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Issuing monetary incentives, such as market entry rewards, to stimulate private firm

engagement has been championed as a solution to our urgent need for new antibiotics,

but we ask whether it is economically rational to simply take public ownership of

antibiotics development instead. We show that the cost of indirectly funding antibiotics

development through late phase policy interventions, such as market entry rewards

may actually be higher than simple direct funding. This result is reached by running

a Monte Carlo simulation comparing the cost of increasing the ratio of investment

go-decisions at the outset of pre-clinical development, to the cost of directly funding

the same antibiotics under various levels of operational inefficiency. We simulate costs

for hypothetical antibiotics targeting six different indications, using data from previous

studies. We conclude that while indirect funding may be necessary for the current

pipeline we may want to prefer direct funding as a cost effective long-term solution for

future antibiotics.

Keywords: antibiotics, policy, interventions, research and development, market entry rewards, direct funding,

public pharma

1. INTRODUCTION

Our healthcare system depend on the availability of antibiotics (1), and while we are witnessing
unprecedented progress in the history of antibiotics a lack of funding is still looming (2). A myriad
of policy interventions have been suggested (3) and the effects of some even estimated (4, 5).
Most monetary interventions are concerned with incentivizing private developers and investors
to partake in antibiotics research and development, yet some have begun proposing a transition
toward public ownership (6, 7). This study provides initial quantitative justification for these
positions by exploring the cost difference between direct funding of antibiotics development and
indirect funding in the form of phase and market entry rewards.

We define “direct funding” as the benefactor paying for antibiotics at-cost while either
maintaining ownership or not. Direct funding is a common way of funding antibiotics research
and development in the early phases of clinical development (8), but isn’t commonly applied to
commercialization. Direct funding, in our definition, does thus not necessitate public ownership
but does require that every project remains fully funded at all times and is never subjected to
profitability analysis. Direct funding may thus be the result of some e.g., fully funding grant scheme
or public-private partnership. We however assume that some level of inefficiency may, in either
case, arise from the planning of such an effort.

We define “indirect funding” as policy interventions that attempt to incentivize private agent
participation. Specifically, we investigate prizes. We assume that prizes are non-dilutive and that
the beneficiary is obligated to undertake the activities that the prize is intended to support if the
prize is awarded before said activities are undertaken. Any remaining funds in case of completion
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or scientific failure may however be spent at the discretion of the
beneficiary. Commonly proposed interventions along these lines
are known as phase entry rewards and (partially delinked) market
entry rewards.

When issuing early phase prizes for high-risk ventures,
such as antibiotics development, the benefactors of said prize
may find themselves awarding substantial prizes before ever
experiencing a promised product being successfully brought
to market. Conversely, when issuing late phase prizes the
benefactor might find themselves successfully stimulating many
beneficiaries into avoiding financial termination, while rarely
experiencing actual expenditures.

A prize won in the early phases of a venture will, due
to the time value of money, improve the venture’s financial
attractiveness significantly more than a prize of the same size
won many years down the line. When paying early, the size of
a prize can be smaller as a beneficiary with a high time preference
will value the prize higher. However, as the benefactor bears
the cumulative cost of many failed ventures it must also afford
spreading its capital across many investments to increase its
chances of seeing successful ventures reach the market. When
paying later, the size of a prize must be higher since a beneficiary
with a high time preference values the prize lower. However, as
the beneficiary now bears the cost of possible failure, the prize
must be significantly greater in order to remain attractive. Due
to the high risk of failure, the benefactor may however afford to
promise higher prizes.

This juxtaposition provokes the question of when a prize
should be awarded to an antibiotic developer in order to
strike a balance between efficient use of public funds and
successful stimulation of private investments. Or even under
what conditions it is economically preferable for the benefactor
to directly fund antibiotics development by paying at-cost rather
than indirectly funding by issuing prizes.

2. OVERVIEW

The paper is structured as follows. First we show how the
financial valuation method known as expected net present
value (ENPV) not only can be used to evaluate private firm
go-/no-decisions but also the expected, capitalized costs of
both indirect and direct funding. We then present how we’ve
sourced the simulation input data from Sertkaya et al. (4), and
then extend it with our assumptions of a social discount rate
based on Moore et al. (9) and an operating inefficiency, both
representative of a public organization. We then show how the
conditional probability of turning a pre-clinical no-decision into
a go-decision, P(go), is correlated to prize size, using logistic
regression. We use this model to solve for prize sizes that yield
a range of P(go) and then combine these prize values with a
range of operating inefficiencies and rerun the simulation for
each combination. From this we build a heatmap of themean cost
difference in all simulated combinations of P(go) and operating
inefficiency. We then highlight the break points where direct
funding become cheaper than indirect funding. Lastly, we run the
simulation a third time to explore the costs and cost savings of

direct and indirect funding in a specific scenario where operating
inefficiency is 50% and prizes set to sizes that yield a P(go) of 90%.

3. VALUATION METHOD

We Monte Carlo simulate go-/no-decisions, at the outset of
pre-clinical development, of a large number of hypothetical
antibiotics projects, targeting six indications, under three
conditions: no intervention, indirect funding, and direct funding.
Practically this results in more than two treatment groups as we
explore prizes in phases 1–4, and market entry. We thus have six
data sets (the indications) and six treatments (direct funding and
indirect funding at five different phases). The term phase 4 is here
used to refer to all activities between the end of phase 3 and the
first year of sales.

To compare the cost of direct and indirect funding we must
quantify. For indirect funding, we need a way to determine which
projects will reach a go-decision before and after a given prize
intervention as this will determine which projects the benefactor
actually might pay for. Further, many argue that planning
without respecting market logic inherently entail inefficiencies
and for this reason we need a way to compute the cost of
indirect funding under different inefficiencies. This leads us to
four valuation perspectives: (1) private value, (2) intervened
private value, (3) indirect cost, and (4) direct cost. Private value
is the value the private owner assigns the project and in turn
use as a basis for a go-/no-decision. Intervened private value
is that same valuation method applied while considering some
publicly announced prize. Indirect cost is the benefactor’s cost of
announcing said prize, while direct cost is the benefactor’s cost of
simply paying for the project at-cost.

Pharmaceutical developers have been known to (10) base go-
/no-decisions on expected net present value. This financial metric
is suitable not only for estimating go-/no-decisions but also for
computing intervention costs from the benefactor’s perspective
since it considers both the opportunity cost of capital and the risk
of project failure at various points in time. Therefore we compute
ENPV from all four perspectives above, resulting in: (1) private
ENPV, (2) intervened private ENPV, (3) indirect ENPV, and (4)
direct ENPV. We compute private ENPV as:

∑

t∈T

(Rt − Ct)P0
(1+ r)tPt

(1)

where T is the set of all time steps of the project (i.e., all
development and market years), r is the discount rate of the
evaluating private agent, Rt − Ct is the cashflow at time step
t computed by subtracting costs from revenues. P0 is the
probability of reaching the market from the point (in our case
pre-clinical) at which ENPV is calculated, Pt is the probability of
reaching the market from the entry point of time step t which
means that P0/Pt is equivalent to the probability of completing
time step t − 1. We assume that an agent will reach a go-
decision without an intervention if private ENPV ≥ 0, and with
an intervention if intervened private ENPV ≥ 0. We compute
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private intervened ENPV as:

∑

t∈T

(Rt − Ct + Zt)P0
(1+ r)tPt

(2)

where Zt is the prize (if any) associated with time step t. We
compute indirect ENPV as:

∑

t∈T

−ZtP0

(1+ r′)tPt
(3)

where the only considered cashflow is the issuing of the prize, and
r′ is the discount rate of the benefactor, i.e., of a potentially public
agent. Lastly, we compute direct ENPV as:

∑

t∈T

−(1+ i)CtP0

(1+ r′)tPt
(4)

where i is the inefficiency fraction of the direct funding agency. In
this last case only costs and no revenues or prizes are considered.

Note that only the contents of the cashflows and the level of
discounting is changed between perspectives. Also note that
indirect and direct ENPV are both always ≤ 0 as they only
consider costs.

4. INPUT DATA

The simulation input data is adapted from Sertkaya et al. (4)
and describe hypothetical antibiotics targeting the following six
indications: acute bacterial otitis media (ABOM), acute bacterial
skin and skin structure infections (ABSSSI), community acquired
bacterial pneumonia (CABP), complicated intra-abdominal
infections (CIAI), complicated urinary tract infections (CUTI),
and hospital acquired/ventilator associated bacterial pneumonia
(HABP/VABP). Development cost, time, and probability of
success is applied by phase and reported in Table 1. The term
“mid” is consistently used to refer to the most likely value of a
triangular distribution.

Sales data is a combination of total market size (Table 2),
market share (Table 3) and product launch success probability

TABLE 1 | Development time (months), cost (million USD), and probability of success (%).

Phase Indication Time min Time mid Time max Cost min Cost mid Cost max Prob min Prob mid Prob max

PC ABOM 52 66 72 19 21.1 23.2 17.5 35.2 69

ABSSSI 52 66 72 19 21.1 23.2 17.5 35.2 69

CABP 52 66 72 19 21.1 23.2 17.5 35.2 69

CIAI 52 66 72 19 21.1 23.2 17.5 35.2 69

CUTI 52 66 72 19 21.1 23.2 17.5 35.2 69

HABP/VABP 52 66 72 19 21.1 23.2 17.5 35.2 69

P1 ABOM 9 10.5 21.6 7.3 9.7 12 25 33 83.7

ABSSSI 9 10.5 21.6 7.3 9.7 12 25 33 83.7

CABP 9 10.5 21.6 7.3 9.7 12 25 33 83.7

CIAI 9 10.5 21.6 7.3 9.7 12 25 33 83.7

CUTI 9 10.5 21.6 7.3 9.7 12 25 33 83.7

HABP/VABP 9 10.5 21.6 7.3 9.7 12 25 33 83.7

P2 ABOM 12 15 30 7.4 9.2 11 34 50 74

ABSSSI 9 10 30 7.12 8.9 10.68 34 50 74

CABP 12 15 30 7.28 9.1 10.92 34 50 74

CIAI 10 11 30 7.68 9.6 11.52 34 50 74

CUTI 10 11 30 7.28 9.1 10.92 34 50 74

HABP/VABP 16 18 30 12.48 15.6 18.72 34 50 74

P3 ABOM 20 24 47 33.36 41.7 50.04 31.4 67 78.6

ABSSSI 10 12.5 47 26.88 33.6 40.32 31.4 67 78.6

CABP 10 12.5 47 31.04 38.8 46.56 31.4 67 78.6

CIAI 17 21.5 47 40.48 50.6 60.72 31.4 67 78.6

CUTI 17 21.5 47 35.04 43.8 52.56 31.4 67 78.6

HABP/VABP 35 39 47 81.12 101.4 121.68 31.4 67 78.6

P4 ABOM 6 9 12.5 – 1.9588 – 83 85 99

ABSSSI 6 9 12.5 – 1.9588 – 83 85 99

CABP 6 9 12.5 – 1.9588 – 83 85 99

CIAI 6 9 12.5 – 1.9588 – 83 85 99

CUTI 6 9 12.5 – 1.9588 – 83 85 99

HABP/VABP 6 9 12.5 – 1.9588 – 83 85 99
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TABLE 2 | Market size (million USD).

Indication Min Max

ABOM 2,720

9,230

ABSSSI 3,070

CABP 2,290

CIAI 2,530

CUTI 5,760

HABP/VABP 1,780

TABLE 3 | Market share (%).

Years Min Max

1 0.05 0.11

2 0.87 1.91

3 1.57 3.47

4 2.57 5.68

5 3.92 8.64

6 5.79 12.77

7 7.52 16.59

8 8.52 18.80

9 10.10 22.30

10:20 12.27 27.08

TABLE 4 | Additional parameters.

Parameter Min Mid Max

Launch success probability (%) 40 60 80

Generic entry revenue reduction (%) 25 50 75

Generic entry (years) 10 12 14

Private discount rate (%) 9 11 24

(Table 4). In line with Sertkaya et al. (4) we do not
directly sample the market share distribution, but rather
the product launch success probability, and then apply that
sample to reach an estimate for every year’s market share.
This ensures that the market share does not vary widely
between the lower and upper bound on a yearly basis.
Instead, the point between the lower and upper bound
remains constant, while the lower and upper bounds instead
themselves vary. This also ensures that no year has a
lower market share than the previous year before peak
year sales.

Additional parameters are reported in Table 4. In line with
Sertkaya et al. (4) we assume a total product life (i.e., market life)
of 20 years. Also in line, we assume that patent expiry leads to a
reduction in revenues due to generic entry. This means that the
captured market share will increase from year 1 to 10, and then
remain constant until generic entry (i.e., patent expiry), upon
which it will be reduced to a lower constant until year 20. Table 4
also reports the opportunity discount rate or opportunity cost of
capital employed by Sertkaya et al. (4).

TABLE 5 | Additional costs (million USD).

Activity Min Mid Max Spread across

Sample prep. 2.4 2.7 2.9 P1, P2, P3

Process dev. 18.7 26.8 34.8 P1, P2

Plant design 10.7 13.4 16.1 P3 (75%), P4 (25%)

Plant build 69.6 83 96.3 P4

Non-clinical 3.4 3.7 4 P2, P3, P4

PAS 8 10 12 M1, M2, M3

Beyond phase-specific development costs, Sertkaya et al. (4)
also considers costs for additional supply chain activities, non-
clinical work, and post-approval studies (PAS). The costs are
spread across various phases as indicated by Table 5. Sertkaya
et al. (4) report that the cost of post-approval studies may last up
to 3 years following market entry and we assume that it is evenly
distributed over exactly 3 years.

4.1. Our Assumptions
Moving from the data sourced from Sertkaya et al. (4) to our
own assumptions, the interventions we model can be viewed as
voluntary and non-dilutive prizes. These interventions are akin
to what is commonly referred to as a market entry reward (if
the prize phase is market entry) or a phase entry reward (if the
prize phase is a development phase). We model the prize phase
of an intervention as a categorical variable and prize size as a
numeric variable.

Prize size is sampled logarithmically on the form 10X where
X is a random variable uniformly distributed between 5 and 11.
We sample logarithmically to reduce the required sample size as
we’ve observed that the majority of the effect on P(go) occurs at
low prize sizes while substantially higher prizes are required for
P(go) to ∼1. The sampled prizes may thus range from 100,000
to 100 billion USD. We explore prizes awarded upon entry into
phases 1–4, as well as the market but never combine multiple
prizes. We do not consider pre-clinical entry prizes as they would
suffer from no discounting in ENPV given that the viewpoint
from which we evaluate projects is pre-clinical.

We assume that plan based as opposed to free market
based operations entail some inherent inefficiency. We explore
inefficiencies from 0 to 100% and assume that inefficiency affects
cost but neither time of development nor probability of success.
We thus assume that it costs more for a direct funding agency to
achieve an equivalent probability of success within the same time
frame. Inefficient cost is, as can be seen in Equation (4), computed
as (1+ i)Ct where i is the fraction of inefficiency and Ct is the cost
of time step t.

Direct and indirect ENPV, given in Equations (3) and (4),
both consider a benefactor specific discount rate r′ that is
not necessarily equal to the private discount rate r reported
in Table 4. We assume that the benefactor is a public sector
like actor, and as such we uniformly distribute the, so called,
social discount rate between 3.5% and 4.5%. The former is the
recommendation of Moore et al. (9) and the latter our effort to
err on the right side. Moore et al. (9) offer other numbers for

Frontiers in Public Health | www.frontiersin.org 4 May 2020 | Volume 8 | Article 161

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Okhravi Economics of Public Antibiotics Development

intragenerational projects and projects that “crowd out” private
investment. However, while the benefits of a new antibiotic may
span multiple generations, all costs should be incurred within
a single one. Since we’re computing the within-subject cost
difference between indirect and direct funding, the benefits can
be set to zero, meaning that we assume that the benefits derived
from directly funding an antibiotic are equivalent to those of
indirectly funding that same antibiotic. Consequently, we use a
social discount rate appropriate for generational projects. Lastly,
since the very reason for the incentive debate is a lack of private
investments, “crowding out” ought to be considered a non-issue.

To compute ENPV we must make an assumption about how a
real world evaluator of a project periodizes future costs, revenues
and probabilities. In other words, how to transform a sequence
of discrete phases into a sequence of discrete and uncertain
cashflows. We assume that the evaluator converts every phase
into a series of years and evenly (i.e., constantly) distribute all
cashflows and probabilities of success over the years within a
phase. Note that even if some additional costs reported in Table 5
are evenly distributed across some phases they might not be
evenly distributed over years as not all phases are equally long.
Also note that the generated data points are equidistant within
a phase but not necessarily across. If e.g., the duration of PC is
2.5 years and P1 is 1.75 years then we generate 3 data points
corresponding to t = 0, t = 1, and t = 2, for PC and then 2
data points for P1 corresponding to t = 2.5 and t = 3.5. P2 will
then start at t = 4.25 (because 2.5 + 1.75 = 4.25). We assume
that prizes are executed as one-time lump-sum payments upon
phase entry.

4.2. Limitations
We do not consider the public cost of drug reimbursement which
in reality would inflate the cost of indirect funding. We also do
not consider the reduction of development costs associated with
already existing grants for antibiotics development. Such grants
would reduce private cost and hence improve private ENPV,
which in turn would deflate the cost of indirect funding. If such
grants however are paid by the benefactor then they would also
deflate the cost of direct funding, as the grants no longer have to
be paid.

Drug reimbursement and grants are both health care system
specific implementation details. While there are extensive
studies, e.g., Savic and Årdal (11) on grants, taking these
numbers into consideration here would overspecialize the results,
multiply the number of input dimensions and assumptions,
and thus increase uncertainty. This study elucidates the
relationship between non-system-specific parameters. We do
however encourage future studies to explore the implications of
grants and reimbursements on cost-savings.

Lastly, we do not, in direct funding, consider the possible
cost of acquiring a new drug candidate entering into pre-clinical.
This is relevant if the candidate is already considered intellectual
property and the owner is seeking monetary compensation.
A new candidate with a favorable market value is not in
need of an intervention and will proceed irrespectively. A new
candidate with an unfavorable market value does however need
an intervention, but demanding a prohibitively large price for it

is questionable given the seller’s lack of alternatives. Nevertheless,
it has been argued (12) that the societal value of antibiotics is
starkly different from its market value. If a new candidate is
desperately needed, and the direct funder is the public sector,
then the candidate owner might leverage our dire need to drive
up the acquisition price. While in such situations, cost-efficiency
ought to be of lesser importance, we deem this a valuable avenue
for future research.

5. PREDICTING GO-DECISIONS

Running the simulation at 2,000 sampled projects per indication
we reach the results reported in this section. Assuming that go-
decisions are only reached by private developers when private
ENPV ≥ 0, and dividing the number of go-decisions by the total
number of projects sampled we get the baseline probability of go
as reported in Table 6.

As the modeled prize interventions, for our intents and
purposes, have no strings attached, they always improve
ENPV. We can compute this improvement in ENPV by
subtracting private ENPV from intervened private ENPV.
ENPV improvement is correlated to prize size, but due to
heteroscedasticity in improvement with respect to prize size we
choose to predict the log10 transformed difference from the log10
transformed prize size. We apply the model:

log10(improvement) = β0 + β1log10(prize_size) (5)

to each indication and prize phase combination separately to
avoid having to include further dependent variables. The highest
resulting p-value is lower than 10−319.

Since private ENPV improvement is correlated to prize size,
and since binary go-/no-decisions are consequences of private
ENPV, go/no must be correlated to prize size. To predict the
probability of go, call it P(go), we apply the following logistic
regression model:

ln
P(go)

1− P(go)
= β0 + β1 log10(prize_size) (6)

to each indication and prize phase separately, and get a highest
p-value lower than 10−6. Note that we only apply the model
to data points where a go-decision was not reached before the
introduction of the intervention (i.e., where private ENPV < 0).
This model does thus not predict the general probability of go

TABLE 6 | Probability (%) of go/no-decisions before interventions.

Indication Go No

CUTI 89 11

ABSSSI 83 17

CIAI 77 23

ABOM 75 25

CABP 75 25

HABP/VABP 60 40
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under some prize size, but the conditional probability of turning
a no-decision into a go-decision, given a project facing a no-
decision. Predicting P(go) from our sampled prize sizes yield
the sigmoid curves depicted in Figure 1. From this model of the
log-odds we can of course predict P(go):

P(go) =
eβ0+β1 log10(prize_size)

eβ0+β1 log10(prize_size) + 1
(7)

and also solve for prize size:

log10(prize_size) =
ln( P(go)

1−P(go) )− β0

β1
(8)

which allows us to predict the prize size required to achieve some
target P(go).

If the intent of a policy maker is to turn the vast majority of
no-decisions into go-decisions without wasting too much money
on firms with extraordinary profit requirements we assume that
a P(go) of 90% is a reasonable target given the curves in Figure 1.
Using Equation (8) we can compute prizes that would yield such
a P(go) for every indication and prize phase combination (see
Table 7).

Consistent with previous works (4), we observe that late
phase rewards must be substantially larger to achieve the same
improvement in ENPV and thereby in probability of go. Previous

works have also highlighted the issues of over-incentivizing (13)
or overspending (14), defined as paying more than necessary, by
(possibly inadvertantly) aiming for certainty of go rather than
cost-efficiency per go. Table 7 makes it clear that significant
overspendingmay also occur if target indication is not considered
in prize size design, as the difference between the highest and
lowest prize of a market entry reward yielding a P(go) of 90%
is around 2.3 billion USD.

6. ESTIMATING COST SAVINGS

When estimating the cost of indirect and direct funding in order
to compute the within-subject difference between the two, we

TABLE 7 | Prizes yielding P(go) = 90% (million USD).

Indication P1 P2 P3 P4 M1

ABOM 79 323 940 1,841 2,456

ABSSSI 81 305 884 2,432 3,066

CABP 92 326 719 2,083 2,598

CIAI 105 291 863 4,008 4,494

CUTI 85 295 840 1,533 2,188

HABP/VABP 98 295 907 2,859 3,800

Min 79 291 719 1,533 2,188

Max 105 326 940 4,008 4,494
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FIGURE 1 | Predicting the conditional probability of turning a no-decision into a go-decision, P(go), from prize size for each prize phase and indication combination.
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FIGURE 2 | Mean cost savings of direct funding (above the white line) and indirect funding (below the white line) per combination of P(go) and direct funding

inefficiency. Lines delimit bins of 250 million.
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FIGURE 3 | At a given public inefficiency (x), the corresponding P(go) (y), is the maximum P(go) that a prize can target before direct funding is equally expensive.

Below each line, indirect funding is on average cheaper per market entry, while above the line direct funding is.

choose to remove samples with intervened private ENPV < 0.
Computing indirect ENPV for a project where the intervention is
unable to stimulate a private developer to reach a go-decision is
misleading as the cost for the benefactor never would be incurred.
The cost of an ineffective indirect intervention is thus either zero
or meaningless. As both indirect and direct ENPV only consider
costs they will necessarily be negative (or zero).When subtracting
indirect ENPV from direct ENPV, a positive number thus reflects
that the direct alternative is cheaper, and vice versa. We will refer
to this number as the cost savings of direct funding.

The cost savings per sampled project can be thought of as the
cost savings per go-decision. Notmeaning the cost of generating a
go-decision, but rather the cost that the benefactor is expected to
expend for every observed go-decision. By dividing the indirect
and direct ENPV of a given project by the (technical) probability
that it reaches market, we transform the expected cost (and
hence cost savings) per go-decision into an expected cost (and
cost savings) per market approval. Meaning that it answers the
question of how much the benefactor is expected to expend for
every observed market approval. We prefer this figure due to its
simpler interpretation.

Cost difference depends on both benefactor inefficiency and
prize size, since inefficiency affects direct ENPV (by increasing
development cost) and prize size affects indirect ENPV (as it is
the only cashflow considered). As P(go) is correlated to prize
size, we could say that cost difference depends on P(go) rather
than prize size. However, while (not shown in this paper) the
effect of inefficiency on direct ENPV is linear, the effect of P(go),
our proxy for prize size, on indirect ENPV is non-linear (also
not shown). Consequently, the combined effect of P(go) and
inefficiency on cost difference must be non-linear. While the
modeling of actual cost difference is the subject of ongoing work,
we here rerun the simulation at 10 samples while holding every

combination of 40 P(go) values between 0.5 and 0.9875, and 41
inefficiencies between 0 and 1 constant.

Computing the mean cost savings per combination of P(go)
and inefficiency we get the results visualized in Figure 2, where
values above the white line denote cost savings of direct funding
while values below denote cost savings of indirect funding. The
white line is a quadratic polynomial fitted against the points
closest to a cost difference of zero. By only plotting these
fitted lines in Figure 3 we are more easily able to estimate
the maximum P(go) a prize size can target, under some
assumed inefficiency before direct funding becomes equivalently
expensive and eventually cheaper. Note that the maximum
P(go) plotted in Figure 2 is 95%, since higher P(go) values
cause a drastic increase in cost difference which renders the
heatmap useless.

To summarize Figure 2, indirect funding through phase 1
rewards is always cheaper than direct funding unless the target
P(go) is very high (>90%) and inefficiency is low, but even
then the cost savings are comparatively moderate. Indirect
funding through phase 2 rewards can however be more expensive
than direct funding even at an inefficiency of 100% for all
indications except one (HABP/VABP). While the cost savings
may appear moderate, they do in the worst-case [i.e., high
P(go) and low inefficiency] of some indications (ABSSSI, CABP,
CUTI) exceed 750 billionUSD permarket entry. Indirect funding
through phase 3 rewards starts becoming quite expensive if
inefficiency is low or P(go) is high. The cost savings in the
worst-case exceed 1 billion USD in all indications but one
(CABP). At phase 4 and market entry, indirect funding is
significantly more expensive unless inefficiency is very high
or target P(go) very low. At a P(go) of 95% the cost savings
are in some indications as high as 2–5 billion USD per
market entry.
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Figure 3 shows that we are unable to achieve a P(go) of 95%
with phase 4 prizes and 90% with market prizes, without the
mean costs exceeding those of direct funding, in all inefficiencies
and for all target indications. In the indication with the highest
cost savings (CIAI) we aren’t even able to generate a P(go) of 80%
without exceeding the costs of direct funding.

Generally, the color scale (z-axis) of Figure 2makes it evident
that, given the input parameters considered, the possible positive
cost savings are significantly greater than the possible negative
ones (∼5×). Granted, we are not looking at the cost savings at
P(go) < 50% but at such low targets we may wish to question the
purpose of a policy intervention.

7. SCENARIO

While Figures 2 and 3 give an indication of how cost savings are
correlated to P(go) and inefficiency, to concretize these general
results we rerun the simulation at 1,000 samples while holding
prize size constant at rates that yield P(go) = 90% (for each prize
phase) and inefficiency at 50%. This, we argue, is a reasonable
target if the purpose of an intervention is to avoid termination of
antibiotics projects for financial reasons, and a reasonable level of
inefficiency following direct funding.

TABLE 8 | Mean cost savings of direct funding (in million USD), per market entry,

at a benefactor inefficiency of 50%, over indirect funding with prize sizes that yield

P(go) = 90%.

Indication P1 P2 P3 P4 M1

ABOM −448 −47 336 372 576

ABSSSI −451 −118 258 837 1,001

CABP −371 −57 15 570 692

CIAI −297 −163 215 1,993 1,894

CUTI −421 −141 200 137 402

HABP/VABP −438 −238 188 928 1,225

Min −451 −238 15 137 402

Max −297 −47 336 1,993 1,894

Figure 3 suggests that indirect funding in this scenario should
be cheaper when prizes are awarded in phase 1 and 2, but more
expensive when awarded in later phases. Indeed this is supported
by the final run of the simulation, as can be observed in both,
Figure 4 which plots the distribution of funding costs per market
entry and inTable 8which reports themean cost savings of direct
funding per market entry.
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Figure 4 shows that the cost of direct funding remains
fairly constant even though the underlying distribution of
projects to fund may slightly vary from phase to phase as a
consequence of the subset of projects that are enticed to a
go-decision by the indirect funding scheme in question. We
observe how the costs of indirect funding steadily rise as
prizes are paid in later phases. However, phase 4 prizes, as
opposed to market entry prizes, seems to be the most expensive
solution for one indication (namely CIAI). Interestingly, the
cost differences between indications are inflated with late phase
funding (as compared to early phase funding) which again
highlights the non-triviality of designing a “one size fits all”
prize that doesn’t cause overspending. Lastly, while we again
observe that the possible range of cost savings in late phase
direct funding greatly outweigh that of indirect early phase
funding, early phase prizes, still remain the cheapest option in
the simulated scenario.

8. DISCUSSION

While this study suggests that indirect funding through early
phase prizes seems considerably cheaper than direct funding,
there’s great risks involved for the benefactor in “buying the pig
in the poke.” Previous works have pointed to principal-agent
problems when issuing large early phase rewards, as there is
a risk that agents would abandon development after receiving
funding (4).

However, while early phase prizes are too uncertain, we show
that late phase prizes are too expensive. Whether issuing market
entry rewards ranging up to ∼4.5 billion USD is feasible or not
is ultimately a policy question. Yet, paying an additional ∼1.9
billion USD per approved antibiotic, by issuing a broad market
entry or phase 4 reward instead of directly funding the same
antibiotics, we find hard to justify.

Rome andKesselheim (15) raised concerns around the societal
costs of market exclusivity vouchers for antibiotics, but was met
with critique from Boucher et al. (16) due to neither suggesting
alternatives nor taking the societal value into account. We
appreciate the inviability of maintaining “business as usual” (17),
and the urgent need for sustained innovation, but suggest that
a cheaper alternative to market oriented interventions might
simply be to pay at-cost.

Financial rewards following market exclusivity vouchers have,
according to Rome and Kesselheim (15), varied widely without
being related to a drug’s societal value or innovativeness.
Indirect funding in this study takes neither societal value nor
innovativeness into consideration, so while early phase prizes
might be a cost-effective solution when compared to direct
funding, “rewarding all drugs with the same payments could
create perverse incentives to produce drugs that provide the least
possible innovation” (18). Direct funding alleviates this problem
altogether by, apart from candidate acquisition, side-stepping
market logic.

Finding a causal model for evidence-based policy, in the
vein of Cartwright and Stegenga (19), may require modeling

antibiotics research, development, consumption, and bacteria
transmission as a complex adaptive system. Predictions would be
rife with error. See e.g., Almagor et al. (20) for a sophisticated
model of the impact of antibiotics use on transmission of resistant
bacteria in hospitals alone. It may thus be wise to delink our
need for antibiotics from the uncertainty of the free market and
thereby reduce rather than increase complexity. Especially, if
direct funding in fact may be cheaper.

While the results of this study are tightly coupled to the
input parameters considered, we urge the community to suggest
additional or alternative parameters that, if they exist, support
an opposing view of the one presented. If we can save up to
almost two billion USD permarket approved antibiotic while also
retaining IP and thus reap further benefits, such as full control
of drug pricing and distribution meaning the ability to deploy
access and stewardship measures without having to cater to the
profit requirements of private firms, there is ample reason for
further investigation.

These results clearly indicate that there is rational, economic
evidence supporting the idea of direct funding of development
(possibly in the form of public pharma) in the case of antibiotics.
As emphasized by Singer et al. (6), this is not a radical suggestion.
Building on their proposal of a two-pronged approach, indirect
funding could be used as a short-term solution to extract
the antibiotics currently in the pipeline, while direct funding
would be used to secure cost-effective long-term access to
new antibiotics.
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