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Over the last 15 years, the advent of high-throughput “omics” techniques has revealed

the multiple roles and interactions occurring among hosts, their microbial partners

and their environment. This microbiome revolution has radically changed our views

of biology, evolution, and individuality. Sitting at the interface between a host and

its environment, the microbiome is a relevant yet understudied compartment for

ecotoxicology research. Various recent works confirm that the microbiome reacts to

and interacts with contaminants, with consequences for hosts and ecosystems. In this

paper, we thus advocate for the development of a “microbiome-aware ecotoxicology” of

organisms. We emphasize its relevance and discuss important conceptual and technical

pitfalls associated with study design and interpretation. We identify topics such as

functionality, quantification, temporality, resilience, interactions, and prediction as major

challenges and promising venues for microbiome research applied to ecotoxicology.
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INTRODUCTION: THE MICROBIOME IS RELEVANT TO
ECOTOXICOLOGY

The significance of microbes to multicellular organisms is long documented. Because only a
fraction of microorganisms can be isolated in culture, it is the advent of high-throughput
sequencing technologies which ultimately revealed how diverse and numerically abundant they
were. Microorganisms form complex symbiotic communities of eukaryotes, bacteria, archaea, and
viruses referred to as the microbiome (1–3). Over the last 15 years, the microbiome has been a new
frontier in Life Sciences (4), and microorganisms were shown to be involved and even necessary in
many host functions including nutrition, defense, immunity, development, and behavior (2, 5, 6).
A current paradigm assumes that most animals and plants harbor a microbiome (7). However,
some species of comb jellies and nematomorpha, as well as certain life stages of insects including
honeybee larvae, are apparently devoid of a microbiome, suggesting that this may be an over-
simplification (8, 9). In humans, the microbiome may represent as many cells as the hosts and up
to 1,000 times more genes, questioning the concept of individuality, and the limits of self (10, 11).
The holobiont concept, referring to the entity formed by a host organism and its various microbial
associates, arouse to encompass the complexity of hosts and their microbiome (12, 13). All these
discoveries have fueled a “microbiome revolution” that increasingly spreads through all fields of
life sciences, with extensions to behavioral and human sciences (14, 15).
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Recent research focuses mostly on the links between hosts and
their microbiome, and the reciprocal influence they exert on each
other, revealing its significance to host physiology, homeostasis,
disease, health, and fitness (16). Interestingly, most members of
the microbiome are located on epithelia (mucosa, skin...), i.e.,
animal or plant polarized tissues that separate the inside from the
outside of the organism. Sitting at the interface between a host
and its environment, epithelia and their associated microbiome
are the hosts buffer and first line of defense against contaminants
and environmental stressors (17). Deep-sea hydrothermal vent
mussels are an example of this. They harbor bacteria located in
the gill epithelium that oxidize hydrogen sulfide, a compound
toxic to their hosts, and fix carbon that contributes hosts
nutrition (18). Toxicology studies investigating the effects of
chemical compounds on organisms examine the accumulation,
bio-transformation, elimination, and effects in tissues, and are
thus beginning to account for associated microbiome. This paper
aims to emphasize the relevance, pitfalls, and promises of host-
associated microbiome research for ecotoxicology and advocates
for the emergence of a “microbiome-aware ecotoxicology” of
multicellular organisms, i.e., an approach that fully incorporates
the microbiome compartment as a dynamic interface interacting
with host and environment (Figure 1).

THE MICROBIOME RESPONDS TO AND
INTERACTS WITH CONTAMINANTS

Data on effects of environmental contaminants on microbiomes
has been published over the last years, with a focus on
animal gut-associated bacteria (19–22). Published studies include
controlled exposure of model organisms to various types of
contaminants including pesticides, antibiotics, heavy metals,
xenobiotics, or nanoparticles (23, 24). Bacterial community
composition is typically assessed using the 16S rRNA sequence
as a taxonomic marker that identifies Operational Taxonomic
Units (OTUs), a commonly used proxy for species. The effect of
exposures on OTU richness and diversity is then evaluated using
multivariate statistics to test whether contaminants interfere
with microbiome composition (25, 26). Many studies include
complementary analyses on host parameters of toxicological
relevance such asmarkers of the immune system, tissue histology,
and developmental markers.

Besides descriptive studies that correlate exposures and
microbiome variations, functional studies directly investigate
the interactions between the gut microbiome and contaminants
[Figure 2; (27)]. It has been shown that microbiomes of
mammals guts are able to metabolize a wide range of xenobiotics
(e.g., polycyclic aromatic hydrocarbons, polychlorobiphenyls,
and nitrotoluenes) and could protect animals from deleterious
effects (19). But the microbiome may also activate some
compounds and mediate toxicity to hosts. For instance, the
human colon microbiome was shown to convert polycyclic
aromatic hydrocarbons into estrogenic metabolites with
consequences on hormonal equilibrium (28); and the
nephrotoxicity of melamine in rats results from its conversion
into toxic cyanuric acid mediated by the bacterium Klebsiella

terrigena (29). Many pharmaceutical drugs such as lovastatin or
loperamide were also proved to be activated in the small intestine
by bacteria-mediated biotransformations (30, 31). Alternatively,
xenobiotics can also alter activities of the gut microbiome (23).
Besides the obvious example of antibiotics, many molecules
such as epoxiconazole or glyphosate, both pesticides, are
known to induce shifts in microbiome compositions (32).
Because the microbiome substantially responds and interacts
with contaminants, it must now be considered a key player
in toxicology.

PRODUCING AND INTERPRETING
MICROBIOME DATA RELEVANT TO
ECOTOXICOLOGY

Conceptual Pitfalls: Identifying a “Good”
Microbiome and a “Good” Model Species
Ecotoxicology studies that address the microbiome rely on a
microbial ecology background and need to consider the caveats
associated with this discipline. Experimental investigations to
date have focusedmostly on bacteria. However, numerous studies
have demonstrated the significance of Archaea and microbial
Eukaryotes, including fungi, to host physiology (33, 34), and
the key role of phages in regulating bacterial populations (35,
36). A comprehensive description of microbiome functioning
requires all components to be accounted for (37). However,
the lack of universal, easy-to-obtain markers for some groups,
notably for viruses, still precludes the development of systematic
analyses that require deep metagenomics, and specific expert
analysis pipelines.

Besides, OTUs composition provides only a partial description
of the real microbial diversity. Indeed, a single 16S rRNA-
based OTU can encompass a diversity of distinct bacterial
genotypes, potentially quite different in term of their respective
functional phenotypes and responses to a stimulus (38,
39). The genus Vibrio for example includes strains with
very different lifestyles, including commensals, light-producing
mutualists of the squid Euprymna scolopes, and pathogens
of numerous metazoans, that all display almost identical 16S
rRNA sequences (40). The relative abundances and dynamics
of these different phenotypes, can thus not be monitored using
16S rRNA.

Another major difficulty is the general lack of baseline
knowledge regarding microbiomes of toxicology model species,
for which very little-to-no data is available regarding wild
populations (41–43). Besides, organisms used in tests are often
sourced from rearing facilities, and have thus experienced
domestication, a process documented to lead to massive
changes in bacterial microbiome compositions. In vertebrates,
changes include overall bacterial species richness decrease
and shift in taxa abundances due to dietary, social, and
environmental conditions of captivity [reviewed in (42, 44)].
Effects in other taxa are less documented and less clear-cut.
In the silkworm for example, domestication is associated
with higher bacterial diversity (45). The representativity of
model species in ecotoxicology vs. their wild relatives thus
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FIGURE 1 | Ecotoxicology studies the effect of chemicals on organisms at the population level. A microbiome-aware ecotoxicology perspective acknowledges the

importance of associated microorganisms in their hosts biology, at the level of individuals as well as populations. Indeed, the microbiome is interacting with hosts,

environment, and contaminants and may be linked with health status (here, light vs. dark gray). The microbiome thus needs to be integrated as an element of the

system, and protocols to investigate ecotoxicological effects at each level need to be adapted.

FIGURE 2 | Sitting at the interface between environment and host, the microbiome may interact with contaminants. Sequestration, inactivation, and degradation

mitigate potential effects on host health, while activation or potentialization reinforce the effect of contaminants. Microbiome composition, abundance and functions

respond to exposure, and dysbiosis can occur. Post-exposure recovery leads to a new stable state, identical, or altered compared to the pre-exposure state. Future

lines of research are emphasized. Although contaminants may alter the host health through adverse outcome pathways, dysbiosis itself may also induce pathology

and fitness loss, difficult to disentangle from each other.

remains to be evaluated in the light of their domestication
history. Interestingly, humans are no exception to this
trend, and gut microbiomes in industrialized societies
greatly differ from the recent ancestral microbiome and
from that of contemporary traditional populations (e.g.,
hunters-gatherers). Changes in diets, sanitation, and medical
practices have led to a functional shift from fiber to mucus
degraders, high frequency of antibiotic resistance, loss of
particular taxa (e.g., Spirochaetes), and overall diversity
decrease (46, 47). This is assumed to result in non-optimal
microbiomes associated with increased risk of chronic diseases.

Lack of knowledge, along with inter-individual variability
(discussed below Technical Pitfalls: Performing the Right
Experiment to Detect Effects), undermines the identification
of the “normal,” balanced microbiome composition, i.e., the
eubiotic state. This compromises the proper diagnosis of a
dysbiosis (an “abnormal,” unbalanced) state upon exposure
to contaminants (Figure 2). Indeed, although many factors
can cause dysbiosis that may lead to health issues, it is not
easy to establish what a healthy/eubiotic microbiome is (48).
Recently, authors insisted that dysbiosis due to stressors is first
of all the destabilization of the stable eubiotic state. Changes
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in abundances of certain beneficial taxa are evident signs of
dysbiosis, but interestingly, increased inter-individual variability
in microbiome composition could be another signature of
dysbiosis (49).

In between the relative simplicity of most invertebrate-
associated microbiomes in which a few OTUs are usually
dominant [e.g., (50)] and the extreme complexity of mammal-
associated microbiomes (with hundreds to thousands
of OTUs), teleost fish and their tens to a few hundred
bacterial OTUs offer an interesting intermediate, besides
their relevance to the monitoring of aquatic ecosystems (51).
Choosing a model thus involves addressing different levels
of microbiome complexity, functionality, and domestication
history. Whether current models in toxicology are relevant
to microbiome-aware ecotoxicology studies needs to
be evaluated.

Technical Pitfalls: Performing the Right
Experiment to Detect Effects
Most studies using controlled microcosms are monitoring
various compartments that are potential sources of microbial
diversity (e.g., food for animals, water for aquatic organisms).
When scaling up to more holistic approaches such as
mesocosms or the natural environment, potential sources
of microorganisms dramatically increase, requiring the
investigation of additional compartments (e.g., food, prays,
parasites, water, particles, sediments).

Fifteen years of human gut microbiome research revealed
the high level of intra- (between body regions or life stages)
and inter-individual heterogeneity in community compositions
(1, 52). Although less documented, high levels of intra- and
inter-individual variation are reported in other taxa including
fish [e.g., Atlantic cod, salmon, rainbow trout, zebrafish,
(26, 51, 53–55)]. In the zebrafish for example, gut-associated
communities become increasingly different from those in the
environment, and inter-individual variation increases across
development (56). Skin-associated communities are different
on different body regions in the rainbow trout (55). These
examples emphasize the importance of replication levels, and
of addressing the exact same life stage and tissue region in
all individuals.

Sex-differentiated responses to compounds are commonly
reported in ecotoxicology studies, for example in medaka fish
exposed to cyanotoxins (57). Sex also influences microbiome
composition in various vertebrates, probably due to hormones
and sex-specific immunity responses (58). It also affects
microbiome responses. In lab-reared stickleback fed different
diets, diet induced changes in some bacterial taxa abundances,
but effects on bacteria in males were uncorrelated with effects
observed in females, supporting that diet effects were clearly
sex-specific (59). Authors measured similar sex-specific diet
effects in mice and humans. Sex-specific effects on microbiome
responses to contaminants are also documented. Exposure to
silver nanoparticles was for example shown to modify the gut
microbiome structure in male zebrafish, but not in females (60).
Experimental design should thus carefully consider confounding
factors of which sex is an important one.

THE ROADS LESS TRAVELED:
CHALLENGES IN MICROBIOME-AWARE
ECOTOXICOLOGY

Functionality and Integration
One major finding of the Human Microbiome Project was
that despite high levels of intra- and inter-individual variation
in the taxonomic compositions of bacterial communities, the
functions they performed, as encoded by the metagenome, were
highly conserved (1). Similar functions are thus performed by
taxonomically distinct microorganisms. This concept known as
functional redundancy is now recognized as key to the resistance
and resilience of microbial communities (61, 62). Because of
this, and the fact that closely related bacteria can display
markedly different functionalities, community composition is
not a reliable predictor of functions. Predictive tools for
functional profiling based on composition [e.g., PICRUSt; (63)]
thus suffer limitations, and identity and functions should
ideally be investigated in tandem. Functional capabilities can
be evaluated through metagenomic sequencing, but genes and
functions that are expressed at specific time points are better
evaluated by metatranscriptomic or metaproteomic approaches.
Metabolomics, which map metabolites, are another important
tool that profiles ongoing metabolisms, and thus informs
functions (64, 65) although, as for all of the above, the
improvement of databases supporting metabolite identifications
will be critical (66). The integration of these approaches in
multi-omics appears challenging, yet particularly promising for
revealing the causal role of the microbiome and mechanisms
involved in contaminants metabolism and toxic effects (67, 68).
This will be key in integrating the microbiome in adverse
outcome pathways (AOPs) and risk assessment [Figure 2; (22)].

Quantification
Microbiome-aware ecotoxicology should identify contaminant
threshold values relevant to microbiomes. Indeed, microbial
communities may shift rapidly and non-linearly between
contrasting alternative, more or less stable states provided
some parameters reach threshold values. The existence of yet-
undescribed tipping points is for example hypothesized to
explain the existence of bimodal distributions of abundances
of certain bacteria in the human gut (69, 70), and may be a
trigger of dysbiosis. To identify tipping points in ecotoxicology,
studies should examine dose-dependent responses and chronic
exposure to low doses as done for toxicological effect on host
traits, for example the determination of non-observable adverse
effect limit (NOAEL).

Microbiome composition assessments also need to become
more quantitative. Indeed, metabarcoding datasets produce taxa
relative abundances tables, and their variations. In these, an
increase in one group thus cannot be properly interpreted, as
it may as well represent a lower decrease relative to other
groups in a globally shrinking population. Bacterial densities
in guts of distinct lineages of rainforest ants were for example
shown to vary by orders of magnitude based on qPCR
quantifications; interestingly, absolute abundance variations were
better correlated with habitat (arboreal or terrestrial) and
trophic position than actual community compositions (71).
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Antibiotics, which are reported to affect relative abundances
in bacterial communities, act first by affecting the total
number of bacteria present, as was clearly demonstrated for
streptomycin and sancomycin, this being their major influence
on the microbiome (72, 73). Absolute abundances are relevant
to our understanding of the environment-host-microbiome
continuum, and should thus be informed whenever possible,
for example using quantitative PCR (74). Quantifying bacteria
within organisms is however challenging, as demonstrated by the
very different estimations of bacteria-to-human cell ratios found
in the literature (75).

Temporality and Resilience
The nature and amplitude of variations are important aspects
of microbiome response to contaminants. Composition of
communities and diversity indices are still the main endpoints
of most studies. However, the dynamics of these variations
during and after exposure are certainly as important. In humans,
microbiome dynamics are individual-dependent (76). Dynamics
inform resilience, evaluating whether variations have long-
term effects on the microbiome, or whether it fully recovers
and returns to a naive, pre-exposure stable state (Figure 2).
Antibiotic exposure was for example shown to affect human
gut bacterial communities for several months post-exposure,
and similar effects can be expected with many contaminants
(77, 78). Whether iterative exposure to some contaminants
may lead to habituation, and thus become less influential to
microbiomes over time, is also an important issue. Finally, how
microbiome resilience itself may be affected by environmental
factors (e.g., temperature, pH, interactions, seasonality) remains
to be investigated.

Interactions and Prediction
The holobiont is more than just the sum of its parts (13).
With dozens-to-thousands distinct coexistingmicrobial taxa, and
many more if phages are considered, an animal’s gut or skin is a
whole ecosystem in which multiple interactions among members
and with the host influence its functioning. These as well as
interactions with the environment, including the contaminants
and microorganisms occurring there, need to be accounted
for. For example, a new method coupling spatial imaging of
metabolites and bacterial genotypes, MetaFISH, was developed
to characterize interactions occurring between symbiotic bacteria
and the gill epithelial cells of hydrothermal vent mussels. It
allowed the identification of metabolites located at the host-
symbiont interface on tissue sections at themicrometer scale (79).
Such a method is promising to monitor small-scale interactions
between contaminants, the microbiome and the host and further
explore causality (68). Co-occurrence networks that are based
on positive or negative correlations between the occurrence
of microorganisms, functions, and environmental parameters
also help in exploring interactions and formulating hypotheses
[reviewed in (80)]. A strong relationship between the presence of
a contaminant and that of certain bacterial taxa can suggest an
ability to metabolize the former, which can then be tested (19).

Changes in the network structure itself can indicate microbial
successions in time series experiments or dysbiosis, and may
support modeling approaches (81, 82).

CONCLUSION: WHAT CAN THE
MICROBIOME DO FOR ECOTOXICOLOGY
AND VICE VERSA?

By analogy with the famous essay written by Dobzhansky
(83), it is tempting these days to suggest that “Nothing in
Biology makes sense except in the light of the microbiome.”
Ecotoxicology is no exception to this trend, and must not lag
behind other disciplines that have embraced the microbiome
revolution. However, the microbiome is not just another
ecotoxicological endpoint, but a peculiar and complex biological
compartment that exhibits its own ecological, metabolic,
functional, and thus ecotoxicological rules (26). Instead, a
microbiome-aware ecotoxicology of organisms needs to develop
(Figure 1). This involves questioning, and not only transferring,
classical toxicology protocols and model organisms’ relevance
to microbiome studies. Close cooperation between microbial
ecologists and ecotoxicologists is needed. They have a lot in
common: the complexity of microbiomes and their responses
mirrors that of contaminants and their interactions; and both
domains start with reductionist approaches, and strive to scale up
to holistic approaches that encompass ecosystems full complexity
and produce real-life-relevant data.

A major challenge is to move on from observing correlations
to addressing causality, and ultimately explain processes, e.g.,
demonstrate mitigating effects of the microbiome at the
population level in a given ecosystem. Repeatability is a key
point, which involves inter-studies comparisons and meta-
analyses for which tools are becoming available [e.g., Amplicon
Sequence Variants for OTU clustering; (84)]. Microbiome
features including taxa or functions may become bioindicators of
contamination, as recently proposed in stream ecosystems (85).
Modeling interactions between environment, contaminants,
microbiomes, and hosts will become tractable, with a certain
level of predictive power (86). No doubt the dialogue between
disciplines will result in mutual enrichment, and will allow
to make the most of the microbiome revolution applied
to ecotoxicology.
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