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Diabetes mellitus is a systematic metabolic disease characterized by persistent

hyperglycemia, which complications often involve multiple organs and systems including

vessels, kidneys, retinas, and nervous system. Idiopathic pulmonary fibrosis is a chronic,

progressive, fibrotic disease with usual interstitial pneumonia patterns. With in-depth

research, diabetic related lung injury has been confirmed, and the lung is also considered

as one of the targeted organs of diabetes, which mainly manifests as the pulmonary

fibrosis. Based on that, this review discusses the association between diabetes mellitus

and idiopathic pulmonary fibrosis from clinical findings to possible mechanisms.

Keywords: diabetic pulmonary fibrosis, diabetic complications, diabetes mellitus, idiopathic pulmonary fibrosis,

risk factors, potential mechanisms

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is defined as a chronic, progressive, fibrosing interstitial lung
disease with the histologic appearance of usual interstitial pneumonia (UIP) (1). The conservative
estimate of incidence on IPF is 3∼9 cases per 100,000 people per year for Europe and North
America (2). The prognosis for patients with IPF is quite poor, with a median survival of 3∼5
years from the initial diagnosis if not treated (1). However, the etiology remains little understood.

Diabetes mellitus (DM) is a systemic, metabolic disorder characterized by insulin deficiency or
resistance, chronic hyperglycemia, and micro- and macro-vascular bed damage. In the long run,
diabetes deeply affects multiple organs throughout the body, especially kidney, retina, heart, and
brain, making loss of function of these crucially important organs and bringing about death (3–6).
The lung consists of abundant alveolar-capillary network and connective tissue, suggesting that
it may be targeted by diabetic micro-vascular damage. Unfortunately, the correlation has often
been disregarded and there is lack of research and evidence considering lung as a target for the
diabetic impairment. In recent years, several studies have revealed that hyperglycemia could lead
to interstitial fibrotic changes and alveolar microangiopathy (7–10). Here, we review the present
clinical and experimental evidence, aiming to explore the role of diabetes on idiopathic pulmonary
fibrosis (Table 1).
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TABLE 1 | Characteristics in diabetic pulmonary fibrosis patients.

Epidemiology Examinations Potential treatment

• Higher incidence of

co-morbid disease

• Longer hospital stay

• More in-ward

frequency

• Higher mortality

• Spirometry: worse

diffusion function and

ventilation dysfunction

• CT scan: more

significant UIP pattern

• Pathology: increasing

thickness of basal

lamina and more fibrosis

• Metformin

• GLP-1 receptor

agonists: liraglutide,

exendin-4

• PPAR-γ agonists:

rosiglitazone,

ciglitazone

EPIDEMIOLOGY

Since Schuyler et al. first demonstrated loss of pulmonary elastic
recoil in the diabetics and proposed the abnormalities might
be manifestations of extensive abnormal collagen and elastin
depositions in the 1970’s (11), more and more research has
investigated the link between diabetes and idiopathic pulmonary
fibrosis. Recent epidemiological research in populations with
different genetic background are more prone to the opinion
that diabetes is an independent risk factor for idiopathic
pulmonary fibrosis, with the prevalence of IPF accompanied by
DM estimated to be 10∼42%, and the reported result is still
consistent even if excluding the interference of patients treated
with glucocorticoids (12–18). Following the poor prognosis in
IPF patients, diabetes were reported to be a risk factor with an
obviously higher mortality in this population (HR 2.5, 95%CI
1.04∼5.9) (19). In addition, other studies showed a higher
incidence of co-morbid diseases, longer hospital length of stay,
and more frequent hospital admission and readmission in IPF
patients with diabetes, which also indicated a worse prognosis
(12, 15). However, the results above came from studies conducted
in several countries with small populations, and amounts of cases
included were restricted, more large-sample studies are needed
for the overall prognosis assessment of diabetic pulmonary
fibrosis in the near future.

CLINICAL CHARACTERISTICS

Spirometry
Spirometry is regarded one of the most common measuring
tools used to evaluate the severity of respiratory disease.

Abbreviations: IPF, idiopathic pulmonary fibrosis; UIP, usual interstitial

pneumonia; DM, diabetes mellitus; FVC, forced vital capacity; FEV1, forced

expiratory volume in 1 s; VC, vital capacity; PEF, peak expiratory flow; DLCO,

diffusing capacity of the lung for carbon monoxide; HR, hazard ratio; CI,

confidence interval; CT, computed tomography; HRCT, high resolution computed

tomography; BL, basal lamina; ECM, extracellular matrix; EMT, epithelial-

mesenchymal transition; α-SMA, α-smooth muscle actin; AGEs, advanced

glycation end-products; RAGEs, receptor for advanced glycation end-products;

STZ, streptozotocin; ERK, extracellular regulated protein kinase; JNK, c-Jun N-

terminal kinase; TGF-β, transforming growth factor beta; mRNA, messenger RNA;

Sirt, sirtuins; NAD, nicotinamide adenine dinucleotide; CTGF, connective tissue

growth factor; Ang-II, angiotensin II; PAI-1, plasminogen activator inhibitor-1;

ERS, endoplasmic reticulum stress; ER, endoplasmic reticulum; UPR, unfolded

protein response; AMPK, adenosine 5‘-monophosphate (AMP)-activated protein

kinase; GLP-1, glucagon like peptide-1; BLM, bleomycin; NF-κB, nuclear factor

kappa-B; PPAR-γ, peroxisome proliferator-activated receptor-gamma; AECs,

alveolar epithelial cell.

Pulmonary function test on IPF patients mainly shows a
ventilatory dysfunction and decreased diffusion capacity. Several
longitudinal clinical studies have explored changes of pulmonary
function in diabetic individuals. A prospective observational
study from Europe found a visible decline of lung volumes and
airflow limitation (decreased FVC, FEV1, VC, and PEF) in type
2 diabetes patients (20). Likewise, a 5-years prospective study in
Japan showed that diabetes was associated with the restrictive
pulmonary function impairment (multivariable adjusted HR
1.57, 95%CI 1.04∼2.36) (21). What’s more, the recent results
from meta-analyses supported the epidemiological evidence as
well, with one showing that diabetes free from overt pulmonary
disease was associated with impaired pulmonary function in a
restrictive pattern and the other finding a lower FVC than FEV1

and DLCO in diabetic individuals (22, 23). While the reduction of
spirometric parameters in diabetes seems to be consistent with
that caused by IPF, inferences regarding casual effects cannot
be made due to lack of evidence of pulmonary fibrosis from
these diabetic populations. For this purpose, more longitudinal
diabetic research is needed to evaluate the dynamic changes of
pulmonary fibrosis indexes in the future.

Imagings
Apart from spirometry, computed tomography (CT)
examination is also essential for differential diagnosis of
pulmonary lesions. Imaging in patients with IPF usually
manifests as UIP pattern including reticular and honeycomb
patterns. Kim et al. revealed that IPF patients with diabetes were
more likely found the UIP pattern on high resolution computed
tomography (HRCT) than those without diabetes (15). Similar
results was also demonstrated from a Chinese study, in which
more significant presence of funicular and reticular changes
were found in diabetic participates compared to normal controls
without type 1 diabetes (8). Unfortunately, there is still a lack
of enough prospective data to confirm the imaging changes in
diabetic patients.

Pathological Changes
Histologically, the basal lamina (BL) is an extracellular scaffold
located between parenchymal cells and connective tissue, by its
presence compensating new cells normally apoptotic or damaged
during the injury (24). If the integrity of basal lamina is destroyed,
the repair in most organs results in pathologic fibrosis and loss of
organ function. Over the past decades, several studies focused on
diabetes had demonstrated a wide alterations of BL in different
organs including lungs. Vracko et al. found a thickness of basal
lamina both in epithelial and capillary of alveoli from diabetic
individuals, and similar morphological changes were verified
by Matsubara and other researchers in the 1990’s (7, 25–27).
Recently, experiments performed in induced diabetic murine
models have also confirmed the clinical findings. Diabetic mice
and rats were both found a significant thickening of alveolar
septa and more fibrosis than non-diabetic controls (8, 28, 29).
Since the collagen is the main component of basal lamina,
increasing thickness of basal lamina may be the microscopic
appearance of idiopathic pulmonary fibrosis (30), and as a result,
the pathological changes mentioned above further strengthen the
link between diabetes and idiopathic pulmonary fibrosis.
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POSSIBLE PATHOGENESIS

The exact pathogenesis of IPF has not been fully elucidated.
Traditionally, the evolution of IPF could be divided into
three stages: (1) initiation stage, oxidative stress damage from
all causes is the initiation factor of IPF; (2) progression
stage, inflammation of alveoli, activation of immune cells, and
secretion of various pro-inflammatory factors, causing injuries of
epithelial, endothelial, and interstitial cells, collagenous tissues,
and basement membranes; (3) outcome stage, the formation of
pulmonary fibrosis, characterized by proliferation of fibroblasts
andmyofibroblasts, deposition of extracellularmatrix (ECM) and
destruction of structure in the lung tissues, eventually leading
to chronic respiratory failure. Epithelial-mesenchymal transition
(EMT), with characteristics of the increase of fibrotic markers
such as α-smooth muscle actin (α-SMA) and vimentin, and the
reduction of epithelial markers such as E-cadherin, has been
affirmed the crucial tache in pathological pulmonary fibrosis
(31). Hyperglycemia promotes to the development of pulmonary
fibrosis by participating in all these processes in diabetic animals.

Advanced Glycation End-Products (AGEs)
and the Receptor for Advanced Glycation
End-Products (RAGEs)
The distribution of AGEs in wide range of organs is limited
at a low basal level under normal conditions, while diabetes
induces AGEs to accumulate in the lungs (32, 33). Using the
streptozotocin (STZ) induced diabetic mice, researchers detected
an extensive accumulation of AGEs and pathological hyperplasia
of extracellular matrix and interstitial connective tissue in the
lung (34, 35). RAGEs, a cell surface receptor for AGEs, have
been detected as an antagonist for the clearance of AGE proteins.
Cumulative evidence has confirmed a spontaneously pulmonary
fibrosis-like alteration in RAGE (-/-) mice (36, 37). RAGEs
blocked the activation of Smad2, ERK, and JNK signals, playing
a negative role on transforming growth factor beta (TGF-β)
induced EMT in A549 cells (38, 39). However, in contradiction
to this conclusion, He et al. found a decreased expression of
RAGEs and fibroblast lesions in RAGE (-/-)-mice (40), and
overexpression of RAGEs increased the oxidative stress and
mRNA expression of elastin both in fibroblasts and co-cultured
lung epithelial cells (41). Thus, the need of further studies on the
function of RAGEs in pulmonary fibrosis is clear now.

Sirtuins (Sirt)
Sirt are class of NAD+ dependent proteins, mediating the
process of secretion of insulin, cell cycle, and cell apoptosis.
Shaikh reviewed the role of sirtuin family (Sirt1-7), out of
which Sirt1, Sirt3, Sirt6, and Sirt7 exerted a positive effect
on IPF (42). Overexpressions of Sirt inhibit the oxidative
stress, pro-inflammatory cytokines IL-1β and p21 expressions,
TGF-β1/Smad3 signaling pathway and mitochondrial DNA
damage, elucidating a potential therapeutic approach to IPF.
Oppositely, Talakatta observed an EMT and up-regulation of
N-cadherin, Sirt3, and Sirt7 levels in diabetic cells exposed to
high concentration of glucose (43), indicating that more studies

should be carried out to demonstrate the exact role of Sirt on
diabetic pulmonary fibrosis.

Pro-Inflammatory and Pro-Fibrotic Factors
Connective tissue growth factor (CTGF) is a downstream
mediator of the profibrotic properties of TGF-β, playing an
important role in tissue remodeling and fibrosis. Up-regulated
expression of CTGF is observed in several fibrotic organs such
as kidney, heart, liver, skin, and lung (44). It was reported an
increased expression level of CTGF in the lung tissues by the
STZ induced type 1-like diabetic rat models, thereby indicating
the adverse influence of diabetes on pulmonary fibrosis (8,
45). Besides, fibronectin, angiotensin II (Ang II), plasminogen
activator inhibitor-1 (PAI-1) and other pro-inflammatory or pro-
fibrotic factors were also found increased in diabeticmouse lungs,
and they widely participated in the process of diabetic lung
fibrosis by a variety of mechanisms (8, 46).

Endoplasmic Reticulum Stress (ERS)
The endoplasmic reticulum (ER) is a kind of multi-functional
organelle which is essential for the cellular homeostasis. Excessive
demand on the ER or conditions could destruct the function
of ER may cause the accumulation of unfolded or misfolded
proteins, triggering ERS and activation of the unfolded protein
response (UPR) (47). It has been demonstrated that ERS related
markers in the lung were activated by bleomycin both in vitro
and in vivo and treatment with ERS inhibitors resulted in the
reduction of fibroblast proliferation and improvement of lung
functions, suggesting a potential role of ERS for the pathogenesis
of IPF (48, 49). Also, ERS is found associated with the β cell
failure in type 1 and type 2 diabetes (47, 50). However, the role
of ERS in diabetic pulmonary fibrosis is still unclear. Whether
hyperglycemia could act as a stimulus inducing ERS in the
process of diabetic pulmonary fibrosis or not remains to be
further studied.

To conclude, activation of multiple pathways in the high-
glucose environment results in abnormal intracellular stress and
cytokine expressions, consequently causing loss of basal laminae
integrity in alveolar-capillary barrier, failure of reepithelialization
and reendothelialization, and epithelial-mesenchymal transition,
and eventually, leading to destroyed lung architecture and
pathological pulmonary fibrosis.

POTENTIAL APPLICATION OF
ANTI-DIABETIC DRUGS IN IPF

Metformin
At present, the therapeutic strategies and effects of IPF remain
limited, although several tyrosine kinase inhibitors such as
pirfenidone and nintedanib have come into our attention in
recent years.Metformin is a classic oral anti-diabetic agent, which
has been demonstrated anti-inflammatory, anti-angiogenetic and
anti-fibrotic properties in animal models as well. In experimental
murine models, studies support the role of metformin to reverse
the established pulmonary fibrosis by facilitating deactivation
and apoptosis of myofibroblasts via activating AMPK and
ameliorating TGF-β signaling pathways (51–53). However, the
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pharmacokinetic data of oral metformin suggest that much of the
concentration is in the gut, even after absorption. Besides, there
is evidence suggesting that high dose of intravenous metformin
has disconcerting effects on rats and inhibiting the viability of
blood-brain barrier cell lines (54, 55). Thus, a pinpoint delivery
of metformin to the lung such as inhalational drug delivery seems
to be an attractive idea in future experimental studies.

Glucagon Like Peptide-1 (GLP-1)
Receptor Agonists
GLP-1 is an essential hormone for the regulation of insulin
secretion, carbohydrate metabolism and appetite. GLP-1
receptor, a G protein coupled receptor, predominantly localized
in β-cells of pancreas and smooth muscle cells of arteries and
arterioles in kidney and lung, is mainly used as the target for
anti-diabetic drugs (56). In recent years, several studies also
found the anti-pulmonary fibrotic effect of GLP-1 receptor
agonist in animals. Gou et al. demonstrated that liraglutide
treatment significantly alleviated bleomycin (BLM)-induced
lung damage and fibrosis in mice through inactivation of
nuclear factor kappa-B (NF-κB) (57). Similarly, Oztay et al.
found exendin-4 ameliorating hyperglycemia-mediated lung
injury by reducing oxidative stress and stimulating cell
proliferation (58).

Peroxisome Proliferator-Activated
Receptor-Gamma (PPAR-γ) Agonists
PPAR-γ belongs to nuclear hormone receptor superfamily, with
action in many activities including alterations of metabolic and
inflammatory responses. Recent studies also found an efficacy of
PPAR-γ agonists in BLM-induced pulmonary fibrosis (59, 60).
Rosiglitazone and ciglitazone were found inhibiting the fibrotic
changes in TGF-β1-mediated EMT of alveolar epithelial cells,
differentiation of myofbroblasts, and production of collagen in

murine models, suggesting a therapeutic role of PPAR-γ ligands
for fibrotic pulmonary disease (61, 62).

SUMMARY

Currently, incidences of diabetes and idiopathic pulmonary
fibrosis are rising year by year, causing a heavy burden on
patients. Objective evidence has found a link between the two
diseases. Relying on limited research, we speculate that the
sustained hyperglycemia in the body promotes the development
of pulmonary fibrosis, through either directly damaging the
alveolar epithelial cells (AECs) or participating in the generation
of other pro-inflammatory and pro-fibrotic factors. Although the
lung is not the main organ of diabetic complications, patients
suffering from both diseases are reported a worsen prognosis.
Increasing number of studies have found an anti-fibrotic effect
of some anti-diabetic agents, and more attention and deeper
studies on mechanism and intervention are needed for diabetic
pulmonary fibrosis as well as an integrated follow-up system.
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