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Background: Patient health information is collected routinely in electronic health records

(EHRs) and used for research purposes, however, many health conditions are known

to be under-diagnosed or under-recorded in EHRs. In research, missing diagnoses

result in under-ascertainment of true cases, which attenuates estimated associations

between variables and results in a bias toward the null. Bayesian approaches allow the

specification of prior information to the model, such as the likely rates of missingness

in the data. This paper describes a Bayesian analysis approach which aimed to

reduce attenuation of associations in EHR studies focussed on conditions characterized

by under-diagnosis.

Methods: Study 1: We created synthetic data, produced to mimic structured EHR data

where diagnoses were under-recorded. We fitted logistic regression (LR) models with and

without Bayesian priors representing rates of misclassification in the data. We examined

the LR parameters estimated by models with and without priors. Study 2: We used

EHR data from UK primary care in a case-control design with dementia as the outcome.

We fitted LR models examining risk factors for dementia, with and without generic prior

information on misclassification rates. We examined LR parameters estimated by models

with and without the priors, and estimated classification accuracy using Area Under the

Receiver Operating Characteristic.

Results: Study 1: In synthetic data, estimates of LR parameters were much closer to the

true parameter values when Bayesian priors were added to the model; with no priors,

parameters were substantially attenuated by under-diagnosis. Study 2: The Bayesian

approach ran well on real life clinic data from UK primary care, with the addition of prior

information increasing LR parameter values in all cases. In multivariate regressionmodels,

Bayesian methods showed no improvement in classification accuracy over traditional LR.

Conclusions: The Bayesian approach showed promise but had implementation

challenges in real clinical data: prior information on rates of misclassification was difficult
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to find. Our simple model made a number of assumptions, such as diagnoses being

missing at random. Further development is needed to integrate the method into studies

using real-life EHR data. Our findings nevertheless highlight the importance of developing

methods to address missing diagnoses in EHR data.

Keywords: electronic health records, patient data, data quality, missing data, Bayesian analysis, methodology

INTRODUCTION

Uses of Electronic Health Record Data for
Epidemiology
The use of routinely collected data from patients’ medical records
has gained traction in epidemiology and health research in
the last two decades. In many jurisdictions, patient data from
electronic health records (EHRs) are stripped of identifiers and
curated into large databases, and linked with other sources
of health and administrative data, and thus used to gain
insights into drug safety, disease risk factors, and to aid health
service planning.

The United Kingdom (UK) has a rich history of using
patient data from the National Health Service (NHS), which has
coverage of almost the whole resident population and provides
the opportunity for large, population-based datasets (1). Other
countries which have nationalized healthcare systems, such as the
Netherlands or Denmark, or which have large private providers,
such as Kaiser Permanente, Mayo Clinic, or the Veteran’s
Association in the USA, also curate and re-purpose patient data
for research. One UK example is the Clinical Practice Research
Datalink (CPRD), which is an ongoing primary care database of
anonymized medical records from general practitioners (GPs) in
the United Kingdom (2), and has been the basis of 886 published
papers in the last 5 years (3).

Many important epidemiological studies have been conducted
using these population-based, routinely collected data. For
example, the safety of the measles, mumps, and rubella vaccine
has been studied (4), and the impact on pregnancy complications
of legislative changes to make public spaces smoke free (5),
among many studies on the safety of drugs in population
usage (6).

In addition, much methodological work has been put into
establishing the validity and data quality of large databases of
routinely collected patient data, and especially into the quality of
linkages between datasets (7–10).

Dimensions of Health Information Quality
in Electronic Health Records Research
Because information accrues in these records through the course
of routine interactions between patients and clinicians, data
quality is variable and hard to assess. Data quality can be
understood by reference to several dimensions: completeness,
uniqueness, timeliness, consistency, accuracy, and validity (11).
Of particular interest for EHRs may be the data quality domains
of completeness, validity, and accuracy (12–14).

Given that the EHR is an imperfect representation of the
illness state of an individual, and that it is in fact a collection of

working notes of a single or of various clinicians, it cannot be
expected that it will represent a perfect record of every condition
in the patient. A patient may have a condition, e.g., influenza,
but may not visit the doctor, so a diagnosis for this condition
would be missing from their record (we use “condition” to
represent the state of illness in the patient, and “diagnosis” to
indicate the record of the condition in the EHR; as well as the
identification of the condition by the clinician). For a chronic
condition, diagnosis may happen elsewhere in the healthcare
system (i.e., in specialist clinics) and the diagnosis may not
be added to the primary care record for some time. In some
conditions a clinical diagnosis is somewhat equivocal or may
become more certain over a number of consultations. Some
conditions are stigmatized or distressing and doctors may be
wary of communicating unpalatable diagnoses. These conditions
may therefore be labeled using symptom rather than diagnostic
codes (15, 16) or be recorded in clinical free text notes rather
than using the clinical coding system (17). Examples of the
above scenarios are mental health conditions, such as anxiety
and depression, stigmatized neurological conditions such as
dementia, and chronic conditions which may have a “silent”
onset, such as diabetes (18, 19). Figures from a range of
studies and two meta-analyses shown in Table 1, they show
that estimated rates of under-diagnosis for dementia, depression
and anxiety, average about 50% (20–35). Further assessments of
completeness of EHR data, such as the review by Chan et al. (36),
show that missingness of parameters such as blood pressure and
smoking status can be as high as 38–51%, but are less likely to
be missing in populations where these parameters are important
for clinical care, such as a high risk cardiovascular disease cohort.
Bhaskaran et al. (37, 38) showed that BMI measurements were
missing for between one-third and two-thirds of patients, with
an increase in completeness achieved over time between 1991
and 2011. However, length of registration per patient does not
necessarily indicate an improvement in diagnosis capture over
time (39).

Missingness in EHR data is a recognized problem andmultiple
solutions have been proposed.Wells et al. (40) proposed a helpful
model for understanding two types of missingness in EHRs.
Firstly “clearly missing structured data” are data such as missing
test results, or parameters such as blood pressure or BMI, where
patients are expected to have a value. Secondly, there is “missing
= assumed negative” data, and it is this second type that we focus
on here. Rather than being planned measurements or variables
which have either been collected into structured fields, or are
missing; entries of diagnoses, or medical history are made in the
record over time on the basis of clinic visits and the patient’s
presentation as well as the decisions and thought processes of the
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TABLE 1 | Sensitivity and specificity of GP recognition and recording of anxiety, depression, and dementia.

Study Disorder Data source/setting N patients GP recognition case

definition

Reference standard Sensitivity

(coded evidence)

(%)

Specificity

(%)

Janssen et al. (20) Anxiety Netherlands Study of

Depression and Anxiety

longitudinal cohort (21

family practices)

816 ICPC diagnosis

codes, medication,

referral or free text

reference to anxiety

from medical record

Screened with Kessler-10

and diagnosis made with

Composite International

Diagnostic Interview

16.5 97.2

Kroenke et al. (21) Anxiety 15 US Primary Care

Clinics

965 Receipt of treatment

for anxiety

(medications,

counseling, or

psychotherapy)

GAD-7 screening followed

by structured psychiatric

interview

59.0 –

Fernández et al.

(22)

Anxiety 77 primary care centers in

Catalonia, Spain

(DASMAP study)

666 ICD or ICPC codes in

the medical record

Structured Clinical

Interview DSM IV

32.0 90.0

Sinnema et al. (23) Anxiety or

Depression

23 General Practices in

the Netherlands

444 Free text terms or

ICPC codes for

anxiety or depression

Screening on Kessler 10 31.0 –

Wittchen et al. (24) Depression

Anxiety

Both

558 primary care

physicians in Germany

17,739 Doctor’s clinical

appraisal

questionnaire

Diagnostic screening

questionnaire

64.3

34.4

43.2

–

Kessler et al. (25) Depression or

Anxiety

1 General Practice in

North Bristol, UK

179 GP medical records

for diagnosis,

treatment and referral

GHQ questionnaire

followed by Clinical

Interview Schedule

39.0 –

Joling et al. (26) Depression 33 General Practitioners in

Leiden and Amsterdam,

Netherlands

816 Medical records:

diagnostic codes,

medication, referral

and free text

Composite International

Diagnostic Interview

43.0 94.4

Kendrick et al. (27) Depression 7 general practices in

Southampton, UK

694 GP rating on

questionnaire, and

patient records

Hospital Anxiety and

Depression Scale

33.3 88.5

Wittchen et al. (28) Depression 633 German primary care

doctors

20421 Doctor’s questionnaire Depression Screening

questionnaire

28.9 88.3

Cepoiu et al. (29) Depression Meta-analysis of 36

studies

>10,000 Chart review or

Physician

questionnaire

Various screening

questionnaires and

structured clinical

interviews.

36.4 (pooled) 83.7

(pooled)

Connolly et al. (30) Dementia 6 primary care trusts in

Greater Manchester (351

general practices) in UK

253,477

(>65 years)

Dementia registers in

GP records

National prevalence

estimates from Medical

Research Council:

Cognitive Function Aging

Study, MRC CFAS, 1998

45.4 –

Walker et al. (31) Dementia 7,711 GP practices in

England

n/a Primary care disease

registers of the QOF

National Health Service

England’s ‘Dementia

Prevalence Calculator’

41.6 –

O’Connor et al. (32) Dementia Seven Group GP

practices in Cambridge

GP rating of diagnosis MMSE followed by

diagnostic interview

(CAMDEX)

58.0 22.0

Collerton et al. (33) Dementia 2 primary care trusts in

Newcastle and Tyneside,

UK

1,024 General practice

records

Questionnaires and health

evaluation

46.6 –

Lithgow et al. (34) Dementia Nursing home residents in

Glasgow, UK

422 Diagnosis written in

care plan/GP record

Standardized MMSE 64.5 –

Lang et al. (35) Dementia Meta-analysis of 23 global

studies (Europe, north

America, Thailand, China)

43,446 Majority: Medical

records

Screening tools or

diagnostic interviews

38.3 –

Frontiers in Public Health | www.frontiersin.org 3 March 2020 | Volume 8 | Article 54

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Ford et al. Bayesian Analysis for EHR Data

clinician. This leads to the situation where if there is evidence in
the record that a patient has a condition (i.e., a “diagnosis”), we
can identify them as a case. However, if a record has diagnosis
recorded, we cannot know if data are “negative” or “missing” for
that condition. We generally treat patients with no diagnosis for
a condition as “negative,” i.e., they do not have the condition, but
they may, in a few cases, be “positive but unlabeled” (41), that is,
having the condition but missing a diagnosis for it.

Several statistical methods have been developed to deal with
the first type of missing data (empty structured fields), most
notably multiple imputation with chained equations (42–47).
However, these approaches do not allow discrimination between
negative and missing in the second case of missing diagnoses.

For EHR research, patients who have a condition of interest
need to be identified or defined as “cases” of that condition for
inclusion in a study. We find that many case definitions in EHR
research, such as for rheumatoid arthritis or types of dementia
[e.g., (48, 49)] prioritize specificity over sensitivity. That is, they
require several pieces of information about a condition to exist
in the record within a set time-frame, before the researcher can
be satisfied that the patient really is a “case” for the purposes
of the study. Even patients with some evidence of a condition
may be left out of the case group developed for the study.
Thus patients included as “cases” in a study may not be fully
representative of patients with the condition in general. The
problem of missing cases (or false negatives) in a study is likely
to be greater than of false positive cases. Case validation methods
in EHR research have often investigated the positive predictive
value of their case definition, that is, howmany patients identified
as having a condition truly have that condition. They have
rarely investigated how many patients with a condition are
missed by their method of identifying cases (12). Additionally,
it is extremely hard to determine sensitivity or specificity of
case definitions in a large EHR database, because establishing
a “ground truth” or gold standard to verify cases against is a
costly process, usually involving sending questionnaires to the
originating GP to validate information in the record.

It is widely recognized that misclassifications of patients due
to missing or false diagnosis codes will impact on any use
of primary care records for prevalence and incidence studies,
resulting in incorrect estimates of the burden of disease in
the population [e.g., (19)]. However, missed cases are much
less widely discussed as an issue in studies looking to estimate
associations between two conditions or between an exposure and
outcome. The impact of a substantial proportion of cases being
missed, when the association between two conditions is studied,
has been recognized for decades as independent non-differential
measurement error (50). It is known that this error is likely to
attenuate associations and reduce the power of statistical tests to
find associations, thus biasing results toward the null hypothesis.
Clinically, thismay impede our understanding of risk factors for a
condition, or of drug side effects, for example. A worked example
using conditional probabilities to show attenuation of estimated
associations when diagnoses are missing, is given as a learning
exercise in Box 1.

Given the evidence that many conditions are under-recorded
in EHR data, that case definitions are not perfectly sensitive,

and that these factors are likely to attenuate associations within
analyses, we aimed to develop a method which could reduce
the effect of independent non-differential measurement error on
estimates of associations in EHR data.

Using Bayes’ Theorem to Address This
Attenuation in EHR Data Analyses
Bayes’ theorem is a rigorous method for interpreting evidence
in the context of previous knowledge or experience (51). Bayes’
theorem describes how to update our understanding of the
probability of events given new evidence.

Given a hypothesis, H, and evidence (E; that is, data collected
in a study), Bayes’ theorem states that the relationship between
the prior probability of the hypothesis being true before obtaining
the evidence, P(H), and the probability of the hypothesis being
true given the evidence, P(H|E), is as follows:

Pr (H|E) =
Pr (E|H)Pr(H)

Pr (E)

Bayes’ theorem could be used with EHR data to inform any
statistical model of likely misclassification rates, using prior
information. We propose using a Bayesian framework for
estimating the associations between conditions, within which
prior estimates of the likely misclassification rates, both positive
and negative, can be included. Our approach is to use this
information to account for the misclassifications in the data, with
the hypothesis that this will generate estimates of associations
closer to real values. As this is a novel approach, we aimed to
develop a first, simple, proof of concept model using the Bayesian
approach. With EHR data, we only have the recorded diagnosis
status of patients. This is not a perfect reflection of true condition
status across the whole population and we cannot know patients’
true condition status from the EHR database. Thus, to develop
and assess our method, we generated synthetic data, and ran
simulations (Study 1). We then tried the approach in real life
clinic data (Study 2).

STUDY 1: SIMULATIONS METHODS AND
RESULTS

Dataset
We created synthetic datasets approximating simple structured
EHR data, so that each patient would have a known true
condition status and a recorded diagnostic status for a small
number of conditions, for which there was a known rate of
misclassification. Each synthesized patient therefore had two
layers of data; their true condition status (which would be
unknown in real clinic data), and their recorded diagnostic status
(as reported in clinic data).We created these data for three related
conditions, A, B, and C. The three conditions were related in a
generalized linear model relationship where the probability of the
true status of condition A was determined by whether the patient
truly had conditions B and C using the formula A= β0(intercept)
+ β1(B) + β2(C). Four sets of values of β0, β1, and β2 were
chosen to represent a wide range of associations and are shown
in Table 2.
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BOX 1 | Worked example of conditional probabilities in misclassi�ed cases showing attenuation of estimated associations when diagnoses are missing.

We explore a simple hypothetical model in which patients might have two conditions, A and B. We work this model through using Bayesian nomenclature. Let us

assume that the probability of a patient having condition A, if they have condition B, is 0.6

• P(A | B) = 0.6

and let the probability of a patient having condition A, if they do not have B, be 0.2.

• P(A | ¬B) = 0.2

These two conditions are imperfectly captured in the patient record. Let the probability of the patient having a diagnosis recorded for condition A, if they have A, be

0.6.

• P(DA | A) = 0.6

There are also some false positives; let the probability of a patient without condition A nevertheless having a recorded diagnosis for A be 0.05.

• P(DA | ¬A) = 0.05

Let condition B be slightly better captured in the EHR, so that the respective probabilities are 0.85 and 0.03.

• P(DB) | B) = 0.85

• P(DB | ¬B) = 0.03

Let the prevalence, or overall probability of any patient having condition B, be 0.1.

• P(B) = 0.1

Suppose that we do not know the association between the two conditions, P(A | B), and we want to estimate this using the recorded diagnoses. A naïve approach

will instead estimate the probability of having a recorded diagnosis of A, given a recorded diagnosis of B, thus: P(DA | DB). We can demonstrate that the association

given by P(DA | DB) is not a good approximation of the association P(A | B).

The conditional probability P(DA | DB) can be represented in terms of the joint probability of D A and DB and P(DB):

P (DA|DB) =
P(DA,DB)

P (DB)

The joint probability is the total probability of each of the four ways of obtaining a diagnosis of A and B.

P(DA,DB) = P(A | B) · P(B) · P(DA | A) · P(DB | B) +

P(A | ¬B) · P(¬B) · P(DA | A) · P(DB | ¬B) +

P(¬A | B) · P(B) · P(DA | ¬A) · P(DB | B) +

P(¬A | ¬B) · P(¬B) · P(DA | ¬A) · P(DB | ¬B)

and

P(DB) = P(B) · P(DB | B) + P(¬B) · P(DB | ¬B)

In our hypothetical scenario these can be evaluated as

P(DA,DB) = (0.6×0.1×0.6×0.85) + (0.2×0.9×0.6×0.03) + (0.4×0.1×0.05×0.85) + (0.8×0.9×0.05x0.03) = 0.03663; and

P(DB) = (0.1x0.85) + (0.9x0.03) = 0.112

Thus, from recorded cases only, we estimate the association between A and B is

• P(DA | DB) = 0.03663/0.112 = 0.33.

Note that the true association, given at the beginning of this section, is P(A | B) = 0.6. Thus we have demonstrated that assuming P(DA | DB) = P(A | B) can lead to

attenuated estimations of association.

The rates of misclassification (the rate of mismatch between
the true and the recorded condition status) assigned to each
condition are shown in Table 3. These probabilities then
determined whether each patient obtained a recorded diagnosis
for their condition or not. Simulations additionally varied by
number of patients within the dataset (100, 500, 1,000, 5,000,
10,000, and 20,000), giving a total of 24 synthetic datasets (4 sets
of parameters× 6 sizes).

Analysis Method
Our objective was to estimate associations between three
conditions of A, B, and C in this synthetic data, using a
conventional generalized linear model (GLM) and Bayesian
modeling approximating GLM, and explore the relative accuracy
of the two approaches in estimating parameters β0, β1, and β2.

We determined the association between the variables only
from the recorded diagnosis status. As this was mostly under-
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TABLE 2 | Parameters determining relationship between three conditions in

synthetic datasets.

Simulation β0 β1 β2

1 0.2 4 3

2 0.5 8 3

3 0.1 0.5 2.6

4 0.1 0.6 0.8

TABLE 3 | Rates of misclassification in synthetic data, expressed as a set of

parameters determining the conditional probabilities (see Appendix 1 in

Supplementary Material for terminology).

Parameter Value

P(DA | A) 0.86

P(DA | ∼A) 0.02

P(DB | B) 0.65

P(DB | ∼B) 0.08

P(DC | C) 0.68

P(DC | ∼C) 0.15

rather than over-diagnosed in our synthetic data, we expected
an attenuation of associations compared to the real association
in the true condition status. We analyzed the datasets using the
software JAGS, a Gibbs Sampler (52), which is a program for the
statistical analysis of Bayesian hierarchical models by the Markov
Chain Monte Carlo method. It allowed us to fit both a traditional
logistic regression (LR) model and a Bayesian logistic regression
model, in which the rates of misclassification were introduced
to the model as Bayesian priors (model specification and
terminology is given in Appendix 1 in Supplementary Material).

The role of the two types of logistic regression models was
to try to recover the parameters which determined the true
relationships between the three conditions (β0, β1, and β2).
Parameters were estimated with 95% confidence intervals (CIs)
in the LR and 95% credibility intervals in the Bayesian models.

Results
Both types of model (LR and Bayesian LR) ran successfully
and converged, and produced estimates for the parameters.
The 95% confidence or credibility intervals narrowed as more
patients were included in the simulation, as would be expected
(range 100–20,000).

Overall, the logistic regression models produced estimates for
the parameters which were smaller than the true parameters
(attenuation) and had narrow 95% confidence intervals giving
the impression that estimations were very accurate, however, CIs
only overlapped the true parameter in simulations with small
associations and small numbers of patients. The Bayesian logistic
regression models produced parameter estimates that overlapped
the true parameter value in all but one case, although with wider
credibility intervals. These effects can be seen in the exemplar
graphs Figures 1, 2. The full results of 24 simulations are given
in Appendix 2 (Supplementary Material).

Discussion of Simulation Study
These simulation studies provide a proof of concept that
by adding in known information about population-based
misclassification rates as Bayesian priors to conventional
analyses, we can reduce the attenuation in estimations of
associations between conditions.

The simulations also show that in the analyses using Bayesian
priors to model misclassification rate, the credibility intervals
around the parameter estimations were much wider than in
conventional analyses, and that in almost all simulations these
wider credibility intervals spanned the correct parameter value.
Although these confidence intervals were much wider than in
conventional analyses, they narrowed as more patients were
added to the analysis, and were still narrowing at 20,000 patients.
This demonstrates that with the Bayesian approach, it may be
more important to have larger datasets for achieving precise
estimations of associations.

STUDY 2: EHR DATA METHODS AND
RESULTS

Following these simulations, we then undertook to investigate
whether this Bayesian approach may improve our ability to make
predictions about which patients are developing dementia, using
data from anonymized patient records from UK primary care.
It is estimated from a range of different studies that about one-
third of people living with dementia do not get a diagnosis
(53). Additionally, several associated conditions which may act
as predictors of dementia, including depression, anxiety, and
diabetes, are known to be under-diagnosed in primary care.
Thus, many associations between variables in our model may be
attenuated due to misclassification.

Dataset
We used data from the UK Clinical Practice Research Datalink
(CPRD) (2). We used a case-control design. Dementia cases were
selected from the CPRD database if they were over 65 years and
had one or more dementia code in their record and the first of
these was recorded between 2000 and 2012, if they came from a
practice who had met acceptable quality standards, and if they
had a minimum of 3 years of up-to-standard quality data prior
to the first dementia code. We used 1-to-1 matching of control
cases by age, sex and GP practice; controls were required to have
no dementia codes anywhere in their record, and controls who
had evidence of dementia in the form of Alzheimer’s specific
medication prescriptions or “dementia annual review” codes
were removed from the sample. The entire patient record prior
to the first dementia code, or a matched date in the controls,
was extracted (total N = 93,120), but we analyzed only data
from the 5 years preceding diagnosis or matched date in controls.
We drew up code lists representing 70 potential variables which
our research suggested might be predictive of the condition (54).
We matched these to clinical codes found in the patient clinical,
referral, test and immunization sections of the patient records.
Full details of the sample and the variables in the analysis can
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FIGURE 1 | Median estimated value and 95% confidence intervals for one of the parameters (β2 in simulation 1, shown on y axis) in a simulation. Estimated value is

plotted against number of data points used to make the fit (x axis), when misclassification rates were not modeled (left) and were modeled (right) as Bayesian priors.

Notice the true value for parameter β2 is shown as a gray line and has the value 3.0. The traditional logistic regression substantially underestimates the association,

whereas the credibility intervals of the Bayesian logistic regression are substantially wider but span the correct value.

FIGURE 2 | Posterior distributions for the estimate of a parameter (β2) in simulation 1 where 100 (blue), 5,000 (red), and 20,000 (green) data-points were used.

Distributions show results when misclassification rates were not modeled (left) and when they were (right). The true value for parameter B is shown as a gray bar

(β2 = 3).

be found elsewhere (55) and the full list of variables is given in
Appendix 3 (Supplementary Material).

Analysis Methods
We used LASSO penalized logistic regression (LR) (56) to
combine and select a minimum set of best predictors from
the 70 added to the model, with dementia status as the binary
outcome. We aimed to create models which best discriminated
between cases and controls, using a random cut of 80% of the
data as a training set and 20% as a validation set. We assessed
estimates of association (LR coefficients) between each variable
and the outcome. We also assessed the ability of the model to
correctly classify cases and controls using the Area Under the
Receiver Operating Characteristic Curve (AUROC), which plots
false positive rate against true positive rate for every possible
threshold of the model.

We specified three methods, an LR with no Bayesian
priors, and two LRs, in which we used generic estimates
of misclassification for all variables, again using the software
JAGS (SourceFourge). We modeled low misclassification rates
(P(D(cond)|cond) = 0.95; P(D(cond)|¬cond) = 0.015) in one
analysis and high misclassification rates (P(D(cond)|cond) =

0.85; P(D(cond)|¬cond)= 0.04) in the second analysis.

Results
The logistic regression model produced small LR coefficients for
all predictors, and the addition of Bayesian priors in the models
resulted in higher LR coefficients. There was a small increase in
parameters with the small errors modeled, and a larger increase
if larger errors were modeled. Results showing LR parameters
for the top 20 predictors in the model are found in Table 4. If
we look at the highest ranked predictor of recorded Behavior
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Change, the estimate of association between this and dementia
went up substantially from 1.75 with no errors modeled, to 2.56
when small errors were modeled, to 5.40 when large errors in
classification were assumed. This exemplar variable is shown
in Figure 3.

TABLE 4 | Change in Logistic Regression (LR) coefficients when misclassification

errors were modeled as Bayesian priors.

Condition (Yes vs. No) LR

coefficient

LR Bayes small

errors

LR Bayes large

errors

Behavior change 1.75 2.56 5.4

Third party consultation 0.65 0.82 1.43

Depression 0.58 0.72 1.21

Possible falls 0.41 0.51 0.81

GP home visit 0.40 0.42 0.67

Did not attend 0.36 0.43 0.67

Stroke 0.33 0.46 0.79

Cerebrovascular disease 0.26 0.25 0.41

Receives home care 0.18 0.24 0.41

Attended emergency room 0.18 0.22 0.36

Anxiety 0.18 0.18 0.32

Depressive symptoms 0.14 0.22 0.49

Constipation 0.09 0.13 0.23

Lower limb fracture 0.01 −0.001 0.006

Urinary tract infection −0.02 0.03 0.06

Impaired mobility −0.03 −0.003 0.05

Non-urgent hospital

admission

−0.03 −0.03 −0.03

Social services involvement −0.13 −0.21 −0.41

Living in a nursing home −0.14 −0.14 −0.2

(Intercept) −0.72 −0.82 −1.16

When predictors were combined in a multivariable
model and the accuracy of the model to classify cases and
controls assessed using Area Under the Receiver Operating
Characteristic Curve (AUROC), we found no improvement
in the accuracy of prediction in the overall model by the
addition of Bayesian priors. Whether or not we used Bayesian
priors in the Logistic Regression model, our model resulted
in exactly the same AUROC (not pictured as the curves
exactly overlaid).

Discussion of EHR Data Analysis
Our initial analyses suggest that the Bayesian method, of
modeling misclassification rates as priors, works in the same
way on real clinic data as it did with synthetic data. The
introduction of Bayesian priors appears to increase estimates
of association and increase the width of confidence intervals
around these estimates. The use of generic rather than condition-
specific priors, did not result in any improvement in accuracy of
classification in a multivariable model, which is a limitation of
our approach that we explain below. However, we noted a range
of implementation challenges when applying this approach to
real clinic data, which we outline in the next section.

DISCUSSION

Simulation studies confirmed a substantial problem of
attenuation of estimates of association when diagnoses are
missing or patients are misclassified in EHR data. We have
identified an approach which shows promise for dealing with
this attenuation in EHR data. This method was simple to
specify, and in simulated data, which mimicked misclassification
in EHR data, we were able to recover the true associations
between variables. We found that a traditional logistic regression

FIGURE 3 | Estimation of confidence intervals of LR coefficients for association between behavior change and dementia with no errors modeled (blue line) and with

small errors modeled (left graph, orange blocks) and large errors (right graph, orange blocks).
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model gave estimates which were attenuated compared to
true associations between simulated conditions, yet our novel
Bayesian method was able to estimate correctly the true
association. However, after trialing the approach on real clinical
data, we note a number of challenges to implementing our
approach, which must be addressed before it can be adopted
widely by researchers using EHR data.

Identifying the Correct Priors for Real Life
EHR Data
The first implementation challenge we encountered using real
life clinic data was identifying what the values of the priors
should be. In certain conditions (dementia, anxiety, depression,
diabetes), the rates of under- and possibly over-diagnosis have
previously been examined and estimated. However, rates of
misclassifications have simply not been studied in a range of
other conditions, such as stroke, coronary heart disease, or
fractures. Additionally, there is no clear way of establishing
under-recording or misclassification for more social, behavioral,
or contextual variables such as third party consultations or
receipt of care in the home, for which there is unlikely to
be any objective measure against which to validate recording.
Thus, establishing valuable prior information about likely rates
of misclassification proved extremely difficult in real clinical
data. We took the approach of using generic rates of errors
across all variables, which limited our understanding of the
potential of our method, as common sense understanding would
suggest that the error rates must be different in different
conditions. These findings should serve as a motivation to
clinicians, epidemiologists, and data scientists to find ways
to obtain this important and currently missing information.
Sources of linked clinical data such as linked primary care
and hospital data, or research cohort data linked to medical
records, would be invaluable for quantifying missingness in
EHRs for various conditions in a more automated way than
manual chart review or GP surveys. Several studies have utilized
this method to understand quality of recording in various
clinical sources, e.g., Herrett et al. (57) for acute myocardial
infarction and De Lusignan et al. (58) for osteoporosis. Using
this method of two or more linked sources of data has multiple
advantages; it allows for reducing “missing = assumed negative”
in the database by triangulation from various sources, it would
give indications of the likely rate of missingness in any one
source, and it informs investigations on how missingness on
one variable might affect missingness on another. Even where
misclassifications cannot accurately be determined due to lack
of a gold standard source of data, some knowledge of the
levels of missingness would still allow analysts to include prior
misclassification as a distribution rather than a fixed value in an
analysis model.

Validating the Change in Estimations
The second implementation challenge with this approach in real
clinic data is that we have no accessible way of establishing a
ground truth to validate the change in estimations of associations
achieved by the introduction of Bayesian priors. Thus, we cannot
know if these changes in estimates represent now the true

association between the two conditions under study. However,
it would be equally true to say that there is no way to validate that
traditional approaches give the right answers, and we have shown
that traditional approaches will only give the right answer if there
are no misclassifications in the dataset.

Assumptions Made Within This Approach
A third challenge for future development is to build a more
complex model that more closely represents the causes of
missingness in real life. Our approach was a simple, first proof
of concept, and as currently specified assumes independence of
reasons for missingness between different variables, or rather,
that diagnoses are missing at random. However, we know that
reasons for missingness or misclassification on one variable are
likely to be related to reasons for missingness of another variable.
Conversely, if a patient has a symptom a doctor may send a
patient for a range of tests which result in several diagnoses
simultaneously. The impact of this questionable assumption on
the results obtained by the model is not currently clear, and
should be explored in further simulation studies. The model also
assumes that patients with a condition who receive a diagnosis do
not differ systematically from those patients with a condition who
do not have a diagnosis recorded. Again this is an implausible
assumption, and the Bayesian priors that we specified do not
attempt account for any systematic differences between these two
groups. However, for all analysis methods which attempt to deal
with complexity and quality in real life data, there is a tension
between starting with a simple model which has a chance of
converging, and a model which can be more true to life, but
very complex, and which researchers cannot agree the granular
parameters for. We aimed to achieve proof of concept here,
and acknowledge that the approach can be further developed
in time.

No Improvement in Model Classification of
Cases and Controls (AUROC)
In real life clinical data, where we added uniform Bayesian
priors for all predictors, we did not see an improvement in
the model’s ability to discriminate between cases and controls.
This is because the ROC curve analysis effectively uses the
rank of the participants in order of their probability of having
a positive rather than negative outcome in the classification
analysis (59). With uniform rates of misclassification applied
across predictors, these rankings did not change, despite higher
estimates of association. This can be seen in Table 4, where
variables, on the whole, did not swap in precedence despite
increasing estimates of LR parameters. With more accurate and
individualized estimates of misclassification, tailored to each
predictor or condition, we would expect to see differences on
ROC curves for the Bayesian analysis compared to traditional
analyses. The ROC curve analysis also gives insight into which
types of data analysis might be most affected by misclassification
in the dataset. A simple estimation of association between
symptom and condition, or exposure and outcome, may be
highly affected. However, in a classification analysis, examined
by a ROC curve, the ranking of which patients in the dataset
are more likely to have a condition might be unchanged by
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missingness, except perhaps where missingness is associated also
with the likelihood of having the condition.

Summary and Conclusions
In summary, we have demonstrated that many conditions are
misclassified or missing in EHR data, because, due to the way
they are created, EHRs are an imperfect representation of the
true status of health or illness in the individual. These errors
in recording result in misclassification of cases when data from
EHRs are used in research studies. In studies estimating the
association between two variables in EHRs, this misclassification,
which is more likely to involve missed cases than false positive
cases, results in an attenuation of estimates of association
between the two variables under study and a bias toward the
null. We have shown how this attenuation can be ameliorated by
using Bayesian priors in a Bayesian logistic regression paradigm
in which population rates of misclassification errors are modeled.
We trialed this in a range of simulations and on real clinic
data from UK primary care. However, we noted implementation
challenges with rolling this approach out on real clinic data,
most of which stemmed from the fact that at the present time,
identifying true misclassification rates for different conditions is
difficult. We note further that validating the change in estimates
achieved with the modeled priors is challenging. Our simplistic,
proof of concept model assumed that diagnoses are missing at
random, models which allow for more complexity should be
developed for future work. Additionally, we found modeling of
generic misclassification errors made little difference to overall
predictive performance, assessed by AUROC, in a multivariable
model. Future work should investigate whether error rates
individualized to conditions can lead to improvements in the
accuracy of model discrimination.

We have shown that missingness and incompleteness of
diagnosis data within EHRs are important and overlooked issues
in health information quality, can have a substantial impact on
study results, and that analysis techniques should be developed
to address these. Our approach to dealing with misclassified
diagnoses in EHR data is novel and can be operationalized fairly
simply using a Bayesian approach to logistic regression analysis.
For full implementation, the research field will need to identify
the misclassification rates in health data for a range of conditions,
and in a range of healthcare settings. We hope the approach
outlined in this paper will start a conversation within the EHR
research community about how these key data quality issues can
be tackled.
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