurements only. We also
excluded patients who were classified as lost to follow-up or who
transferred to other health facilities to reduce the complexity of
the multistate model. The patients who were alive at the end of
the study were right censored at their last clinic visit before 31st
December 2017.

We extracted demographic characteristics such as age (15–
24, 25–34, 35–44, and 45+ years), gender, and education level
(none, primary, secondary, tertiary). We also extracted data
on health facility type (primary health care, district, provincial,
or central hospitals) and time of ART initiation (2004–2007,
2008–2012, and 2013–2017). Clinical characteristics included
for analysis were regimen type (first line, second line), WHO
clinical staging (WHO I/II, WHO III/IV), tuberculosis status
(negative, positive, not assessed) from the routine monitoring
records of each visit to the clinic by the patients. HIV disease
progression was defined using the WHO-based CD4 cell counts
bands of HIV-related immunodeficiency: the no significant
immunodeficiency (CD4 ≥ 500 cells/µl) as state 1, the mild
immunodeficiency (350 cells/µl ≤ CD4 < 500 cells/µl) as
state 2, the advanced immunodeficiency (200 cells/µl ≤ CD4
< 350 cells/µl) as state 3, the severe immunodeficiency (CD4
< 200 cells/µl) as state 4, and the absorbing state death as
state 5.

Statistical Analysis
The patient’s retrieved data were cleaned and managed
in Stata 15.1 (24). All the preliminary analyses were
conducted in Stata software. After data argumentation, the
five-staged semiparametric time homogenous multistate
Markov model was fitted in R software (25) using
the msm package. We fitted a model with reversible

transitions (26); therefore, states 1–4 were transient
states, while state 5 was non-transient as depicted
in Figure 1.

The fitted model was adjusted for demographic factors
(sex, health facility type, and ART initiation period). The
semiparametric time homogenous multistate Markov estimated
transition intensities (transition rates or hazard rates), transition
probabilities (survival function) between the defined CD4 cell
count states, mean sojourn time, and the total length of stay
in states before making any transitions. Time-varying mortality
rates were estimated using time inhomogenous model, which
assumes that the transitions change with time, and this reflect
the reality in infectious disease progression models; hence,
this is normally the preferred model. These models usually
assume the Markovian process that the transition intensity
depends only on the current time and state occupied, i.e.,
it is independent of the previous transitions. In other terms,
these models were assumed to have “memory loss.” We
used the markovchain library in R to test if the Markov
assumption is satisfied. The null hypothesis of this test is that
the Markov property holds. We randomly selected patients’
sequences to be tested and we obtained p > 0.05; therefore,
we failed to reject the null hypothesis that the sequences
are Markovian.

The Multistate Markov Model
A multistate process is a stochastic process [X(t), t ∈ T] with
finite state spaceS = {1, 2, 3, 4, 5} where T = [0, τ ] τ < ∞

is the period of observation (27). These models can either be
discrete-time Markov chains (transitions occur at fixed points
in time) or continuous-time Markov chains (transitions occur
at any point in time) (28). For a continuous time Markovian
process, the transition intensity (instantaneous incidence rate),
λjk(t), of a patient from state X(t) = j at time t to state k at time

FIGURE 1 | Schematic presentation of the five-staged reversible multistate Markov model with the states of HIV defined as the ranges of CD4 cell counts (cells/µl)

and the corresponding individual transition intensities (λjkwhere j = 1,2,3,4 and k = 1,2,3,4,5).
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t + δt is defined as:

λjk(t) =
d

dt
pjk

∣

∣

t=0
= lim

δt→0

pjk(t, t + δt)

δt

= lim
δt→0

pjk{X(t + δt) = k|X(t) = j}

δt
(1)

where pjk is the probability from state j to k, δt is the change
in time. For example, in our case, the transition intensities in
Equation (1) form the (j, k) entry of the transition rate matrix,
denoted by Q(t):

Q(t) =













−λ1� λ12 λ13 λ14 λ15
λ21 −λ2� λ23 λ24 λ25
λ31 λ32 −λ3� λ34 λ35
λ41 λ42 λ43 −λ4� λ45
0 0 0 0 0













whose rows sum to 0, that is
∑

k∈S

λjk = 0 for all j, and the diagonal

entries (interpreted as changes in transition probability) are
defined by conversion as λjj(t) = λj� = −

∑

j 6=k

λjk(t) for all j ∈ S.

These transition intensities under the Markov process can be
calculated as the product of the flow rate µj and the conditional
probability of a transition to statek, given that a transition is
madej 6= k(ρjk). From the Q(t) values, we can calculate the
probability that the next state after state j is statek, for each j and
k calculated as

(

pjk = −λjk/λj�
)

. Once the transition intensity
matrix is obtained, the transition probability matrix can be
obtained using the Chapman–Kolmogorov forward differential
equations. The detailed explanation is provided in Appendix.
The probability matrix can be computed from the estimated
transition intensities using P(t) = exp [Q(t)] where [P(t)] is the
transition probability matrix defined as:

P(t) = exp [Q (t)] =













π11 π12 π14 π14 π15

π21 π22 π23 π24 π25

π31 π32 π33 π34 π35

π41 π42 π43 π44 π45

0 0 0 0 1













The probability
(

πjk

)

that a patient in state j at time t will be in
state k at time t + δt is given by:

πjk(s, t) = P[X(t + δt] = k|X(s) = j) (2)

wheres, t ∈ T, and s ≤ t. These transition probabilities satisfy the
following conditions:

(i)πjk(t + s) =
∑

r∈S
πjr(t) πrk(s) for allt ≥ 0,s ≥ 0 and j, k ∈ S;

(ii)
∑

k∈S

πjk(t) = 1 for all j ∈ S and t ≥ 0 and

(iii) πjk(t) ≥ 0 for all j, k ∈ S and t ≥ 0.
The maximum likelihood procedures (8, 29) can be used to
estimate these transition intensities as a product of probabilities
of transition between observed states, overall individuals i =

1, 2, ..,M and observation times rwhich are observed n times, as
shown below:

L(Q) =

M
∏

i=1

ni−1
∏

r=1

Li,j =
∏

i,r

π s(tir)s(ti,r+1)
(

ti,r+1 − tir
)

(3)

Each component Li,ris the entry of the transition probability
matrix and the s(tir)

th row and the s(ti,r+1)
th column, evaluated

at a pair of consecutive observed state at timestr andtr+1.
This likelihood function, L(Q), is maximum in terms of
log(λjk)to compute the estimates ofλjk, using the standard
optimization algorithms which make use of the derivatives of the
likelihood. This likelihood assumes that the sampling times are
ignorable (non-informative).

The Total Length of Stay and Mean Sojourn
Time
The mean sojourn time is defined as the mean expected holding
time or the average time a patient spends in each state in a single
stay before making any transition to other states. The average
length of stay in a single state before making any transitions to
either lower or higher CD4 cell count states is estimated by a
negative inverse of the jth diagonal entry of Q(t), that is (−1/λjj).
The total length of stay, Lk, in each of the four states excluding
death is defined as the anticipated exposure time spent by an
individual in each state during the study period before death. This
time is estimated as time spent in state k between two successive
time points (t1, t2) given by:

Lk =

∫ t2

t1
Pjk (t ) dt (4)

where j is the initial state which usually is equal to one and is
useful in the presence of reversible transitions.

Semiparametric Regression Model
To adjust for the effects of the covariates on the transition
rates, we proposed a semiparametric Cox proportional hazard
regression model. The transition rates depend on the covariates
vector matrix Z, that is,

λjk[t|Z(t)] = λjk0exp[β
T
jkZ(t)] (5)

where β jk =
(

β
jk1
,β

jk2
, ...,β

jkz

)T
is a vector of the regression

coefficients associated with vector Z (t) for the transition from
state j to state k. The baseline hazard function is denoted
byλjk0. In this study, we assumed time-independent covariates.
Parameter estimation was based on the maximization of the
hazard function (the transitional intensities). We fitted eight
models in total [starting with a no covariates (unadjusted) model,
followed by four univariate models and three with at least two
covariates]. The additional covariates after the univariate models
were added sequentially and only covariates without missing
information were considered in the adjusted model.
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Model Diagnostics
Selection of model of best fit with covariates was performed

using a likelihood ratio test define as −2 ln(Ls(
∧

θ )/Lg(
∧

θ ), where

Ls(
∧

θ ) is the likelihood of the reduced (no covariate) model Lg(
∧

θ )
and is the likelihood of the full (with covariates) model, which
follows a chi-square distribution with n degrees of freedom.
Significance was set at 5% level of significance. The aim was to
get a parsimonious model that explains best the model.

Ethical Considerations
We used data with no personal identification; however, we
used the individual unique identifier for the analysis. We
sort permission to use the dataset from the Ministry of
Health and Child Care, Zimbabwe, and this study was granted
ethical approval by the University of Witwatersrand’s Human
Research Ethics Committee (Medical) (Clearance Certificate
No. M170673).

RESULTS

Descriptive Characteristics of Patients and
Total Transitions Observed
From the 538 clinics, a total of 390,771 patients were seen
between 1st January 2004 and 31st December 2017. Of these
total patients, we excluded 197,618 (50.6%) patients with no
CD4 cell counts and 129,731 (33.2%) patients with one CD4 cell
count measurement. The remaining 63,422 patients of whom
65.4% were female contributed 205,711 years of total analysis
time at risk and under observation from 491 health facilities form
part of the analysis. The descriptive characteristics are shown
in Table 1. Most patients were enrolled in district or mission
hospitals (45.7%) and from facilities in the rural areas (74.7%).
There was an overwhelming significant difference in the baseline
characteristics by CD4 count states in this cohort, p < 0.05. The
median follow-up time was 2.63 [interquartile range (IQR), 1.14–
4.94] years, median duration between visits was 0.63 (IQR, 0.25–
1.88) years, and the median number of visit was 3 (IQR, 2–4)
visits. Most patients were classified in WHO clinical stage III/IV
(58.6%, n= 36,626).

Observed Transitions Between States
As displayed in Table 2, the 63,422 patients contributed 140,867
transitions between the follow-up period of which 12.6% (n =

7,995) were mortalities. The highest contribution of the observed
transitions of 114,561 (81.3%) came from those patients who
remained in the same state over time without making any
transition to other states. At baseline, majority of the patients
were in state 4 (CD4 < 200) (38.4%, n= 24,325) and state 3 (200
≤CD4< 350) (29.1%, n= 18,437). Similarly, this was the picture
at the end of the study; however, relative to baseline numbers,
there was a non-significant decline in the total number of patients
in state 3 (200 ≤ CD4 < 350) (p = 0.2621), while a significant
decline was observed in state 4 (p = 0.0478). Majority of the
deaths at the end of the study came from state 4 (CD4 < 200)

and state 3 [200 ≤ CD4 < 350], which accounted for 27.6% (n=

2,208) and 56.8% (n= 4,541), respectively.
Immune recovery is observed when a patient makes a

transition from lower CD4 cell counts states to higher CD4 cell
counts states (particularly 350 ≤ CD4 < 500 state to CD4 ≥ 500
state, 200 ≤ CD4 < 350 state to 350 ≤ CD4 < 500 state and
CD4 < 200 state 4 to 200 ≤ CD4 < 350 state), while immune
deterioration is experienced if a patient makes a transition from
higher CD4 cell count states to lower CD4 cell count states
(particularly CD4 ≥ 500 state to 350 ≤ CD4 < 500 state, 350
≤ CD4 < 500 state to 200 ≤ CD4 < 350 state, and 200 ≤ CD4
< 350 state to CD4 < 200 state). There were more transitions
(n = 8,031) from lower CD4 cell counts states to higher CD4
cell counts states (state 2 to 1 = 2,493, state 3 to 2 = 2,606, and
state 4 to 3= 2,932) as compared to higher CD4 cell counts states
to lower CD4 cell counts states transitions of the corresponding
reversible transitions (n = 5,425). This result is an indication of
immune recovery in this cohort.

Time Homogenous Transition Rates and
Probabilities
The transition rates and probabilities were estimated using the
time-homogenous multistate Markov model incorporating the
semiparametric Cox survival function, and results are displayed
in Table 3. Generally, there were higher transition rates from
lower CD4 cell count states to lower CD4 cell counts states
compared to the reversible corresponding transitions. Results
show thatmoving from state 2 (350≤CD4< 500) to state 1 (CD4
≥ 500) was 1.49 (0.16085/0.10783) timesmore likely thanmoving
from state 1 (CD4 ≥ 500) to 2 (350 ≤ CD4 < 500); hence, a high
probability of immune recovery. Patients in state 2 (350 ≤ CD4
< 500) were 1.38 (0.11264/0.08188) times more likely to move to
state 3 (200≤CD4< 350) compared to moving from state 3 (200
≤ CD4 < 350) to state 2 (350 ≤ CD4 < 500). This finding was a
clear indication of immune deterioration between the two states.
Transition rate from state 4 (CD4 < 200) to state 3 (200 ≤ CD4
< 350) was 1.02 (0.05261/0.05147) times more likely compared
to the transition from state 3 (200 ≤ CD4 < 350) to state 4 (CD4
< 200) indicating immune recovery from state 4 (CD4 < 200),
but this was not statistically significant.

We estimated the probabilities for which state is next after the
currently occupied state. The results show that an individual in
state 1 (CD4 ≥ 500) had a probability of 41.2% to move to state
2 (350 ≤ CD4 < 500); an individual in state 2 (350 ≤ CD4 <

500) had a 45.7% probability to move to state 1 (CD4 ≥ 500); an
individual in state 3 (200 ≤ CD4 < 350) had 35.3% probability
to move to state 1 (CD4 ≥ 500); and an individual in state 4
(CD4 < 200) had 28.1% probability of death. The cumulative
probability of moving from higher CD4 cell counts states to lower
CD4 cell counts states increased over time. The probability of
moving from state 1 (CD4 ≥ 500) to state 2 (350 ≤ CD4 < 500)
changed from 8.3% at 1 year to 16.2% at 6 years; state 2 (350 ≤

CD4 < 500) to state 3 (200 ≤ CD4 < 350) transition changed
from 9.2% at 1 year to 20.2% at 6 years and state 3 (200 ≤ CD4
< 350) to state 4 (CD4 < 200) transition changed from 4.7% at
1 year to 15.3% at 6 years. Similarly, the probabilities of moving
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TABLE 1 | Sociodemographic and clinical baseline characteristics at antiretroviral therapy (ART) initiation of all study participants from the Zimbabwe national ART

program, 2004–2017.

Variables Total (%) Baseline CD4 states for patients Chi-square

p-value

<200 200 ≤ CD4 < 350 350 ≤ CD4 < 500 ≥500

Health facility type

Primary health care 31,150 (49.1) 4,989 (44.4) 4,801 (51.0) 9,223 (50.0) 12,137 (49.9) <0.0001

District/mission hospital 28,971 (45.7) 5,465 (48.6) 4,141 (44.0) 8,401 (45.6) 10,964 (45.1)

Provincial/central hospital 3 301 (5.2) 790 (7.0) 474 (5.0) 813 (4.4) 1,224 (50.3)

Health facility site

Rural 47,348 (74.7) 8,401 (74.7) 7,256 (77.1) 14,109 (76.5) 17,582 (72.3) <0.0001

Urban 16,074 (25.3) 2,843 (25.3) 2,160 (22.9) 4,328 (23.5) 6,743 (27.7)

Age categories (years)

15–24 3,960 (6.2) 933 (8.3) 671 (7.1) 1,162 (6.3) 1,194 (4.9)

25–34 17,352 (27.4) 3,347 (29.8) 2,757 (29.3) 5,158 (28.0) 6,090 (25.0) <0.0001

35–44 4,060 (36.1) 3,447 (36.6) 6,843 (37.1) 9,842 (40.5) 24,192 (38.1)

45 and above 17,918 (28.3) 2,904 (25.8) 2,541 (27.0) 5,274 (28.6) 7,199 (29.6)

Sex

Female 41,505 (65.4) 9,068 (80.7) 6,508 (69.1) 12,027 (65.2) 13,902 (57.2) <0.0001

Male 21,917 (34.6) 2,176 (19.3) 2,908 (30.9) 6,410 (34.8) 10,423 (42.8)

Educational level*

None 1,499 (4.4) 266 (4.7) 250 (4.9) 445 (4.5) 538 (4.1)

Primary 11,804 (34.9) 1,996 (35.2) 1,782 (34.9) 3,501 (35.3) 4,525 (34.4)

Secondary 18,956 (56.0) 3,124 (55.0) 2,843 (55.6) 5,552 (56.0) 7,437 (56.5) <0.027

Tertiary 1,598 (4.7) 290 (5.1) 263 (4.6) 419 (4.2) 653 (5.0)

Marital status**

Single 7,604 (12.4) 1,276 (11.8) 1,144 (12.5) 2,095 (11.7) 3,089 (13.1)

Married 37,993 (62.0) 6,580 (60.7) 5,680 (62.3) 11,460 (64.2) 14,273 (60.7)

Widowed 11,243 (18.3) 2,250 (20.7) 1,643 (18.0) 3,083 (17.3) 4,267 (18.2) <0.0001

Divorced 4,494 (7.3) 741 (6.8) 655 (7.1) 1,216 (6.8) 1,882 (8.0)

Functional status***

Working 59,519 (94.5) 10,685 (95.5) 8,963 (94.7) 17,373 (94.9) 22,598 (93.6)

Ambulatory 3,270 (5.2) 494 (4.4) 477 (5.1) 877 (4.8) 1,422 (5.9) <0.0001

Bedridden 193 (0.3) 11 (0.1) 21 (0.2) 43 (0.2) 118 (0.5)

First line regimen 61,654 (97.2) 11,056 (98.3) 9,264 (98.4) 18,082 (98.1) 23,252 (95.6)

D4T (30) + 3TC + NVP 389 (0.6) 11 (0.0) 18 (0.2) 91 (0.5) 269 (1.1)

D4T (30) + #TC + EFV 11 (0.0) 1 (0.0) 1 (0.0) 3 (0.0) 6 (0.0)

AZT + 3TC + NVP 486 (0.8) 91 (0.8) 59 (0.6) 150 (0.8) 186 (0.8)

AZT + 3TC + EFT 82 (0.1) 13 (0.1) 10 (0.1) 17 (0.1) 42 (0.2) <0.0001

TDF + 3TC + NVP 2,919 (4.6) 303 (2.7) 255 (2.7) 907 (4.9) 1,454 (6.0)

TDF + 3TC + EFV 57,085 (90.0) 10,358 (92.1) 8,841 (93.9) 16,807 (91.2) 21,079 (86.7)

Other first lines 682 (1.1) 279 (2.5) 80 (0.9) 107 (0.6) 216 (0.9)

Second line regimen 1,768 (2.8) 188 (1.7) 152 (1.6) 355 (1.9) 1,073 (4.4)

AZT + 3TC + ATV/r 560 (0.9) 374 (1.5) 107 (0.6) 41 (0.4) 38 (0.3)

AZT + 3TC + LPV/r 84 (0.1) 48 (0.2) 15 (0.1) 7 (0.1) 14 (0.1)

TDF + 3TC + ATV/r 563 (0.9) 275 (1.1) 131 (0.7) 70 (0.7) 87 (0.8)

TDF + 3TC + LPV/r 89 (0.1) 49 (0.2) 21 (0.1) 7 (0.1) 12 (0.1)

ABC + DDI + ATV/r 73 (1) 50 (0.2) 13 (0.1) 7 (0.1) 3 (0.0)

ABC + DDI + LPV/r 389 (0.6) 273 (1.1) 69 (0.4) 19 (0.2) 37 (0.3)

Other second lines 683 (1.1) 220 (0.9) 106 (0.6) 81 (0.9) 276 (2.5)

(Continued)
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TABLE 1 | Continued

Variables Total (%) Baseline CD4 states for patients Chi-square

p-value

<200 200 ≤ CD4 < 350 350 ≤ CD4 < 500 ≥500

Tuberculosis status****

Negative 54,474 (87.0) 9,869 (88.6) 8,172 (87.7) 15,830 (86.9) 20,603 (86.0)

Positive 618 (1.0) 48 (0.4) 56 (0.6) 140 (0.8) 374 (1.6) <0.0001

Not assessed 7,524 (12.0) 1,220 (11.0) 1,090 (11.7) 2,240 (12.3) 2,974 (12.4)

WHO clinical staging*****

I/II 25,891 (41.4) 4,680 (42.0) 4,277 (46.0) 8,322 (45.9) 8,612 (36.0)

III/IV 36,626 (58.6) 6,460 (58.0) 5,012 (54.0) 9,826 (54.1) 15,328 (63.0) <0.0001

*The denominator of the proportions for this variable is33,857.

**The denominator of the proportions for this variable is61,334.

***The denominator of the proportions for this variable is62,982.

****The denominator of the proportions for this variable is62,616.

*****The denominator of the proportions for this variable is62,517.

TABLE 2 | Number of the total observed patients’ transitions between the five states, the total number of patients at antiretroviral therapy (ART) initiation (“beginning

state”) and the total number of patients at 31st December 2017 (and the “end state”) among ART patients in Zimbabwe national ART from 2004 to 2017.

To State 1

(>500 cell/ml)

State 2

(351–500 cells/ml)

State 3

(200–350 cells/ml)

State 4

(<200 cells/ml)

State 5

(Death)

Total

transitions

From

A summary of the total observed patients’ transition between the five states

State 1

(>500 cell/ml)

24,709 1,971 1,639 1,396 606 30,321

State 2

(351–500 cells/ml)

2,493 17,169 1,691 1,134 640 23,127

State 3

(200–350 cells/ml

3,459 2,606 28,645 1,763 2,208 38,681

State 4

(<200 cells/ml)

2,879 2,343 2,932 36,043 4,541 48,738

Total 33,540 24,089 34,907 40,336 7,995 140,867

Total number of patients by CD4 state at ART initiation and the end of follow-up (denominator = 63,422)

Beginning state

n (%)

11,244 (17.7) 9,416 (14.9) 18,437(29.1) 24,325 (38.4) – 63,422

End state

n (%)

14,463 (22.8) 10,378 (16.4) 14,663 (23.1) 15,923 (25.1) 7,995 (12.61) 55,427 (alive)

7,995 (dead)

from lower CD4 cell counts states to higher CD4 cell counts states
increased over time. The probability of moving from state 2 (350
≤ CD4 < 500) to state 1 (CD4 ≥ 500) changed from 13.6% at 1
year to 26.2% at 6 years; state 3 (200≤ CD4< 350) to state 2 (350
≤ CD4 < 500) transition changed from 6.8% at 1 year to 14.7%
at 6 years and state 4 (CD4 < 200) to state 3 (200 ≤ CD4 < 350)
transition changed from 4.5% at 1 year to 14.5% at 6 years.

Time Inhomogenous Mortality Rates
The transition rates for mortality were also estimated, and results
are shown in Table 4. The overall mortality rate in this cohort
was 3.9 (95% CI, 3.8–4.0) per 100 person-year. Stratifying by the
CD4 states, the mortality rates per 100 person-years increased
with a decrease in CD4 cell counts: state 1 (CD4 ≥ 500) (rate

= 1.8; 95% CI, 1.1–2.1), state 2 (350 ≤ CD4 < 500) (rate = 2.7;
95% CI, 2.4–3.1), state 3 (200 ≤ CD4 < 350) (rate = 3.3; 95%
CI, 3.1–3.8), and state 4 (CD4 < 200) (rate = 5.9; 95% CI, 5.7–
6.1). Hence, the mortality burden was highest in state 4 (CD4
< 200) compared to other states, and these mortality rates were
significantly different (log rank test p < 0.001). The Kaplan–
Meier curve further confirmed the survival probabilities of this
cohort stratified by state, that mortality risk increases with a
decrease in CD4 cell count (Figure 2). However, the fundamental

difference was between the mortality in state 3 (200 ≤ CD4 <

350) and state 4 (CD4 < 200) vs. the mortality in state 1 (CD4 ≥

500), and state 2 (350 ≤ CD4 < 500).

In general, the time-varying mortality rates decrease with
an increase in time since ART. The cohort experienced high
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TABLE 3 | Estimates of transition rates (intensities) per person-years and probability matrices and 95% confidence intervals (CI) for the time-homogenous multistate

Markov model among antiretroviral therapy (ART) patients in Zimbabwe national ART from 2004 to 2017.

Transitions Crude transition intensity

(95% CI)

Covariates adjusted

transition intensity

(95% CI)

Transition probabilities

(95% CI)

The probability that each

state is next

1 → 1 −0.26548 (−0.273 to −0.258) −0.26950 (−0.278 to −0.261) 0.779 (0.772 to 0.784) 0

1 → 2 0.10928 (0.104 to 0.115) 0.10783 (0.102 to 0.114) 0.083 (0.08 to 0.086) 0.41162 (0.397 to 0.427)

1 → 3 0.07823 (0.074 to 0.083 0.08184 (0.0772 to 0.087) 0.067 (0.063 to 0.070) 0.29468 (0.280 to 0.309)

1 → 4 0.05980 (0.056 to 0.063) 0.06313 (0.059 to 0.067) 0.052 (0.050 to 0.055) 0.22526 (0.214 to 0.238)

1 → 5 0.01817 (0.016 to 0.021) 0.01669 (0.014 to 0.019) 0.020 (0.018 to 0.022) 0.06844 (0.061 to 0.077)

2 → 1 0.18073 (0.173 to 0.189) 0.16085 (0.153 to 0.169) 0.136 (0.132 to 0.142) 0.45731 (0.443 to 0.472)

2 → 2 −0.39520 (−0.406 to −0.384) −0.37098 (−0.382 to−0.360) 0.686 (0.679 to 0.692) 0

2 → 3 0.11767 (0.112 to 0.124) 0.11264 (0.106 to 0.119) 0.092 (0.088 to 0.096) 0.29775 (0.285 to 0.312)

2 → 4 0.06960 (0.065 to 0.074) 0.07160 (0.067 to 0.077) 0.058 (0.055 to 0.061) 0.17613 (0.165 to 0.186)

2 → 5 0.02719 (0.024 to 0.031) 0.02589 (0.023 to 0.029) 0.027 (0.025 to 0.030) 0.06881 (0.061 to 0.077)

3 → 1 0.09501 (0.091 to 0.099) 0.08428 (0.080 to 0.088) 0.080 (0.077 to 0.083) 0.35266 (0.340 to 0.365)

3 → 2 0.08723 (0.083 to 0.091) 0.08188 (0.078 to 0.086) 0.068 (0.065 to 0.071) 0.32376 (0.312 to 0.336)

3 → 3 −0.26942 (−0.276 to −0.263) −0.24886 (−0.256 to −0.243) 0.772 (0.768 to 0.776) 0

3 → 4 0.05397 (0.051 to 0.057) 0.05147 (0.049 to 0.055) 0.047 (0.045 to 0.045) 0.20032 (0.190 to 0.210)

3 → 5 0.03321 (0.031 to 0.035) 0.03122 (0.029 to 0.034) 0.032 (0.031 to 0.034) 0.12325 (0.116 to 0.131)

4 → 1 0.04814 (0.046 to 0.051) 0.04363 (0.041 to 0.046) 0.044 (0.042 to 0.045) 0.22794 (0.218 to 0.238)

4 → 2 0.04584 (0.044 to 0.048) 0.04360 (0.041 to 0.046) 0.038 (0.036 to 0.040) 0.21708 (0.207 to 0.228)

4 → 3 0.05793 (0.055 to 0.061) 0.05261 (0.050 to 0.055) 0.049 (0.048 to 0.051) 0.27430 (0.263 to 0.285)

4 → 4 −0.21118 (−0.215 to −0.207) −0.19535 (−0.200 to −0.191) 0.814 (0.810 to 0.817) 0

4 → 5 0.05928 (0.057 to 0.061) 0.05551 (0.053 to 0.058) 0.055 (0.053 to 0.057) 0.28069 (0.272 to 0.290)

mortality rates in the first year of ART initiation averaging at 3.5
(95% CI, 3.4–3.7) per 100 person-years. There was a sharp drop
(seven-fold) inmortality rate fromfirst to the second year [hazard
ratio (HR)= 6.95(0.3512/0.0505); 95% CI, 6.78–7.14]. Gradually,
the mortality rates further decrease over time by the end of the
follow-up period. Mortality patterns across states followed this
similar trend to the overall pattern. In the first 3 years, mortality
rates had an inverse relationship with the CD4 cell counts, and
there was an overwhelming difference in these rates between
the states.

This study forecasted the total length spent in each of the
CD4 states by HIV patients on ART before death and estimated
the mean sojourn (holding) time for each state as shown in
Table 5. The results show that, when an individual enters state
4 (CD4 < 200), the time he or she spends in this state for a
single stay before moving to another state was estimated to be
4.74 (4.64–4.83) years on average. This result could be linked to
the time taken by a patient in this state to respond to ART and
subsequently boost immunity since this is the worst state in our
HIV progression model. Since the holding times for all states are
relatively long, therefore, HIV disease progression in this cohort

was relatively slow.

It was also of interest to forecast the total length of stay

for states 1–4 before death, which is and quite informative in

the presence of reversible transitions. The results show that an
individual will stay 11.3 years in state 1 (CD4 ≥ 500), 5.5 years
in state 2 (350 ≤ CD4 < 500), 7.2 years in state 3 (200 ≤ CD4 <

350) and 6.9 years in state 4 (CD4< 200) before death. In general,

these results reflected that an HIV patient on ART is expected to
spend more time in the highest CD4 cell counts state compared
to other states.

Covariates Effects on Immune Recovery
and Deterioration Transition Rates
We further included time-independent covariates (health facility
level, ART initiation period, and sex) and age in the multistate
Cox proportional hazard model, and the results are displayed
in Table 6. This model was a better fit using a likelihood ratio
test compared to the model without covariates (p < 0.001).
Adjusting for other covariates, the higher levels of health facility
are more likely to have patients moved from lower to higher CD4
cell count states. Provincial or central hospital individuals were
predominantly more likely to move from state 4 (CD4 < 200)
to state 3 (200 ≤ CD4 < 350) (HR = 8.30; 95% CI, 6.64–10.36)
followed by the state 3 (200≤ CD4 < 350) to state 2 (350≤ CD4
< 500) transition (HR = 8.04; 95% CI, 6.41–10.10) compared
to PHC patients. This means that patients at the provincial or
central hospital had a high probability of immune deterioration
once they are on ART compared to PHC patients. For district
or mission hospital patients, state 3 (200 ≤ CD4 < 350) to state
2 (350 ≤ CD4 < 500) was the predominant transition (HR =

4.41; 95% CI, 3.96–4.87), followed by the state 4 (CD4 < 200) to
state 3 (200 ≤ CD4 < 350) transition (HR = 3.97; 95% CI, 3.61–
4.37), compared to PHC patients. Similarly, this was a positive
indication of immune recovery for patients in district or mission
hospital compared to PHC patients.
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TABLE 4 | Estimated time-varying mortality rates per person-years and 95% confidence intervals for the time-inhomogenous multistate Markov model among ART

patients in Zimbabwe national ART from 2004 to 2017.

Time period Time-varying transition rates (95% confidence interval)

Overall

mortality rate

State 1 to 5 State 2 to 5 State 3 to 5 State 4 to 5 Log

rank p-value

0 < time ≤ 1 0.3512

(0.3368–0.3661)

0.1006

(0.0863–0.1172)

0.1490

(0.1292–0.1719)

0.2790

(0.2534–0.3071)

0.7609

(0.7225–0.8013)

<0.0001

1 < time ≤ 2 0.0505

(0.0472–0.0540)

0.0186

(0.0147–0.0234)

0.0291

(0.0239–0.0355) |

0.0383

(0.0330–0.0444)

0.1010

(0.0925–0.1102)

<0.0001

2 < time ≤ 3 0.0591

(0.0563–0.0621)

0.0245

(0.0206–0.0290)

0.0287

(0.0244–0.0338)

0.0687

(0.0632–0.0747)

0.0885

(0.0825–0.0950)

<0.0001

3 < time ≤ 4 0.0416

(0.0392–0.0441)

0.0200

0.0162–0.0247)

0.0186

(0.0148–0.0233)

0.0441

(0.0400–0.0486)

0.0581

(0.0535–0.0631)

<0.0001

4 < time ≤ 5 0.0312

(0.0291–0.0334)

0.0135

(0.010–0.0179)

0.0162

(0.0121–0.0217)

0.0312

(0.0277–0.0351)

0.0412

(0.0375–0.0453)

<0.0001

5 < time ≤ 6 0.0221

(0.0204–0.0240)

0.0076

(0.0053–0.0109)

0.0133

(0.0099–0.0180)

0.0214

(0.0185–0.0247)

0.0310

(0.0278–0.0346)

<0.0001

6 < time ≤ 7 0.0160

(0.0145–0.0178)

0.0079

(0.0057–0.0111)

0.0092

(0.0061–0.0137)

0.0160

(0.0133–0.0193)

0.0215

(0.0188–0.0247)

<0.0001

7 < time ≤ 8 0.0112

(0.0097–0.0128)

0.0041

(0.0025–0.0066)

0.0052

(0.0029–0.0095)

0.0117

(0.0088–0.0155)

0.0159

(0.0134–0.0189)

<0.0001

8 < time ≤ 9 0.0108

(0.0092–0.0128)

0.0050

(0.0030–0.0083)

0.0044

(0.0021–0.0093)

0.0132

(0.0094–0.0186)

0.0142

(0.0116–0.0175)

<0.0001

9 < time ≤ 10 0.0070

(0.0055–0.0089)

0.0014

(0.0005–0.0044)

0.0019

(0.0048–0.0076)

0.0082

(0.0049–0.0136)

0.0103

(0.0077–0.0138)

0.0001

10 < time ≤ 11 0.0066

(0.0050–0.0088)

0.0021

(0.0008–0.0056)

0.0021

(0.0005–0.0084)

0.0072

(0.0036–0.0145)

0.0104

(0.0074–0.0147)

0.0005

11 < time ≤ 12 0.0034

(0.0020–0.0058)

0.0015

(0.0004–0.0061)

0.0046

(0.0012–0.0184)

0.0066

(0.0025–0.0176)

0.0033

(0.0014–0.0080)

0.2154

12 < time ≤ 13 0.0030

(0.0011–0.0081)

0.0058

(0.0014–0.0230)

0 0.0031

(0.0004–0.0220)

0.0021

(0.0003–0.0151)

0.7305

FIGURE 2 | The survival plot of ART patients from the Zimbabwe national ART program stratified by CD4 cell counts states, 2004–2017.
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TABLE 5 | Estimates of mean sojourn time and the total length of stay for the

time-homogenous multistate Markov model among antiretroviral therapy (ART)

patients in Zimbabwe national ART from 2004 to 2017.

States Mean sojourn time The total length

of stay (years)

Estimate (95%

CI) (years)

Standard

error

State 1 (>500 cell/µl) 3.77 (3.66–3.88) 0.054 11.33

State 2 (351–500

cells/µl)

2.53 (2.46–2.60) 0.036 5.51

State 3 (200–350

cells/µl)

3.71 (3.63–3.80) 0.042 7.17

State 4 (<200 cells/µl) 4.74 (4.64–4.82) 0.047 6.86

Adjusting for other covariates, age was generally associated
with immune deterioration transitions (CD4 ≥ 500 state to 350
≤ CD4 < 500 state, 350 ≤ CD4 < 500 state to 200 ≤ CD4 <

350 state, and 200 ≤ CD4 < 350 state to CD4 < 200 state).
Compared to the 25–34 years age group, there was no significant
difference in immune deterioration transitions. However, the
results showed that the older the patient, the more likely he or
she is to become immune deteriorated. This result was observed
in elderly patients (45+ years) with a pronounced risk of immune
deterioration across age groups. With reference to 25–34 years
age group, both the 35–44 years and the 45+ years age groups
were predominantly more likely to move from state 2 (350 ≤

CD4 < 500) to state 3 (200 ≤ CD4 < 350) transition (HR
= 1.31; 95% CI, 1.14–1.51) and (HR = 1.56; 95% CI, 1.34–
1.81), respectively. Holding other covariates constant, sex was
significantly associated with immune deterioration transitions.
Male patients had an increased risk of immune deterioration
compared to female patients: state 1 (CD4 ≥ 500) to state 2 (350
≤ CD4 < 500) (HR = 1.15; 95% CI, 1.01–1.28), state 2 (350 ≤

CD4 < 500) to state 3 (200 ≤ CD4 < 350) (HR = 1.23; 95%
CI, 1.10–1.38) and state 3 (200 ≤ CD4 < 350) to state 4 (CD4 <

200) (HR = 1.67; 95% CI, 1.49–1.86). Moving from state 3 (200
≤ CD4 < 350) to state 4 (CD4 < 200) was predominant in male
compared to female patients.

Covariates Effects on Mortality Rates
In overall, mortality was high among patients in state 4 (CD4 <

200) in this cohort. The mortality risk was pronounced among
patients in provincial or central hospitals than those in district
hospitals if in state 1 (CD4 ≥ 500) (HR = 1.89; 95% CI, 1.32–
2.67), state 2 (350≤CD4< 500) (HR= 3.36; 95% CI, 2.05–5.52),
state 3 (200 ≤ CD4 < 350) (HR = 1.25; 95% CI, 0.73–2.16), and
state 4 (CD4 < 200) (HR= 2.23; 95% CI, 1.80–2.74). State 2 (350
≤ CD4 < 500) mortality risk was predominant in the provincial
or central hospitals. This means that PHC facilities had a low
risk of mortality in this cohort compared to both a higher level
of care facilities. Interestingly, the mortality risk was much more
pronounced among the 15–25 years age groups than other age
groups. The mortality risk for state 1 (CD4≥ 500) was 3.71 (95%
CI, 2.90–4.76), state 2 (350 ≤ CD4 < 500) (HR = 1.66; 95% CI,

1.09–2.53), state 3 (200≤ CD4< 350) (HR= 1.71; 95% CI, 1.32–
2.21, and state 4 (CD4 < 200) (HR = 1.71; 95% CI, 1.47–1.98).
Patients who were aged 45 years and above were more likely to
immune deteriorate compared to 25–34 years age group: HR,
1.35; 95% CI, 1.18–1.54; HR, 1.56; 95% CI, 1.34–1.81, and HR,
1.53; 95% CI, 1.32–1.79 for state 1 to 2, state 2 to 3, and state 3 to
4, respectively. Male patients were more likely to die compared
to female patients: state 1–5 (HR = 1.56; 95% CI, 1.26–1.92),
state 3–5 (HR= 1.32; 95% CI, 1.15–1.51), and state 4 to 5 (HR=

1.32; 95% CI, 1.23–1.42). Considering the ART initiation period,
mortality risks were pronounced among patients who initiated
ART in 2013–2017: state 2 (350 ≤ CD4 < 500) (HR = 4.89;
95% CI, 2.22–10.79), state 3 (200 ≤ CD4 < 350) (HR = 4.14;
95% CI, 2.47–6.96), and state 4 (CD4 < 200) (HR = 9.15: 95%
CI, 7.12–11.79).

DISCUSSION

This study’s objective was to describe HIV disease progression
(immune deterioration) and immune recovery among adult
patients on ART in Zimbabwe using patient-level data after
ART decentralization. This study made use of semiparametric
time homogenous and time inhomogenous multistate Markov
models based on four CD4 cell counts intermediate transient
states and mortality as the absorbing state. This study was a
quantitative secondary data analysis of the routinely collected
patient-level data through ePMS amongHIV-infected patients on
ART in Zimbabwe between 2004 and 2017. The study findings
were comparable to other earlier studies and indicated a poor
immune recovery in PHC facilities compared to higher levels
of care facilities. This study observed significant findings to
evaluate HIV disease progression and immune recovery based
on CD4 cell counts among ART patients between 2004 and
2017 in Zimbabwe after the decentralization of ART services.
The estimated mortality rate of 3.9 per 100 person-years is
low and patients in state 4 (CD4 < 200) had the highest risk
of death (5.9 per 100 person-years on average) compared to
other states. This finding was evident throughout in the time-
varying analysis of rates. The high rates in state 4 (CD4 < 200)
were consistent over time; however, there was a sharp drop by
seven-fold from 1 to 2 years since ART initiation. There finding
of high rates in lower CD4 cell count states is comparable to
finding from previous work in India and South Africa (13, 14).
Immune deterioration pronounced in patients aged 45 years and
above, provincial or central hospital levels of care and male
patients. However, immune recovery was also observed in this
cohort since there were higher transitions and transition rates
from lower CD4 cell counts states to higher CD4 cell counts
states. Moreover, patients in the high levels of care (district and
provincial or central hospitals) had an increased probability of
immune recovery compared to PHC facilities; however, mortality
was high in the high levels of care. Male patients had an increased
risk of mortality compared to female patients in this cohort.

Generally, there was a gradual improvement in CD4 cell
count after ART initiation. This result was evident by the higher
immune recovery rates compared to immune deterioration rates.
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TABLE 6 | Multiple variable estimates of the hazard ratios and 95% confidence intervals from the time-homogenous multistate Cox proportional hazard model among

antiretroviral therapy (ART) patients in Zimbabwe national ART from 2004 to 2017.

Transitions Health facility type* Age categories in years** Sex *** ART initiation period****

District/mission Provincial/central 15–24 35–44 45+ Male 2008–2012 2013–2017

1 → 2 2.36 (2.12–2.62) 2.10 (1.69–2.62) 0.78 (0.61–0.99) 1.25 (1.10–1.41) 1.35 (1.18–1.54) 1.15 (1.01–1.28) 0.78 (0.67–0.93) 0.90 (0.76–1.07)

1 → 3 1.28 (1.14–1.43) 0.58 (0.39–0.85) 0.80 (0.62–1.04) 1.11 (0.96–1.27) 1.32 (1.14–1.53) 1.04 (0.91–1.19) 1.65 (1.31–2.10) 1.62 (1.27–2.07)

1 → 4 1.01 (0.90–1.14) 0.33 (0.22–0.50) 0.90 (0.68–1.21) 1.05 (0.91–1.22) 1.32 (1.13–1.54) 0.91 (0.78–1.05) 0.35 (0.30–0.42) 0.25 (0.21–0.31)

1 → 5 1.48 (1.19–1.84) 1.89 (1.32–2.67) 3.71 (2.90–4.76) 0.68 (0.51–0.91) 0.94 (0.70–1.24) 1.56 (1.26–1.92) 3.26 (2.07–5.14) 3.02 (1.87–4.89)

2 → 1 2.84 (2.57–3.13) 3.12 (2.54–4.36) 0.98 (0.80–1.19) 1.05 (0.94–1.18) 1.06 (0.93–1.20) 0.57 (0.51–0.64) 0.56 (0.47–0.67) 0.54 (0.45–0.64)

2 → 3 3.18 (2.83–3.58) 3.33 (2.54–4.36) 0.74 (0.54–1.00) 1.31 (1.14–1.51) 1.56 (1.34–1.81) 1.23 (1.10–1.38) 0.88 (0.71–1.08) 0.39 (.30–0.52)

2 → 4 1.27 (1.11–1.46) 1.20 (0.83–1.73) 0.76 (0.52–1.10) 1.25 (1.05–1.48) 1.33 (1.11–1.60) 1.10 (0.96–1.27) 0.64 (0.49–0.83) 0.54 (0.43–0.67)

2 → 5 1.51 (1.17–1.95) 3.36 (2.05–5.52) 1.66 (1.09–2.53) 0.87 (0.63–1.20) 1.37 (1.01–1.86) 0.89 (0.69–1.15) 2.67 (1.20–5.95) 4.89 (2.22–10.79)

3 → 1 2.54 (2.32–2.79) 4.28 (3.45–5.30) 1.12 (0.94–1.36) 0.91 (0.81–1.01) 0.92 (0.81–1.03) 0.46 (0.41–0.52) 1.11 (0.87–1.43) 1.11 (0.86–1.44)

3 → 2 4.41 (3.96–4.87) 8.04 (6.41–10.10) 0.79 (0.61–1.03) 1.24 (1.10–1.40) 1.35 (1.18–1.54) 0.96 (0.87–1.06) 0.70 (0.57–0.87) 0.66 (0.53–0.82)

3 → 4 2.62 (2.34–2.93) 2.28 (1.59–3.28) 0.98 (0.73–1.32) 1.29 (1.12–1.50) 1.53 (1.32–1.79) 1.67 (1.49–1.86) 0.43 (0.35–0.54) 0.51 (0.40–0.63)

3 → 5 1.16 (0.99–1.13) 1.25 (0.73–2.16) 1.71 (1.32–2.21) 0.93 (0.77–1.08) 1.18 (0.99–1.42) 1.32 (1.15–1.51) 1.69 (0.99–2.85) 4.14 (2.47–6.96)

4 → 1 2.29 (2.05–2.55) 0.63 (0.34–1.17) 1.39 (1.09–1.77) 1.01 (0.89–1.16) 1.20 (1.04–1.38) 0.36 (0.31–0.41) 0.28 (0.24–0.34) 0.18 (0.15–0.22)

4 → 2 2.70 (2.41–3.03) 4.88 (3.55–6.71) 0.82 (0.60–1.11) 1.07 (0.94–1.24) 1.20 (1.04–1.40) 0.72 (0.64–0.81) 1.01 (0.77–1.33) 0.89 (0.67–1.18)

4 → 3 3.97 (3.61–4.37) 8.30 (6.64–10.36) 0.84 (0.64–1.09) 1.11 (0.99–1.25) 1.25 (1.10–1.42) 1.28 (1.17–1.41) 0.95 (0.76–1.19) 1.42 (1.13–1.78)

4 → 5 1.60 (1.49–1.73) 2.23 (1.80–2.74) 1.71 (1.47–1.98) 0.95 (0.86–1.04) 1.08 (0.98–1.20) 1.32 (1.23–1.42) 2.18 (1.69–2.82) 9.15 (7.12–11.79)

The covariates included in the adjusted model were those with complete observation information and considered possible risk factors for the individual transitions.

*Reference: Primary health care facilities.

**Reference: 25–34 years age group.

***Reference: female patients.

****Reference: 2004–2007 time period.

Bold face values are significant at 5%.

This is an indication of effective ART treatment to HIV infected
individuals and that if ART is initiated at early phases of HIV
infection (with baseline CD4 cell count at least 350), immune
recovery and reduced progression can be achieved since the
immune system is intact. This matches the findings reported in
South Africa in a similar population (17). This study also found
out that a patient in state 1 (CD4≥ 500) is estimated to spend 11.3
years in higher CD4 cell count state before death, which is similar
to other findings (11). This means that if individuals have a good
immunity which can be attributed to the ART regimen efficacy,
they tend to live longer than those with weak immunity. This
study further found that the probability of mortality increases
with a decrease in CD4 cell count, which concurs with findings
from similar settings (17, 30). This is explained by the fact that
being in an AIDS-defining stage leads to the highest probability
of mortality. The highest mean sojourn time was in state 4
(CD4 < 200) compared to other states. This finding can be
explained by the fact that patients with deteriorated immunity
(low CD4 cell count) take a longer time to respond to treatment
and boost their immunity before moving to lower states (31).
Research has shown that CD4 cell count may remain unchanged
despite the suppressed viral load due to weak CD4cell recovery
in other patients (32). This is the limitation of using CD4 cell
count; hence, use of viral load in monitoring the efficacy of ART
treatment is recommended (33).

We found that the higher the level of care, the better the
probability of immune recovery. Patients enrolled in either
provincial or central hospitals and district facilities had an

increased probability of immune recovery relative to those in
PHC. The risk of immune recovery increased with an increase
in care regardless of the immune status of the patient. This
result can be supported by high resources through government
channels or donor-funded and skilled personnel at the high levels
of care (21). As much as patients prefer PHC facility for ART
services because of reduced transport cost, easy to access (20),
they are most likely understaffed. In addition, PHC are at times
overburdened resulting in a high patient care turnaround time
(34–37). Surprisingly, we observed relatively high mortality rates
among patients enrolled in higher levels of care since one would
anticipate the opposite to occur. However, this finding could
be explained by either the referral system of patients within
the patient care cascade or “silent-transfer” of patients from
one health facility to another seeking better care (38–40). This
means that the tertiary health facilities were more likely to receive
patients who are more seriously ill and with a greater likelihood
of death (38, 41, 42).

As we accounted for interindividual variability effects to
get more insight on HIV disease progression in this cohort,
we found that HIV patients who were aged 15–24 years at
ART initiation tend to have a higher mortality than patients
aged 25–34 years, and the progression to death was much
more pronounced if a patient was coming from state 1
(CD4 ≥ 500) or state 2 (350 ≤ CD4 < 500). This finding
supports other earlier studies which showed that adolescents
are heavily burdened by chronic complications; hence, require
high level of patients management (43). In addition, this group
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is prone to stigma, vulnerable, and prone to various chronic
comorbidities as well as being and the transitional stage of
becoming independent without much parental care. Intensifying
community-based support for caregivers can help reduce poor
health outcomes in adolescence (44). However, more research
is required to further confirm this observed association in our
study. Patients aged 45 years and above showed a higher risk
of immune deterioration compared to younger patients (25–34
years), which was similar to other studies which reported that
younger people have a higher probability of immune recovery
than the elderly (11, 12). In addition, this could be explained
by the immune response in older patients is weak compared
to young people, that is, the capacity to generate CD4 cell
counts and suppress viral load is reduced in elderly patients
(45). Moreover, this could be explained by the fact that this age
group is highly associated with of non-communicable diseases
like hypertension and diabetes. Managing an HIV patient with
multiple comorbidities is known to be complex and also intake of
different drugs results in overlapping drug toxicity and lowering
of the ART drug effect (35). As a result, most patients with
comorbidities (communicable or non-communicable diseases)
may either default ART treatment or ART drug becomes less
effective due to the presents of other medications an individual is
on; therefore, these patients subsequently get worse. These results
confirm the need for test and treat regardless of disease stage and
age which have much positive influence in patients aged 45 years
and above (46, 47).

In our study, we found that male patients had higher rates
of immune deterioration. This was quite pronounced on the
transition from state 3 (200 ≤ CD4 < 350) to state 4 (CD4
< 200). In addition to this, we also observed poor survival
outcomes among male patients. This finding is consistent with
other results from Shoko and Chikobvu (17) who found out
that men were six times more likely to move to higher CD4 cell
count state. Another study which supports this result reported
that male patients gain fewer CD4 cell counts as compared
to female patients, and they have an increased immunological
non-response than female patients (48). However, this finding
contradicts other earlier studies which documented that gender
difference does not exhibit any significant differences in HIV
disease progression (11, 12). The participants in this study
were predominantly female, and this could mirror the fact
that female patients have better involvement in HIV issues
and their health-seeking behavior compared to male patients.
Female patients have multiple entry points in HIV care like
efficient linkage of ART treatment in antenatal clinics and
prevention-of-mother-to-child programs which results are better
immune recovery than male patients (48). Male involvement
in HIV care strategies needs to be enhanced to compliment
female role in HIV prevention (49–53). Therefore, there is a
need to scale up HIV testing rate among men and intensify
repeated testing and increasing acceptance of HIV care linkages.
With the critical societal role played by men, they improve
decision making within a household and society at large if
they are fully involved in HIV programs (54). There is need
to intensify existing strategies like male circumcision, self-
testing, HIV programs at workplaces, and recreational places and
also come up with flexible clinic hours and conditions which

accommodate men like shortening clinic turnaround time and
increase privacy (48).

Our results should be viewed in light of some limitations.
The dataset used had incomplete information especially in the
clinical parameters which resulted in dropping off a considerable
portion of the data. In addition, this study could not adjust for
ART adherence, which is an important issue in HIV disease
progression since it directly associated with the probability
of moving to a lower CD4 cell count state if a patient fails
to adhere to treatment. This study also considered patients
from ART centers linked to the ePMS; this might have caused
overestimation or underestimation of the transition intensities
reported in this study. The analysis was solely based on the
time homogenous assumption which is much more useful in the
presence of heavy right censoring. Earlier studies have shown
that, if a patient on ART is virally suppressed, if there is no
treatment uptake violation, that patient is likely to continue
recovering well. However, this violates the Markov and memory
loss properties of these models, and this limitation affects the
time-homogenous Markov process models. Other assumptions
like non-Markovian, semi-Markovian, or hidden Markovian
can be explored incorporating interval censoring and assuming
time-varying effects. This model could not account for frailty
terms to explain unobserved individual heterogeneity and spatial
effects to show regions with an increased likelihood for a
particular transition.

Moreover, this study covers the period in which ART
initiation guidelines were changed three times; hence, there
could be some bias in the estimates. In addition, the period
covered is mainly when the country was conducting targeted
differential monitoring, whereby most of the patients who had
their CD4 measurement taken were mostly those carried out
on the discretion of the physician. Authors acknowledge the
measurement error (55) associated with CD4 cell counts in ART
monitoring since a patient’s measurement may indicate a lower
CD4 when in fact the patients had recovered, hence the switch to
use viral load in ART monitoring.

There could be possible participant inclusion bias in this study
since we excluded those who were lost to follow-up (LTFU)
ending up with a subsample. The exclusion of this group was
to have a less complicated model with fewer states since this
group would be a stand-alone compartment. However, this may
have impacted in the generalizability of our research findings in
that the model used is not a complete picture of the transition
patterns in an ART program as some of the exit points have
been excluded. Majority of the patients who became LTFU were
mainly those who were very sick (with a CD4 < 200) and if
tracked there could be a possibility that some of them would
have died (56). The implications of such a LTFU pattern normally
lead to data missing not at random in longitudinal time to event
studies. Had we included the LTFU group and right censored
them in their last observed states, this would have caused an
upward bias of the Kaplan–Meier curve, which at times may
affect the generalizability of the findings (57). In future studies,
it would be essential to include the LTFU and withdrawals
states in the model to have detailed transition patterns of these
outcomes in an ART program. Our data could not allow us
to estimate transitions to AIDS since the information was not
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available and exhaustively adjust for comorbidities which might
be linked to the observed transition patterns in this cohort other
than tuberculosis. However, tuberculosis was not included as a
covariate because of the highly computational intensive of this
reasonably huge dataset if many covariates are added. Hence,
we restricted our analysis to demographic covariate so that we
attain convergence. A notable limitation in this study is the
low mortality rate of which most deaths were for those patients
who initiated ART in the 2013–2017-year period. The plausible
explanation for this could be an issue of a biased dataset in
terms of capturing patient’s information. It is most likely that
the majority of the deaths that occurred earlier may have been
lost during data capturing from patients files to the electronic
database since this was a retrospective exercise. Thus, we aremost
likely to have the long-term survivors from the early period.

CONCLUSION

Multistate models are crucial in providing the general disease
trajectories through intermediates states to alert program
response before an adverse event occurs. Our findings have
significant implication in the continuum of HIV care. It is
prudent to target early ART treatment initiation to prevent
subsequent immune deterioration. Once this is achieved, survival
outcomes and quality of life can be improved with the
subsequent reduction in opportunistic infections. Strengthening
of PHC facilities in ART is imperative in decentralization
environment. More aggressive male involvement strategies
should be enhanced to strengthen male involvement in
HIV care, and adolescents/young adult management has to
be upscaled to prevent ART defaulting and avert poor
health outcomes.
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