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The new coronavirus pandemic continues to spread causing further public health, social,

and economic issues. The disparities in the rates of death between countries poses

questions about the importance of lifestyle habits and the immune status of populations.

An exploration of dietary habits and COVID-19-related death might unravel associations

between these two variables. Indeed, while both nutritional excess and deficiency are

associated with immunodeficiency, adequate nutrition leading to an optimally functioning

immune system may be associated with better outcomes with regards to preventing

infection and complications of COVID-19, as well as developing a better immune

response to other pathogenic viruses and microorganisms. This article outlines the

key functions of the immune system and how macronutrients, micronutrients, and

metabolites from the gut microbiome can be essential in the development of an efficient

immune system. In addition, the effects of intermittent fasting on the inflammatory state

as well as metabolic parameters will be discussed.

Keywords: COVID-19, coronavirus, immune system, balanced diet, micronutrients, macronutrients, probiotics,

intermittent fasting

INTRODUCTION

In the past two decades, the world has seen the emergence of three novel coronaviruses (CoV)
leading to disease outbreaks that have caused considerable global health consternation: the severe
acute respiratory syndrome coronavirus (SARS-CoV), the Middle East respiratory syndrome
coronavirus (MERS-CoV), and the recently emerged coronavirus SARS-CoV-2 (1–3).

COVID-19 is the name of a newly identified disease caused by SARS-CoV-2, and it was originally
observed as a cluster of atypical pneumonia cases occurring in Wuhan, China, in December 2019
(2). While this newly identified virus belongs to the same β-coronavirus genus as SARS-CoV
and MERS-CoV, the novel disease seems to be characterized not only by mild upper respiratory
infections, similar to other corona-viruses, but also by the presence of symptoms of the lower
respiratory tract that are sometimes very severe (4). These mild and even asymptomatic cases have
contributed to the silent spread of infections worldwide, increasing the probability of infecting
high risk groups of individuals comprising immunocompromised patients and those with chronic
diseases (1, 4–12). Indeed, the WHO has estimated the reproductive number (R0) of the novel
infection by SARS-CoV-2 to range between 2 and 2.5, which is higher than SARS (1.7–1.9) and
MERS (<1), suggesting from the outset that COVID-19 has a higher pandemic potential (9, 10).

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2020.00476
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2020.00476&domain=pdf&date_stamp=2020-08-27
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alc2033@qatar-med.cornell.edu
https://doi.org/10.3389/fpubh.2020.00476
https://www.frontiersin.org/articles/10.3389/fpubh.2020.00476/full


Chaari et al. Upgrade Immune Response During COVID-19

GRAPHICAL ABSTRACT | (A) The conditions of lockdown tend to promote poor dietary habits; a decline in exercise and increase in comfort eating promotes the

weight gain that many have experienced during this time. A disrupted eating schedule and frequent snacking can result in a decrease in T cells and an increase in

pro-inflammatory cytokines. A delayed immune response and increased inflammation can occur as a consequence of a diet high in saturated fats. Furthermore, a high

sugar diet reduces the activity of neutrophils ad phagocytes. This will be accompanied by a reduction in T cells and promotion of inflammation if levels of minerals and

vitamins are insufficient. Finally, poor dietary habits change the gut microbiota, causing “leaky gut,” which results in a reduction of B & T cells, and subsequent

inflammation. (B) Conversely, following good dietary habits and undertaking daily exercise during lockdown helps maintain a healthy weight. If a regular eating

schedule is followed, with well-spaced meals, levels of T cells will actually increase, and there will be a reduction in pro-inflammatory cytokines. A diet rich in SCFAs

and with a high omega 3/omega 6 ratio will promote a strong immune response and decrease inflammation. If sugars are consumed only at low levels, the activity of

neutrophils and phagocytes will increase. An accompanying increase in T cells will occur if an adequate level of minerals and vitamins are consumed; they will also

protect against inflammation. These affects will also be promoted if a healthy gut microbiome is maintained to preserve the integrity of the gut epithelial barrier.

Some studies have shown that patients with COVID-19
experience a dysregulation of their immune response (13).
Conversely, other studies have emphasized how some individuals
can recover from COVID-19 symptoms within days; an effective
immune response was found to be associated with successful
clinical recovery (14). Many studies have highlighted the
important role of the human innate and adaptive system
in COVID-19 pathophysiology (15, 16). Furthermore, there
is evidence that environmental factors, such as unbalanced
nutrition, toxins, and inflammation, and the sudden lifestyle
changes that occur during quarantine/lockdown can cause
physicochemical and psychological stress. These factors may
lead to a compromised immune system and deregulate the
immune system, making the human body more vulnerable to
viral infections (17–20).

An optimal nutritional state has been found to be essential
for a well-functioning immune system and for the protection
against viral infections (21). Furthermore, malnutrition
and/or an unbalanced diet represent an important cause
of immunodeficiency worldwide, with infants, children,
adolescents, and the elderly being the most affected (22, 23).
In this context, deficiencies in essential nutrients are associated
with an impairment of cell-mediated immunity, phagocyte
function, complement system, and cytokine production in
humans (22, 23). Moreover, deficiency in micronutrients such
as vitamins, minerals, and polyphenols has been shown to have
profound consequences for immune system functioning and
susceptibility to infection. Carotenoids, vitamins, selenium,

zinc, and polyphenols, as well as many other nutrients, have
been shown to modulate the immune system. Furthermore,
dietary manipulation of these micronutrients has been shown
to alter immune function (21, 24–26). Nutritional excess of
carbohydrates, saturated fats, coupled with physical inactivity
leading to obesity, can also deregulate the immune system of
the host thereby increasing susceptibility to infection (21, 27).
Unfortunately, the quarantine and self-isolation of many
individuals during the current pandemic promotes these
unhealthy behaviors.

This narrative review principally aims at revealing the benefits
of balanced nutrition in prevention and treatment of viral
infection, by strengthening the immune system. We will be
discussing benefits of a number of macro and micronutrients as
well as their mechanisms of action.

In addition, evidence is emerging that chronic diseases are
strongly associated with the severity of the symptoms and
prognosis (11) but the mechanisms explaining this relationship
are still unclear and are being explored. Unfortunately, only
a limited amount of clinical data is available to draw direct
conclusions on the potential of nutritional changes in protecting
individuals from COVID19. However, we believe that it is
important to note that any changes in lifestyle can also
greatly impact chronic diseases in non-infected chronic patients
with a high risk for severe COVID-19 disease and thereby
indirectly affect their response to SARS-CoV-2 infections.
Therefore, information regarding the effects of nutritional
changes, including fasting, in reversing dysbiosis and chronic
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diseases in non-infected High Risk for Severe Illness (HRSI)
individuals is also included in this paper.

HUMAN CORONAVIRUS INFECTION AND
THE HOST’S IMMUNE SYSTEM

Components of the Human Immune
System and Lines of Defense Against Viral
Infection
The first line of immune defenses includes the physical and
chemical barriers that attempt to block the entry of microbes.
When these barriers are breached, the microbes will be fought
by the components of the internal innate immune system
which is composed of leukocytes and defensive proteins that act
immediately and non-specifically to eradicate infections (28). If
innate immunity fails to eliminate the infection, the adaptive
immune system will be activated. T and B lymphocytes are the
adaptive immune cells which are able to recognize antigens with
high specificity (28, 29). Table 1 summarizes the major functions
of the innate and adaptive immune cells.

The immune response is triggered by the interaction between
the pattern recognition receptors (PRRs) of the host cells
and the pathogen associated molecular patterns (PAMPs)
(41). The antiviral defense is initiated when PRRs such

as Toll-like receptors (TLRs), retinoic acid-inducible gene I
(RIG-I)-like receptors (RLRs) or NOD-like receptors (NLRs)
bind to viral PAMPs such as DNA, RNA, or proteins (42).
This interaction induces some signaling cascades through the
activation of different families of transcription factors (43,
44). Type I and Type II interferons (IFN-I and IFN-II) are
cytokines produced in response to viral infections (45). IFN-
I (IFN-α and β) are produced by various types of cells and
interfere with viral replication which creates an antiviral state
through various mechanisms (46–48). In addition to directly
inhibiting viral replication, IFN-I can modulate the innate and
adaptive immunity including the activation of the cytotoxic
activity of natural killer (NK) cells and cytotoxic CD8+ T
lymphocytes (CD8+ CTL) cells which are essential to eradicate
the virally infected host cells. Furthermore, IFN-I can stimulate
the production of IFN-γ (IFN-II) by NK cells (49). IFN-γ
promotes themacrophages classical pathway (M1) which induces
inflammation and promotes the intracellular killing mechanisms.
Furthermore, IFN-γ stimulates the differentiation of CD4+ T
helper (Th) lymphocytes into Th1 which themselves are major
producers of IFN-γ (35). Conversely, Th2 activate the alternative
pathway of macrophages (M2) which suppresses inflammation
and promotes the repair mechanisms (36). Therefore, the Th1
response, together with the cytotoxic activities of NK and CD8+
CTL, are vital antiviral mechanisms (28, 50).

TABLE 1 | Summary of the major functions of the innate and adaptive immune cells.

Innate leukocytes Description and function References

Mast cells Produce/secrete proinflammatory mediators such as cytokines, eicosanoids, and vasoactive amines such as

histamine, which causes vasodilation and increases vascular permeability.

(30)

Macrophages Phagocytes that ingest and destroy microbes. They also produce inflammatory cytokines. (31)

Monocytes Circulating phagocytes which can ingest microbes in blood. They migrate to tissues under inflammatory

conditions and differentiate to macrophages. They also produce inflammatory cytokines.

(31)

Neutrophils Circulating phagocytes/granulocytes. They migrate to tissues under inflammatory conditions and destroy

microbes by phagocytosis and degranulation. They also produce inflammatory mediators.

(31)

Eosinophils Circulating granulocytes. They migrate to tissues under inflammatory conditions and kill parasites. (32)

Basophils Circulating granulocytes. They migrate to tissues under inflammatory conditions and kill parasites. (32)

Natural Killer (NK) cells They are responsible for killing host cells that are infected, stressed, or damaged. Therefore, they play an

important role in the eradication of intracellular pathogens and tumor cells. They also produce inflammatory

cytokines.

(33, 34)

Dendritic cells (DC) They function as antigen presenting cells (APC) which mediate the transition from innate to adaptive immunity.

If the innate immune system fails to eliminate infection, DC capture and process protein antigens and present

them to T lymphocytes. They produce inflammatory cytokines.

(28, 29)

Adaptive leukocytes

(lymphocytes)

Function References

CD4+ T cells Upon activation by APC, they become helper T cells (Th1, Th2, or Th17). Some CD4+ T cells are regulatory

(Treg).

(28, 29)

Th1: Activate the M1 pathway of macrophages which induce inflammation. They also produce inflammatory

cytokines.

(35)

Th2: Activate the M2 pathway of macrophages which suppress inflammation. (36)

Th17: Produce IL-17 which activates and recruits inflammatory leukocytes to various tissues. (37)

Treg: Regulatory CD4+ T cells which have immunosuppressive effect. (38)

CD8+ T cells Upon activation by APC, they become cytotoxic T cells (CTL) which are responsible for killing infected,

stressed, or damaged host cells.

(28, 29)

B cells When activated, they produce antibodies that neutralize pathogens and enhance the effector mechanisms of

other immune cells such as phagocytes.

(39, 40)
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The inflammasome is an important structure in the antiviral
defense which is assembled when cytosolic viral molecules
bind to NLR. It induces the activation and secretion of
interleukin (IL) 1β which is a potent pro-inflammatory cytokine.
Moreover, it induces pyroptosis leading to the host cell death
and consequently the control of viral infection (51). Tumor
necrosis factor-α (TNF-α) is another potent pro-inflammatory
cytokine that can cause host cell apoptosis (52). Both TNF-
α and IL-1β induce the expression of adhesion molecules by
endothelial cells which is essential for the migration of leukocytes
across capillaries as part of the inflammation cascade (52,
53). Inflammation could also be induced by a wide range of
cytokines such as IL-6, which, in addition to its pro-inflammatory
function, together with transforming growth factor (TGF)-β,
stimulate the differentiation of “CD4+ Th cells or Th cells”
into the proinflammatory Th17 subset (54, 55). Th17 cells
are characterized by the production of IL-17 which plays an
essential role in the antiviral defense by activating and recruiting
inflammatory leukocytes in various tissues (37). Furthermore, IL-
17 was reported to promote an effective Th1 and CD8+ CTL
responses in addition to the enhancement of humoral immunity
by promoting B cell proliferation and differentiation into plasma
cells during viral infections (37, 56). Humoral immunity is an
essential arm of the antiviral defenses, providing the antibodies
that neutralize the virus and enhancing the effector mechanisms
of other immune cells such as phagocytes (39, 40). IL-17 could
be also produced by a wide range of immune cells such as NK
and γ δ T cells (57–59). γ δ T cells are a subgroup of T cells
that have a different structure of T cell receptors compared
with conventional T cells (αβ T cells) which can bind to non-
peptide antigens. It has been shown that γ δ T cells link innate
and adaptive immunity and work as antigen presenting cells
(APC) to activate CD4+ Th and CD8+ CTL in addition to their
capacity to produce cytokines and lytic enzymes which take part
in controlling viral infections (60).

Another type of pro-inflammatory cytokines is the
chemokines that induce inflammation by functioning as
leukocytes chemoattractants. Examples of chemokines that take
part in antiviral defense are monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein-1 alpha (MIP-1),
IFN-γ inducible protein (IP-10) and IL-8 which are summarized
in Table 2.

Additionally, some cytokines are required for the
development, proliferation, differentiation, and survival of
leukocytes and may therefore act as pro- or anti-inflammatory
cytokines. For example, granulocyte colony-stimulating factor
(G-CSF) enhances the production and function of neutrophils
and macrophages and consequently could function as a pro-
inflammatory cytokine (66, 67). On the other hand, both IL-7
and IL-2 play a pivotal role in the development and homeostasis
of lymphocytes and may induce inflammation (68, 69). However,
IL-2 is also required for the development and function of
regulatory T cells (Treg) (70). Accordingly, IL-2 may have
a dual function as pro-inflammatory or anti-inflammatory
cytokine (38, 69). Inflammation could be suppressed by
the anti-inflammatory cytokines which are summarized
in Table 2.

Despite the vital defensive role of inflammation as a major
immune response, it is important to note that in several viral
infections, the tissue damage is not directly caused by the virus,
it is instead the result of an exuberant inflammatory response to
the viral infection (73, 74).

Human Immune Responses to
SARS-CoV-2 Infection
MERS-CoV, SARS-CoV, and SARS-CoV-2 are β-coronaviruses
that can cause fatal respiratory tract infections and extra-
pulmonary manifestations (75–77). SARS-CoV-2 binds to the
angiotensin-converting enzyme 2 (ACE2), which it uses as a
receptor to enter the cell (78, 79). ACE2 proteins, part of the
renin- angiotensin system (RAS), are found at several locations,
including the olfactory epithelium and the gut and are numerous
throughout the respiratory epithelial tissue of the lung, kidney,
intestine, and blood vessels (80). Thismay be the cause behind the
high incidence of bronchitis and pneumonia in severe COVID-
19 infected patients. It has been shown that ACE2 is responsible
for the degradation of Angiotensin II resulting in the formation
of Angiotensin 1-7, thereby, negatively regulating RAS (81, 82).
Besides the role of ACE2 to serve as a functional receptor
for SARS-CoV-2, it has been shown that ACE2 is implicated
in many pathologies including diabetes, cardiovascular diseases
(CVD), and lung diseases (82–84). SARS-CoV-2 appears to use
different amino acids in its spike protein for binding the ACE2
receptor with more affinity than previous SARS viruses (85, 86).
Interestingly, the latest studies have shown that, after infection,
some cellular processes downregulate ACE2 expression (87).
Destruction of ACE2 further increases the activity of angiotensin
II, which has pro-inflammatory, pro-oxidative, vasoconstrictive,
and pro-thrombotic effects that can lead to the thrombotic
changes and organ failure that were noted in COVID19 patients
and which contributed to death (88). In fact, it seems that after
viral infection, ACE2 could play a key protective role in the
progression of the disease and the severity of the respiratory
distress syndrome (89). A study by Imai et al. (89) published in
Nature have shown that ACE2 protects mice form severe acute
lung injury after sepsis. Sepsis is characterized by oxidative stress,
systemic inflammation, and organ failure that is due to excessive
free radical production.

Based on the previous studies conducted on SARS-CoV
and MERS-CoV, it could be predicted that the innate immune
response against SARS-CoV-2may start when the viral molecules
are recognized by TLRs, RLR, or NLR. This interaction triggers
the inflammatory response and stimulates the production of
IFN-I which controls viral replication (77). However, it was
also reported that SARS-CoV and MERS-CoV may evade
the innate immune response by interfering with the IFN-
I signaling pathways through various mechanisms. Failure to
initiate or complete the IFN signaling cascades during the
early phase of infection may result in an uncontrolled viral
replication. This may lead to the recruitment of neutrophils and
monocytes/macrophages to the infected tissues which results in
the excessive production of pro-inflammatory cytokines (90).
Accordingly, it could be hypothesized that the exaggerated
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TABLE 2 | Summary of the major functions of cytokines and chemokines.

Cytokine Function in antiviral immune

response

Mechanism of action References

IFN-I

(IFN-α and β)

Antiviral Interfere with viral replication, activate NK cells, and induce the

production of IFN-γ.

(49)

IFN-II (IFN-γ) Pro-inflammatory Activates the M1 pathway and promote Th differentiation to Th1. (35)

IL-1β Pro-inflammatory Induces the expression of adhesion molecules by endothelial cells and

induce pyroptosis.

(51, 52)

TNF-α Pro-inflammatory Induces the expression of adhesion molecules by endothelial cells and

induce apoptosis.

(53)

IL-6 Pro-inflammatory Promotes Th differentiation to Th17 and induce the production of CRP

which is part of the acute phase inflammatory response.

(54, 55)

IL-17 Pro-inflammatory Recruits inflammatory leukocytes to the site of infection, promote an

effective Th1 and CD8+ CTL responses and enhance humoral

immunity.

(37, 56)

MCP-1 Pro-inflammatory/chemoattractant Recruits monocytes from blood stream to the site of infection. (61)

MIP-1α Pro-inflammatory/chemoattractant Recruits inflammatory leukocytes to the site of infection. (62)

IP-10 Pro-inflammatory/chemoattractant Recruits inflammatory leukocytes and enhance inflammation by

promoting the Th1 response.

(63, 64)

IL-8 Pro-inflammatory/chemoattractant Recruits neutrophils to the site of infection which enhances

inflammation.

(65)

G-CSF Pro-inflammatory Enhances the production of neutrophils and macrophages and

enhances phagocytosis.

(66, 67)

IL-7 Pro-inflammatory Promotes the development, proliferation, and survival of lymphocytes

and suppress the expression of inhibitory molecules by T cells.

(68)

IL-2 Pro-inflammatory/Anti-inflammatory Enhances proliferation and survival of Th1, Th2, Th17, and Treg. (69, 70)

IL-4 Anti-inflammatory Activates the M2 pathway and promote Th differentiation to Th2. (71)

IL-10 Anti-inflammatory Regulates inflammation. (72)

damaging inflammatory response observed in COVID-19
patients is at least partially attributed to the suppressed/delayed
IFN-I pathways accomplished by SARS-CoV-2. Furthermore, in
severe COVID-19 cases there is a diminished response of Th1
cells (13).

Several studies have documented that levels of cytokines
and chemokines vary according to disease stage and severity of
COVID-19. For example, one study showed that plasma levels of
IL-2, IL-6, IL-8, IL-10, and TNF-α, were found to be higher in
patients with severe infection than those with mild to moderate
infection (13). Another study showed a similar trend, with plasma
concentrations of IL-2, IL-7, IL-17, IL-10, MCP-1, MIP-1A, IP10,
and TNF-α being observed to be higher in COVID-19 patients
undergoing treatment in intensive care units than in any other
category of COVID-19 patients (91).

In one report, analyzing 99 cases in Wuhan, Zhou and
colleagues observed an increase in the total neutrophils (38%),
an increase in serum IL-6 (52%), an increase in C-reactive
protein (CRP) (84%), and a decrease in total lymphocytes (35%)
(92). In another report from Wuhan, analyzing 41 patients, an
increase in the total neutrophils and a decrease in the total
lymphocytes has been shown, which also correlate with disease
severity and death (91). Furthermore, the decreased level of
lymphocytes observed by (90), could be explained by the ability
of SARS-CoV-2 to infect T lymphocytes, which leads to apoptosis
of lymphocytes and consecutive lymphocytopenia (4, 93). In

fact, it was found that the absolute count levels of CD4+
and CD8+ T cells were significantly lower in subjects with a
severe SARS-CoV-2 infection (94–96). In addition to T cells, the
reduction of B cells and NK cells are seen in COVID-19 (13, 97).
Therefore, the reduced adaptive immune response against the
virus, manifested by an impaired T-cell function, may contribute
to the uncontrolled secretion of the pro-inflammatory cytokines
in what is known as a “cytokine storm” accompanied with a
multi-organ failure (8, 98). Interestingly, one study illustrated
how an otherwise healthy individual with a robust immune
system is capable of achieving an efficient clearance of SARS-
CoV-2, accompanied by clinical recovery after 13 days and full
recovery at day 20 after infection (14).

The impact of comorbidity is yet another factor that may
affect the outcome of COVID-19. It has been reported that
factors such as obesity, diabetes and CVD may increase the risk
of progression and mortality among COVID-19 patients (99).
One factor that may link such diseases to the increased severity
and progression of COVID-19 is inflammation. For example,
obesity is associated with metabolic alterations which may
dysregulate the immune response through various mechanisms
(100). Furthermore, obesity was found to be associated with
the increased production of IL-6, TNF-∞, MCP-1, and CRP
leading to chronic and low-grade inflammation which may result
in defective innate immunity and cause the development of
type 2 diabetes and CVD (100, 101). Likewise, the association
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between diabetes, CVD, and chronic inflammation has been well-
established (102, 103). Additionally, studies have shown that
ACE2 expression is significantly increased in obese individuals, as
the RAS upregulates ACE2 to protect the heart. However, because
of this increased ACE2 expression, obese individuals are thought
to bemore exposed to the SARS-CoV2 viral spread into the lungs.
Treatment and close management of obesity is an important
approach that needs to be considered to prevent patients from
being infected and developing complications.

Therefore, it could be elucidated that the efficiency of the
immune response, which is controlled by multiple factors
including nutrition, may dictate the outcome of COVID-19. The
following section presents a review of the nutritional components
that were shown to boost the immune system, including, but not
limited to viral infections and coronaviruses.

THE ROLE OF NUTRITION IN IMMUNE
FUNCTION

A balanced, adequate diet is required for the cells of the immune
system in order to function optimally. During situations with
increased requirements (e.g., infection, stress, and pollution),
the immune system is activated and thus increases the demand
for energy. A balanced, optimal diet strengthens the immune
response and supports the function of the immune cells not only
by producing an effective response against pathogens, but also
by resolving infections in a short time thus avoiding any further
chronic inflammation (104). Various nutrients are involved in
this process. This section highlights some that have been shown
to play specific roles in the development and maintenance of an
effective immune system.

Role of Macronutrients in the Immune
Function
Effect of Dietary Fats in the Immune System
Dietary fats are mostly triglycerides and are among the most
important sources of nutrition in humans if taken appropriately.
Many food sources contain various types of fatty acids, such as
olive oil which is rich in monounsaturated fatty acids, animal
products rich in saturated fats (but also with large proportions of
monounsaturated and polyunsaturated fatty acids depending on
the origin), plants rich in alpha linolenic acid, and nuts and seeds
(such as walnuts and linseed), rich in omega 3 polyunsaturated
fatty (105). Fatty acids are known to play diverse roles in immune
cells (106, 107). Dietary fats are important for absorption of
liposoluble vitamins A, D, E, andK (which are also involved in the
immune system), as well as permeability and stability of immune
cell membranes (108).

Short chain fatty acids (SCFAs), like acetate, propionate,
and butyrate can be provided by many fermented foods made
by bacterial fermentation such as cheese, butter, pickles, soy
sauce, yogurt, and alcoholic beverages (109–113). Many studies
have shown that SCFAs exert anti-inflammatory properties
and present immunomodulatory potential in vitro (114, 115).
SCFAs are able to regulate the activation, recruitment, and
differentiation of immune cells, including neutrophils, dendritic

cells (DCs), macrophages, and T lymphocytes (116). A study
by Liu and colleagues showed that SCFAs not only reduced the
production of pro-inflammatory factors, including TNF-α, IL-1β,
IL-6, but also enhanced the production of the anti-inflammatory
cytokine IL-10 (117).

Many studies have shown that palmitoleic acid (PA) (a
monosaturated fatty acid belonging to the omega-7 group),
also presents anti-inflammatory properties in vitro (118, 119).
Dietary sources of palmitoleic acid include a variety of animal
oils, vegetable oils, and marine oils. A recent study evidenced
the role of the palmitoleic acid in decreasing pro-inflammatory
cytokine expression in cultured macrophages characterized by a
decrease in Th1 and Th17 response (120). Another important
constituent of dietary fats is polyunsaturated fatty acids, which
can be further subdivided into omega-3 and omega-6 fatty acids.
Many studies using a variety of models show that a decrease
in omega-6/omega-3 ratio has anti-inflammatory effects (121–
125). A study using mice reported that the omega-3-derived
lipid mediator protectin D1, significantly reduced influenza
virus replication (126). Moreover, a randomized controlled
trial showed that omega-3 supplements were able to lower
inflammation in healthy middle-aged and older adults (124).
The data showed that administration of 1,25 and 2.5 g/d
of omega-3 decreased the IL-6 serum level by 10 and 12%,
respectively (124). Another randomized control study showed
that supplementation of omega 3 for 12 weeks reduced the
production of IL-6, and lowered anxiety by 20%. These changes
were accompanied by a decreasing ratio of omaga-6/omega-
3 and consequent reductions in IL-6 and TNF-α production
(127). Although the beneficial effect of omega-3 has been
revealed by many studies, a caution with dose and the status
of the body should be taken into consideration when this
compound is taken. On the other hand, it has been shown
that saturated and polyunsaturated omega-6 fatty acids present
pro-inflammatory properties (107, 128). Furthermore, omega-
6 fatty acids are precursors of potent lipid mediator signaling
molecules, termed “eicosanoids,” which have important roles
in the regulation of inflammation, and the eicosanoids derived
from omega-6 also present pro-inflammatory properties (129).
However, it should be mentioned that not all omega-6 have
pro-inflammatory characteristics. Gamma-linolenic acid (GLA,
18:3n-6) is a precursor of eicosanoids, which is found in human
milk and several botanical seed oils but is typically consumed
as part of a dietary supplement. Several studies have shown
that GLA can attenuate inflammatory responses (130, 131).
Furthermore, it has been shown that polyunsaturated fatty
acids are able to activate the peroxisome proliferator-activated
receptors γ (PPAR-γ), thus decreasing the pro-inflammatory
cytokines (132). For example, docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) interact with PPAR-γ and leads to
the inhibition of nuclear factor- κB (NF-κB), a key transcription
factor of pro-inflammatory cytokine production (133). On the
other hand, saturated fatty acids have been shown to trigger the
secretion of pro-inflammatory mediators from various cell types,
including macrophages (134, 135), adipocytes (136), astrocytes
(137), and endothelial cells (138). An in vitro study also showed
that the addition of palmitic acid to infected cells, by different
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strains of the influenza A virus, increased the cellular lipid
content and thus increased the replication of the virus (139). This
effect of palmitic acid has not been replicated for coronaviruses.

It has been reported that high-fat diets lead to increasing
circulating pro-inflammatory cytokine and neutrophil levels,
resulting in a poorer response to pandemic H1N1 influenza
A virus (pH1N1) vaccination (140). In the same context,
Milner and colleagues state that “Obesity has been identified
as an independent risk factor for severe or fatal infection
with 2009 pandemic H1N1 influenza (2009 pH1N1), but was
not previously recognized for previous pandemic or seasonal
influenza infections” (141). In this study, the authors showed that
obese mice had elevated viral titers, greater lung inflammation,
as well as increased inflammatory cytokine levels and damage,
and more memory CD8+ CTL in the lung airways (141, 142).
Moreover, HFD leading to obesity (animal model of obesity)
can exacerbate inflammation or infection in the host, and
consequently increase the mortality. This has been shown in
obese mice infected with the influenza virus (143, 144), which
was attributed to a delayed antibody response (141). In fact,
infection of obese mice with the 2009 pandemic H1N1 influenza
virus resulted in an elevation of pro- inflammatory cytokine
concentrations in circulation, but a lower response of IFN-
β and pro-inflammatory cytokine concentrations in the lungs,
compared to lean mice (144). Similarly, another study with obese
mice infected with the influenza virus showed that IFN-α and
β were minimally expressed and there was a notable delay in
expression of the pro-inflammatory cytokines IL-6 and TNF-α
(143). The lower level of IFN-α and β leads to a less effective
immune responses against viral agents (145). In this context,
it has been shown that there is strong association between
severity of COVID-19 disease and obesity (146). Thus, during
the lockdown, individuals with a tendency for obesity and other
metabolic disorders should avoid or reduce high fat meals since
it has been shown that high fat diet have a detrimental role,
downregulating ACE2 (147). Deregulation of ACE2 receptors in
the airways allows easier entrance of the virus and leads to the
increased angiotensin II release. In turn, this can cause vascular
(endothelial) trauma and micro-thrombo-embolism in various
organs, leading to multiple organ failure (82, 88).

Furthermore, high-fat dietary intake has been proven to be
responsible for the alteration of microbial composition in the
intestine by increasing the ratio of Firmicutes to Bacteroidetes
leading to an increase in intestinal permeability. This may cause
systemic inflammation thus affecting the immune system (140,
148). Trottier and colleagues observed induced inflammation
in the immune system in mice that had been fed a high-
fat diet. This was accompanied by a modest change in bone
marrow composition and a slight increase in the percentage of
lymphocytes (149).

In summary, the in vitro and in vivo studies using
animal models indicate that fatty acids can directly modulate
either negatively (high-fat diet, saturated and polyunsaturated
omega-6 fatty acids) or positively (polyunsaturated omega-3,
monounsaturated, and short-chain fatty acids) thereby affecting
the immune response and influencing infection susceptibility
(140) (Figure 1). However, a recent study in mice has shown that

short term feeding (3–6 weeks) either with low-fat or high fat
diets, rich with omega-3, omega-6 or monosaturated fatty acids,
did not significantly influence the susceptibility of mice to viral
infection, morbidity, viral titers in the lungs and liver, recovery
time, or mortality (125).

Effect of Dietary Carbohydrates in the Immune

System
Carbohydrates are nutrients found mainly in vegetables, fruits,
and cereals and can be divided into simple sugars and oligo-
or poly-saccharides. The recommended daily dietary allowance
of carbohydrates is 130 g/day (150). Carbohydrates consumed
as part of balanced diet are healthy but can be toxic if
overconsumed. Carbohydrates are the most important fuel
source and are necessary for the normal functioning of immune
cells. Although an increase on lymphocytes during anaerobic
glycolysis has been shown—which is an indicator of the increase
of glucose as a fuel—during lymphocyte proliferation the use
of this micronutrient as a source of energy decreases (151).
Moreover, carbohydrates have an important impact on the
immune system because of their ability to prevent the decrease
of the number of cells conjoint to apoptosis (108). This fact is
very important for COVID-19, because in severe cases there is an
increase in apoptosis of lymphocytes.

On the other hand, a recent study showed that during
times of stress (comparable to what many are facing during
the COVID-19 pandemic) many people change their dietary
behavior and tend to be drawn to unhealthy, high-sugar foods
(152). A diet based on overconsumption of simple carbohydrates
can lead to metabolic syndrome, an increase in abdominal fat,
hyperglycemia, and type 2 diabetes, as well as dysregulation in the
immune responses (151, 153). A recent paper by Goldberg and
colleagues reported that feeding mice an energy dense, high-fat,
low-carbohydrate ketogenic (keto) diet conferred protection in
the context of a potentially lethal influenza infection. The authors
identified that an energy dense, high-fat, low-carbohydrate
ketogenic (keto) diet promoted the expansion of γδ T cells in
the lung, leading to a conclusion that a keto diet may present a
viable avenue toward preventing or alleviating influenza disease
(154). Although this outcome was specific to mice and not to
humans, it cannot be ignored that a keto diet may have beneficial
effects for people with type 2 diabetes and other metabolic
disorders (155–157) who have higher risk of complications if
infected with SARS-CoV-2 (158). In this context, it has been
revealed for example that 5.3–20% of COVID-19 patients in
Wuhan had compromised innate immune responses because of
diabetes (159, 160). A low carbohydrate diet has positive effects in
people with type 2 diabetes (161) which may alleviate the severity
of infection by SARS-CoV-2. Additionally, severe COVID-19
cases have exhibited increased catabolism, and therefore have
increased energy requirements (162).

Effect of Dietary Proteins and Amino Acids on the

Immune System
Proteins are considered the building blocks of life and their
monomeric component, the amino acids, are considered key
regulators of various pathological and physiological processes,
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FIGURE 1 | The effect of inadequate fat intake and obesity on the pathophysiology of COVID-19. Increased dietary level consumption of saturated fatty acids,

decreased level of SCFAs and omega 3/omega 6 combined with obesity can lead to immune activation. This immune activation can alter microbial composition in the

intestine, leading to dysbiosis, which consequently enhances systemic inflammation. The complexity of the intestinal microbiota is correlated with dysfunctional

monocyte maturation and neutrophil dysfunction in the bone marrow. Obesity also leads to deregulation of ACE2 receptors in the lungs, which predisposes and

makes entrance the virus easier and leads to increased angiotensin II release, which causes vascular (endothelial) trauma and micro-thrombo-embolism in various

organs, leading to multiple organ failure. Altogether, these different factors that lead to the body being unbalanced can increase pneumonia severity and mortality,

which is more acute in the case of lung viral infection.

including immune responses (163). The recommended daily
dietary allowance of proteins is 19–56 g/day (150). It has
been demonstrated that a deficiency of dietary protein and
accompanying reduced concentrations of most amino acids
in plasma, impairs the immune function and increases the
susceptibility of humans to infectious diseases (164). A deficiency
in protein intake is associated with the alteration of one of the
first lines of defense against pathogens: the physical barrier. This
deficiency is accompanied by thinner collagen and connective
tissue, reducing the number of antibodies in the physical barrier,
which results in a favorable environment for the aggressor
(165). Moreover, the protein-energy malnutrition associated

with chronic diseases has been recognized as a virulence factor
for severe COVID-19 because it can deregulate immune cell
activation leading to increasing inflammation in the lungs and
longer viral persistence (133, 166). Moreover, it has been shown
that COVID-19 patients require a diet rich in high energy
nutrients (105–160 kj/kg/day or 25–40 kcal/kg/day) and proteins
(167–170). In this context a protein intake >1 g/kg/day (up to
1.5–2 g/kg/day) has been proposed in COVID-19 patients that
do not show any chronic renal insufficiency (22, 167).

There is increasing evidence on the important role of amino
acids in the enhancement of the immune response, as well
as in the reduction of an over-reaction, such as inflammation
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and autoimmunity (163). Thus, amino acids can regulate the
activation of T and B lymphocytes, macrophages, NK cells,
and the production of antibodies and cytokines (164, 171–
173). Many amino acids like glutamine, arginine, tryptophan,
cystine/cysteine, glutamate, histidine, and branched-chain amino
acids are important for immune function (163). Some of them are
discussed below.

Glutamine
This amino acid is the most abundant and versatile amino acid
in the body. Research has shown that in health and disease, the
rate of glutamine consumption by immune cells is similar to or
greater than glucose consumption (174, 175). In fact, a decreasing
level of glutamine in the plasma leads to: (1) a reduction in
human B cell differentiation as well as a decrease in antibody
production (176); (2) a suppression of T cell proliferation
and decrease in IL-2; and (3) downregulation of major
histocompatibility complex (MHC) class II antigen expression on
human macrophages and inefficient phagocytosis (177).

Arginine
For many years, a diet rich in arginine, which is found
abundantly in meats and nuts, often combined with other
micro- and macronutrients, has been used as a mechanism
to boost the immune system (178). It was reported that in
experimental animals housed under stressful conditions, arginine
supplementation was able to restore the reduced number of T
cells to normal (163). Another study showed that L-arginine
consumed through the diet can boost the activity of T cells.
In fact, this study showed that an increase in the level of L-
arginine reorganized the metabolism of the T cells, which made
them more effective in fighting tumors and gave them a longer
lifespan (179).

The Role of Micronutrients in the Immune
Function
Vitamins and other micronutrients are essential constituents of
the human diet that have long been known to influence the
immune system (165, 180). A deficiency in these micronutrients
affects the innate and adaptive immune system response, leading
to dysregulation of the balanced host response (181). Many
studies have shown that vitamins A, B, C, D, E, minerals zinc,
iron, magnesium, selenium, iodine, copper, and polyphenols
among other micronutrients, have an important effect in
supporting the immune system (182).

Vitamins

Vitamin C
Vitamin C is an essential micronutrient for humans that
contributes to enhancing the immune response by supporting the
innate and the adaptive immune system. The recommended daily
dietary allowance of this micronutrient is 25–90 µg/day (150),
and a deficiency in vitamin C deregulates the barrier function
against pathogens, increases oxidative damage, and decreases
phagocytosis (183, 184). In other words, vitamin C deficiency
results in impaired immunity and increases the incidence and
severity of pneumonia and other infections (182). Various studies

showed that supplementation with a high dose of vitamin C
stimulates phagocytic and T-lymphocytic activity in response
to infection by increasing cytokine production and synthesis
of immunoglobulins (182) and can help severely ill patients in
intensive care to recover more quickly (182). A randomized,
double-blind placebo-controlled trial in the UK showed that
the administration of 200 mg/day of vitamin C to elderly
patients with pneumonia reduced respiratory symptoms, mainly
in patients with more acute respiratory infection (185). In a
recent meta-analysis of nine randomized controlled trials, it has
been shown that administration of a high dose of vitamin C
(700–800 mg/day) against common cold virus infections lead to
a reduction of the duration of infection and a shorter time of
confinement (186). Although the used doses to treat pneumonia
are higher than the RDA, a recent NIH document revealed that a
diet with 1.5 g/kg body weight of vitamin C is safe and has no
major adverse events (187). In fact the use of such high doses
to treat infection, rather than the normal recommended doses,
could be explained by the fact that during infection, the level of
vitamin C decreases and the requirements of an infected person
increases with the severity of the infection (188).

Vitamin D
Vitamin D is a fat-soluble vitamin that is naturally present in
very few foods, but is available as a dietary supplement, and
is produced by our body in response to sun exposure. The
RDA of this micronutrient is 15–20 µg/day (150). Vitamin
D has the capacity to maintain the structural and functional
integrity of mucosal cells in innate barriers, such as the skin
and the respiratory tract, which is very important during viral
infection. In fact, this vitamin increases the tight junction
protein expression, E-cadherin, and connection 43 in the gut,
supporting the gut barrier (182). Moreover, vitamin D has
various functional roles: it increases the differentiation of
monocytes to macrophages (189) and it promotes the movement
and phagocytic ability of macrophages (182). Also, this vitamin
increases superoxide synthesis (182), reduces the expression of
pro-inflammatory cytokines, and increases the expression of anti-
inflammatory cytokines by macrophages (190, 191), all of which
may enhance immune system reactivity. Vitamin D presents
stimulatory effects in the innate immune system, promotes the
production of Treg (182), and promotes antigen processing. A
study conducted by Cannell and colleagues showed that calcitriol,
an active form of vitamin D, was able to reduce the incidence
of respiratory infections in children during epidemic influenza
by restoring the immune function of macrophages (192). A
recent review recommended that people at risk of influenza
and/or COVID-19 take 250 µg/day of vitamin D3 for a few
weeks followed by 125 µg/day (193). The same review stated
that in order to treat infected people with COVID-19, higher
vitamin D3 doses might be useful (193). A recent study with
a group of 780 COVID-19 patients revealed that most positive
patients with insufficient or deficient vitamin D status died (194).
Moreover, Rhodes and colleagues highlighted that there is a
low population mortality from COVID-19 in countries south of
latitude 35 degrees North, supporting the hypothesis that vitamin
D is a cofactor determining the severity of the infection and
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then the immune system response (195). Besides the various
roles that vitamin D presents, this micronutrient could play
a direct role in virus-receptor binding. In fact, it has been
shown that vitamin D supplementation can reduce the number
of virus particles that could attach to the ACE2 receptors and
enter the cell by promoting the binding of the SARS-CoV-2 cell
entry receptor ACE2 to AGTR1 (angiotensin II receptor type 1)
(196). Altogether, although these data show that vitamin D can
act at different stages of the immune response, administration
of high doses of this vitamin as a therapy should be done
under medical control mainly for individuals with diseases
or disorders.

Vitamin A
Vitamin A is represented by many compounds, such as retinol,
retinal, and retinoic acid, as well as various provitamin A
carotenoids such as α- or β-carotene (197). Vitamin A, naturally
found in foods from animal sources, including dairy products,
fish, and meat, plays an important role in the regulation
of innate and cell-mediated immunity and humoral antibody
response (198, 199). The RDA of this micronutrient is 400–
900 µg/day (150). A deficiency of vitamin A alters the integrity
of mucosal epithelium, such as the eyes, gastrointestinal tract,
and the respiratory system, which causes an increase in their
susceptibility to many pathogens (199, 200). In fact, it has been
shown that deficiency in vitamin A is associated with increased
risk of infection (201) and is connected with an increased
risk of developing respiratory inflammation and diseases in
children (182). Moreover, vitamin A deficiency negatively affects
neutrophil, macrophage, NK, and eosinophil cell functions
(181, 182, 200, 202). Moreover, a deficiency in vitamin A may
promote an excessive inflammatory response by increasing the
production of IL-12, thus promoting T cell growth as well as
the pro-inflammatory TNF-α, which induces inflammation and
potentiates existing inflammatory conditions. Supplementation
with vitamin A can reverse these effects (203, 204). Deficiency in
this vitamin and its metabolites is also the cause of the alteration
of Th1/Th2 balance by decreasing Th2 (200). Furthermore, a
study revealed that persons with low vitamin A status showed
an increased risk of lung dysfunction and respiratory disease
(205). On the other hand, it has been shown that dietary
supplementation with vitamin A in humans improves antibody
titer response to various vaccines (204). Finally, Imad and
colleagues suggested that vitamin A supplementation at 5–20
mg/day, may prevent morbidity and mortality in children from
6 months to 5 years of age (206).

Retinoic acid, the biologically active retinoid metabolite, has
been shown to play an important role in the differentiation,
maturation, and function of the innate immune system cells
(207) and can also activate the NK cells (208). Different
pre-clinical and clinical studies have shown that retinoids
stimulate secretion and potentiate the effects of IFN-I,
which represent a family of cytokines of the early innate
immune response to viruses that are being tested against
SARS-CoV-2 (209). In this context, it has been proposed
that the key mechanism behind the relationship between
retinoic acid and IFN-I, is the activation of the retinoic

acid-induced gene I (RIG-I), which produces a pattern
recognition receptor responsible for sensing RNA viruses, thus
playing an important role in early innate anti-viral immune
responses (209, 210).

Finally, some carotenoids serve as provitamins or precursors
for vitamin A, and may thereby exert immune-modulating
functions (196). In fact, it has been shown that carotenoids may
regulate membrane fluidity and gap-junction communication
(211). Another major factor that makes carotenoids important
during the current pandemic is that this family of compounds
has the potential to play antiviral roles (212). Furthermore, serum
beta-carotene has been significantly associated with reduced risk
of death from various diseases including respiratory diseases
(213). In the same context, results from one study revealed that
higher supplementation of some carotenoids (lutein/zeaxanthin)
for people aged 65 years and over was associated with 23%
lower respiratory mortality (214). Although the safe total
carotenoid recommended intake range between 5.4 and 15.4
mg/day, supplementation with carotenoids should be taken with
caution and high doses of β-carotene have been proposed to be
prooxidant and toxic (215).

Vitamin E
Vitamin E, a known antioxidant, is found in many foods
including vegetable oils, cereals, meat, poultry, eggs, fruits,
vegetables, and wheat germ oil. The RDA of this micronutrient
is 7–15 mg/day (150). Besides its antioxidant activity, vitamin
E is able to optimize and enhance the immune response (181).
A diet rich with vitamin E has been shown to protect cell
membranes from damage caused by free radicals and support the
integrity of epithelial barriers including those of the respiratory
system (181). Supplementation with vitamin E, like vitamin
A, promotes Th1 cytokine-mediated response accompanied
by a decrease in Th2 response. Thus, this supplementation
increases lymphocyte proliferation production of IL-2, NK cell
cytotoxic activity, as well as the phagocytic activity by alveolar
macrophages, which consequently cause an increase in resistance
against infectious agents (182). Different studies have shown
the effect of vitamin E in preventing infections such as the
influenza virus (216). Moreover, a study conducted by Hemila
showed that administration of 50 mg/day of vitamin E for 5–
8 years may decrease the incidence of pneumonia by 69% in
elderly males (217). Similarly, a randomized controlled trial with
a total of 617 persons aged at least 65 years showed that a
supplementation of 180 mg/day of vitamin E, which is much
higher than the RDA, have an effect on lower respiratory tract
infections (216).

Vitamin B
Vitamin B is a class of eight water-soluble vitamins that play
important roles in cell metabolism. Many food sources are rich
in vitamin B, including whole grains, legumes (beans and lentils),
seeds and nuts, as well meat (especially liver). All three of
these B vitamins are important because they are involved in the
intestinal immune system, supporting the gut barrier, which is an
important factor in maintaining an efficient immunity, as we will
discuss later (218, 219).
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Vitamin B6
Vitamin B6 is essential as a co-factor in nucleic acid, amino
acid and protein biosynthesis, and therefore is important for
proliferation, differentiation, and functioning of immune cells
and synthesis of antibodies and cytokines (206, 220). An adequate
diet rich in vitamin B should contain an average of 0.6–1.7
mg/day of vitamin B6 (150). Human studies demonstrate that
vitamin B6 deficiency not only impairs lymphocyte maturation
and growth, even with marginal deficiency, but also lowers the
antibody responses as well as reduces responses to mitogens and
T-cell activity (182). A deficiency in vitamin B6 also decreases
the IL-2 production and NK cell activity and promotes Th2
cytokine-mediated activity, accompanied with a suppression of
Th1 (182). It is important to emphasize that an adequate diet rich
with vitamin B6 helps to restore cell-mediated immunity and has
been shown to improve lymphocyte maturation and growth and
increases the number of T-lymphocytes (182). Finally, Cheng and
colleagues showed that a daily injection of 50 or 100 mg/day of
vitamin B6 increased the immune responses in 51 subjects who
stayed in an intensive care unit for over 14 days (221), suggesting
that a higher dose than the one suggested by the RDAwould have
a beneficial effect, supporting the immune system of COVID-19
patients in an intensive care unit.

Vitamin B9 or Folate
Vitamin B9, similar to vitamins B6 and B12, plays an important
role in protein synthesis. Therefore, a deficiency in vitamin B9
alters the immune system (165). An adequate diet rich in vitamin
B should contain an average of 200–400 µg/day of vitamin
B9 (150). A deficiency in vitamin B9 decreases the resistance
to infections by inhibiting the proliferation and circulation of
CD8+ CTL (221). Moreover, it has been shown that a deficiency
in vitamin B9 impairs NK cytotoxicity (182). In this same context,
a study including 60 healthy subjects aged over 70 years who
received large intakes of vitamin B9 (supplementation of 400
mg/day), showed that the supplemented subjects reported an
increase in NK cell cytotoxicity leading to fewer infections,
suggesting that vitamin B9 supplementation increased innate
immunity and provided protection against infections in elderly
people (222).

Vitamin B12
Vitamin B12 is involved in carbon-1 metabolism and interacts
with the folate metabolism (223). An adequate diet rich in
vitamin B should contain an average of 1.2–2.4µg/day of vitamin
B12 (150). A deficiency in vitamin B12 causes suppression in NK
cell activity, a decreased number of lymphocytes, a significant
reduction in cells with a role in cell-mediated immunity, and
changes in the proportions of CD8+ CTL and CD4+ Th,
leading to abnormally high CD4+ Th/CD8+ CTL ratios (182,
219). A study of patients deficient in vitamin B12 showed that
a supplementation with vitamin B12 reversed the effects that
presented an abnormally high CD4+ Th/CD8+ CTL ratio and
suppressed NK cell activity, indicating that this vitamin may act
as amodulatory agent for cellular immunity, especially in relation
to CD8+ CTL and NK cells (219). It has also been shown that a
deficiency in vitamin B12 impairs the antibody response (181).

Bunout and colleagues showed that a regular diet including 3.8
µg of vitamin B12 in elderly subjects (aged >70 years) over 4
months increases NK cell cytotoxic activity, leading to increased
innate immunity in elderly people (222). Altogether, these studies
state the importance of vitamin B12 in maintaining an adequate
immune response, especially in older people (aged >65 years)
who have low serum B12 concentrations (224).

Vitamin B2 (Riboflavin)
Vitamin B2 has a very important role in many energy-related
enzymatic processes (196). The RDA of vitamin B2 is 0.6–1.3
mg/day (150). It has been suggested that vitamin B2 regulates
fatty acid oxidation and therefore controls the differentiation and
function of immune cells (225).

Vitamin B3 (Niacin)
Vitamin B3 is generally known as nicotinic acid and
nicotinamide, which plays an important central role in
aerobic respiration. The RDA of vitamin B3 is 8–16 mg/day
(150). Vitamin B3 has been shown to modulate the host immune
system by inducing the differentiation of Treg (226) and
inhibiting the production of the pro-inflammatory cytokines
IL-1, IL-6, and TNF-α by macrophages and monocytes (227).

Vitamin B5 (Pantothenic Acid)
Vitamin B5, like some of other B vitamins, is essential in the
TCA cycle and fatty acid oxidation (228). The adequate intake
(AI) of vitamin B5 is 3–5 mg/day (150). Vitamin B5, similar to
vitamin B2, has been shown to be involved in the control of host
immunity via energy generation by immune cells, which is very
important in the case of COVID-19 patients (219).

Vitamin B7 (Biotin)
Vitamin B7 has a crucial role in nutrition and an important
effect in immunometabolism. In fact, by being an essential
cofactor for acetyl-CoA carboxylase and fatty acid synthase,
this vitamin is used by the body to metabolize carbohydrates,
fats, and amino acids (229). The AI of vitamin B7 is 12–
30 µg/day for adults (150). Vitamin B7 deficiency induces
Th1- and Th17-mediated pro-inflammatory responses in human
CD4+ T lymphocytes (230). In the same context, a diet rich
in vitamin B7 has anti-inflammatory effects and inhibits the
activation of the transcription of NF-κB and thus inhibits the
secretion of pro-inflammatory cytokines such as TNF-α, IL-1,
IL-6, and IL-8 (231).

Minerals

Zinc
Whole grains, milk products, oysters, red meat, and poultry
are good sources of zinc, and the RDA of this micronutrient
is between 2 and 11 mg/day (150). Zinc is an essential
micronutrient required for controlling key biological processes,
and is involved in the regulation of both the innate and adaptive
immune system (222). Zinc-deficient subjects may show severe
disturbances in immune cell numbers and activities and may
experience increased susceptibility to a variety of pathogens
(222). Zinc is important for the structural and functional integrity
of the skin and mucosal cells (189). Zinc-deficiency is manifested
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by an increased thymic atrophy, an imbalance in the Th1/Th2
ratio, characterized by a reduction in Th1 cell numbers, a
decrease in lymphocyte proliferation and function, particularly
T cells, and alteration in cytokine production—all of these
contributing to greater oxidative stress and inflammation (181,
182). Zinc deficiency also impairs survival, proliferation, and
maturation of monocytes, NK cells, T and B cells, phagocytosis
by macrophages and neutrophils, as well as antibody responses
to T cell-dependent antigens (181, 182). It has been shown that
correction of zinc deficiency boosts the defense-related immune
system, and reduces mortality from infectious diseases and viral
infections (222, 232). From several controlled studies, it is clear
that daily dietary supplementation of zinc for the elderly and
children at high risk for zinc deficiency, is protective against
infection and is associated with a decrease in mortality from
infections in these populations (233–237). Furthermore, persons
with a low zinc status have showed an increased risk of viral
infections (238). A systematic review and a metanalysis study
showed that zinc at doses of at least 75 mg/day is able to
significantly reduce the duration of symptoms caused by viral
infection on the upper respiratory tract but does not consistently
improve the overall severity of symptoms (239).

Iron
This micronutrient is present in animal sources such as red
meat and poultry, as well as in plants such as beans and lentils,
cashews, spinach, and whole grains. It is important to note that
the body absorbs two to three times more iron from animal
sources than from plants. Iron is an essential micronutrient for
the differentiation and growth of epithelial tissue as a first line
of defense against pathogens (189). A diet rich in iron (10–
18 mg/day) (150), or iron dietary supplementation, improves
intracellular microbial killing and cellular immunity by forming
toxic hydroxyl radicals, and is thus involved in the killing of
pathogens by neutrophils and maintaining a certain level of
lymphocyte bactericidal activity (189). Iron also has an important
role in maintaining a certain level of IL-6 and IFN-γ production,
as well as in the differentiation and the proliferation of T cells
and in helping to regulate the ratio between CD4+ Th and
CD8+ CTL (189). It has been shown that iron supplementation
in children reduces the risk of respiratory tract infection (182).
On the other hand, high doses of iron leads to increased viral
mutations in the influenza virus genome resulting in a more
virulent phenotype (240).

Magnesium
This micronutrient is present in greens, nuts, seeds, dry
beans, whole grains, and low-fat dairy products. An adult
diet containing 320–420 mg/day of magnesium can decrease
oxidative stress by reducing the superoxide anion production,
protecting the cells from oxidative damage (182). Magnesium
also boosts the immune system by increasing NK-cell activity,
regulating leukocyte activity and the ratio between CD4+ Th
and CD8+ CTL, decreasing the levels of cytokines such as IL-
6, and decreasing inflammation (182). Finally, it is important to
note that magnesium is involved in antibody responses through
antibody—particularly IgG—production, which is important in

maintaining immune tolerance in order to distinguish between
the “self ” and the “non-self ” (241).

Selenium
Among the nutrients implicated in viral infection, selenium
is a nutritional antioxidant incorporated as a rare amino
acid selenocysteine in selenoproteins (242). The RDA of this
micronutrient is between 15 and 55 µg/day (150). Selenium
plays an important role in antioxidant defense, by regulating
reactive oxygen species (ROS) and redox status in tissues.
Dietary selenium strongly influences inflammation and immune
responses. Some in vitro studies on influenza showed that
selenium deficiency resulted in reduced antioxidant activity
of cells and an important increase in the pro-inflammatory
cytokine IL-6, altering the response to influenza of epithelial
cells (242). In addition, studies by Beck et al. (243, 244)
showed that host selenium deficiency increased the virulence
of RNA viruses such as coxsackievirus B3 and influenza A
(242), while pointing at an interesting endemic disease in the
northeast of China, where soil is selenium-deficient, namely
Keshan disease. This disease is interesting to relate, as it is
a seasonal cardiomyopathy for which the virus coxsackievirus
B3 was identified as being a co-factor (243–245). Interestingly,
when the population received a supplementation in selenium,
the incidence of the disease decreased dramatically. In addition,
selenium prevented mutations of the viral genomic RNA that
lead to increased virulence and cardiac pathology (242). Finally,
selenium was shown to be associated with a decrease in the
occurrence of ventilator associated pneumonia in mechanically
ventilated patients (246).

Iodine
It is well-known that a large number of people around the world
do not consume enough iodine (247). However, deficiency is rare
in developed countries because of iodized salt. The RDA of iodine
is 150 µg/day for both males and females over 14 years old,
while it increases to 220 µg/day during pregnancy and to 290
µg/day during breastfeeding (150). It has been shown that iodine
presents a role in modulating the function of human immune
cells and present some therapeutic effects in different pathologies
(248, 249). A study showed that iodine is able to increase the
movement of granulocytes into the area of inflammation and to
improve their ability for phagocytosis, clearing infections (249).
Furthermore, it has been reported that iodine has an indirect
effect on the modulation of the immune system by modulating
the thyroid hormone synthesis (248). The modulation of the
thyroid hormones enhances NK cytotoxicity, the expression of
cytokines as well as B cell differentiation and increases the
frequency of T memory cells (248).

Copper
While enough dietary copper can be obtained from solids
and water, it is important to mention the effect of copper
deficiency, as it can occur in seriously ill individuals who require
parenteral nutrition. The RDA of copper is 440–900 µg/day
(150). Copper deficiency can also occur in older people as a
result of malnutrition or malabsorption. Failure to correct this
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might lead to susceptibility to further infections by decreasing
the number of circulatory blood cells (182, 250–252). Recent
studies supported the role for Cu in the innate immune response
against infections (250). Raha et al. hypothesized that copper
supplementation can help to fight COVID19, especially in older
people where a deficiency of Cu is a strong possibility (250).
In fact, they suggested that a diet supplemented with Cu affects
host immune function and metabolism of other micronutrients,
prevents the severity of the viral infection andmay protect people
from COVID-19 (250). Finally, it is important to note that a wide
array of lung infections can be accompanied by elevated copper
levels (253) and that an accumulation of copper can also be toxic
(254, 255).

Polyphenols
Polyphenols are produced in plants and can be classified
into flavonoids, phenolic acids, polyphenolic amides, and
other compounds (256). In addition to their well-established
anti-inflammatory and anti-oxidant activities, studies have
highlighted their antiviral potential. For example, antiviral
properties of some polyphenols have been demonstrated
against several viruses including Epstein-Barr, enterovirus,
herpes simplex, and influenza (257). However, only a limited
number of studies have investigated the role of polyphenols
against coronaviruses directly (257). We will briefly cite the
important polyphenols that have been tested in this regard. Ten
polyphenolic compounds isolated from Brussonetia papyrifera
proved effective against MERS/SARS-CoV proteases (258).
Ethanolic extracts of Sambucus formosana proved effective
against the human coronavirus strain HCoV-NL63 (259).
Saikosaponin B2 has also shown good potency in this regard
(258). Griffithsin is a polyphenol extracted from a red algae called
Griffithsia genus and is one of the most promising inhibitors of
MERS-CoV (258). By specifically binding to glycans of the CoV
protein spikes, it can inhibit attachment of the virus to host cells,
with high potency, making this polyphenol a good candidate
for trials against SARS-CoV-2. Silvestrol is another polyphenol
compound, extracted from Aglaia sp., that showed inhibitory
properties against MERS-CoV (258).

Resveratrol (RSV) is probably the most promising polyphenol
to test against SARS-CoV2. Indeed, it has been found to
significantly inhibit MERS-CoV RNA replication in vitro on
Vero E6 cells, via several mechanisms including inhibition of
the virus protein expression, inhibition of the NFκB pathway
and activation of the AMPK/Sirt1 axis in the host cell (257).
RSV is found in mulberries, grapes, red wine, and peanuts, and
was showed to possess—in addition to its antiviral properties—
antioxidant, antitumoral effects, and scavenger of free radicals
properties (260). A study tried to add RSV to the diet of piglets
exposed to rotavirus and showed that RSV decreased TNF-α
levels and diminished diarrhea in a resveratrol piglet diet (261).
Another interesting study demonstrated the ability of RSV to
counteract MERS-CoV infection by acting at different levels
from reducing the cell death, inhibiting the viral replication,
reducing the viral titer and inhibiting the expression of the
nucleocapsid proteins, as well as inhibiting the apoptosis. This
study demonstrates that RSV can be an adjunctive antiviral agent

to consider in testing against SARS-CoV2. Finally a new clinical
trial has been registered in the database clinicaltrial.gov to test the
effect of resveratrol on COVID19 patients (NCT04400890) (262).

Although, data suggest that micronutrients play an important
role in strengthening the immune system, it must be emphasized
that the body requires optimal levels of micronutrients
for effective immune function, with different requirements
throughout every stage of life. For this reason, it is important
to be aware that RDA for all nutrients is the average daily
requirement necessary to avoid clinical or subclinical deficiency
in the majority of people (97–98%) in a healthy general
population (Table 3) (263). These RDA can be lower than
effective therapeutic recommended doses needed to increase
immune system responses in order to fight viral infections.

ROLE OF PROBIOTICS, DIET AND
FASTING IN IMMUNE FUNCTION

The Role of Probiotics in Immune Function
According to the FDA and the WHO, probiotics are defined
as “live micro-organisms which can provide health benefits on
the host when administered in adequate amounts” (264). Ever
since probiotics were recognized for their beneficial effects on
health, they have been used as potential dietary supplements
(265). Probiotics or the gut bacteria produce various metabolites
and co-metabolites as by-products of food metabolism (266).
These molecules, produced by the gut microbiota, have the ability
to cross the gut-blood barrier and affect the health through
various mechanisms, such as energy supplementation for colonic
epithelium and anti-inflammatory activity (267). One of the most
important groups of metabolites produced by the gut microbiota
through undigested fermented food are SCFAs (discussed in a
previous section), such as acetic acid, butyric acid, propionic acid,
that have been shown to have a beneficial effect by maintaining
the integrity of the epithelial barrier, decreasing the “leaky gut,”
and, as a consequence, triggering an inflammatory reaction and
the modulation of oxidative stress and the immune response
(268). In fact, probiotics are able to modulate the immune and
the inflammatory response in the gut through their interaction
with the gut mucosa and mucosal immune system, which host
the largest part of the body’s immune cells mainly within the
gut-associated lymphoid tissue (263). Various studies have shown
that probiotics are able to induce both: (1) the production of
pro-inflammatory cytokines in order to facilitate the immune
system against a further infection, and (2) the production of anti-
inflammatory cytokines in order to have a balanced homeostasis
by reducing an excessive inflammatory reaction induced by an
infection (263). Moreover, probiotics’ health benefits are not only
limited to the intestinal tract, but also present modulatory effects
in other locations of the mucosal system, such as the upper
respiratory tract (269). In the same context, it has been shown
that besides infecting the respiratory tract, SARS-CoV-2 can also
infect the lower gastrointestinal tract, which is rich in ACE2
receptors (270).

Probiotics can have an effect on both the innate immune
system and the adaptive immune system. Some probiotics
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TABLE 3 | Recommended dietary allowance.

Macronutrients and

micronutrients

Recommended dietary allowance

Children, M/F

4–8 years

9–13 years

14–18 years

Adults, M/F

19–50 years

Old age, M/F

51–>70 years

Fats, g/day ND ND ND

Carbohydrates, g/day 130

130

130

130 130

Proteins, g/day 19

34

52

34/56 46/56

Vitamin C, mg/day 25

45

65/75

75/90 90/75

Vitamin D, µg/day 15 15 15/20

Vitamin A, µg/day 400

600

700/900

700/900 700/900

Vitamin E, mg/day 7

11

15

15 1.5/1.7

Vitamin B6, mg/day 0.6

1

1.2/1.3

1.3 1.5/1.7

Vitamin B12, µg/day 1.2

1.8

2.4

2.4 2.4

Vitamin B9, µg/day 200

300

400

300/400 400

Vitamin B2, mg/day 0.6

0.9

1.3

1.1/1.3 1.1/1.3

Vitamin B3, mg/day 8

12

16

14/16 14/16

Vitamin B5, mg/day 3*

4*

5*

5* 5*

Vitamin B5, µg/day 12*

20*

25*

30* 30*

Zinc, mg/day 5

8

11/9

8/11 8/11

Iron, mg/day 10

8

11/15

8/11 8

Magnesium, mg/day 130

240

360/410

310/420 420/320

Selenium, mg/day 30–40 55–70 55–70

Copper, mg/day 900–1,100 1,400–1,700 1,400–1,700

Iodine, mg/day 90–120 150 150

Except vitamin B5 and vitamin B7 where the values followed by an asterisk (*) represent

the AIs, the values related to other micronutrients and micronutrients present the RDAs.

achieve this beneficial effect by acting on the mucosal immune
system, in particular DCs and NK cells (271). As an example,
it has been shown that administration of lactobacilli to mice
can enhance the immune function in mice by increasing NK
cell activity and phagocytic activity of macrophages (272), as
well as enhance the phagocytic capacity of peritoneal leukocytes
(273), increase the expression of DC-maturation markers, and
enhance lymphocyte proliferation (274). Consistent with studies
using animal models, human studies also showed that probiotic
use could have a positive effect on the immune system.
Healthy, older individuals receiving Lactobacillus rhamnosus
HN001 or Bifidobacterium lactis HN019 in a milk-based diet
showed increases in their peripheral blood proportion of NK
cells and their tumoricidal activity, as well as increases in
phagocytic activity (275). Another study showed that a daily
ingestion of fermented milk containing Lactobacillus casei
DN114001 improved innate-defense capacity in 45 healthy,
middle-aged people (aged 51–58 years) by increasing the
oxidative burst capacity of monocytes as well as NK cells’
tumoricidal activity (276).

There is also evidence that supplementation with probiotics
has beneficial effects on the adaptive immune system by
modulating the functions of both T and B cells while preventing
an autoimmune inflammatory response (263). The effects of
probiotics on T cells varies widely depending on the strain,
going from promoting the production of Th1 (IFN-γ, IL-2,
IL-12, TNF-α), Th17 (IL-17, IL-22), and Treg (IL-10, TGF-β)
cytokines, to the inhibition of Th2 cytokines (IL-4) (208, 277).
In animal studies, the administration of Bifidobacterium bifidum
(5 × 108 CFU/d) for 8 week for old mice, showed an
enhancement of anti-oxidation activity in the thymus and spleen,
alteration of gene expression, and improvement in immune
function, leading to significantly increased cytokine IL-2 and
IFN-γ levels but also decreased pro-inflammatory cytokines
IL-6 and TNF-α concentrations (278). Mane and colleagues
showed that the consumption of a skim milk rich with a
mixture of Lactobacillus plantarum CECT 7315 and CECT 7316
for 12 weeks, enhanced systemic immunity in elderly subjects,
manifested by fewer incidences of infection and mortality due to
pneumonia, compared to those who received unenriched skim
milk only (279). The study showed that the participants who
consumed the skim milk enriched with probiotics had increased
percentages of B cells, NK cells, CD4+, and CD8+ and that most
of these changes lasted for another 12 weeks after stopping the
consumption of the probiotics (279). Guillemard and colleagues
conducted a double blind, controlled study, involving 1,072
volunteers (median age= 76.0 years) whowere given a fermented
dairy product containing the probiotic Lactobacillus casei DN-
114001 (280). This study showed that supplementation with
the fermented product was safe and was associated with a
decrease in the duration of respiratory infections in comparison
with the control group (280). A similar study showed that the
consumption of yogurt fermented with L. bulgaricus OLL1073R-
1, augmented NK cell activity and reduced the risk of infection
and the risk of catching the common cold in elderly individuals
(281). Altogether these studies suggest that the administration of
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probiotics can enhance the host’s resistance against infection for
older subjects and reduce the severity of viral infection in both
the gastrointestinal tract and the respiratory tract.

Like probiotics, some selective prebiotics—which is defined
as a substrate that is selectively utilized by host microorganisms
conferring a health benefit—have also been reported to be
beneficial for health. In this context, most of the studies
considered that prebiotics have indirect effects on the immune
system through changing the composition and population of gut
microbiota (282). It has been shown that prebiotic compounds
such as inulin, polydextrose, and maize fiber are able to improve
the immune response, gut diversity, and digestion in humans—
especially in elderly people (283, 284). In addition to the effects
on the composition of the microbiota, prebiotics also produce
notable shifts in the immune system by increasing the expression
of anti-inflammatory cytokines, while reducing the expressions
of pro-inflammatory cytokines (285, 286). Also, it is known
now that prebiotics such as wheat bran, fructo-oligosachharides,
and galactosachharides are known to increase butyrate levels
thereby reducing inflammation and improving conditions in
asthma and cystic fibrosis (287). It is to be noted that beneficial
effects of the prebiotics are thought to be mediated mostly
by increased production of SCFAs and strengthening of the
gastrointestinal immune system. Overall, it is apparent that diet
mediated modulation of gut microbiota, and to some extent
even lung microbiota, can influence immunity and reduce the
severity of viral infection in both the gastrointestinal tract and
the respiratory tract (270, 287).

Taking into consideration that probiotics and prebiotics
are generally safe, this microbiome therapy may improve
and quicken the recovery of elderly patients and immune-
compromised COVID19 patients. We suggest that
probiotics/prebiotics that have been shown to have antiviral and
respiratory benefits can be used as part of the actual therapies
used to reduce infection with SARS- CoV-2. Nutritional
recommendations could include a combinations of pre
and probiotics (symbiotic), such as fructo-oligosaccharides
and galactosaccharides, and various lactobacilli strains to
improve gut dysbiosis, thereby improving the overall immune
response (270, 288).

Diet and Fasting
The health effects of various forms of fasting have been studied
for decades and the database clinicaltrials.gov currently has 1,901
trials registered under the MeSH term “fasting” for a large
array of diseases and disorders. Water fasting (which restricts
everything except water), intermittent 16 h fasting, the fasting
mimicking diet (FMD), and religious “Ramadan” fasting are the
most common types of fasting under study. In particular, it is
important to highlight the concurrent COVID19 pandemic with
this year’s “Ramadan” fasting. This is important because Islam
has 1.8 billion adherents, the majority of whom were fasting
during the pandemic. As this situation is highly unusual, many
questions were raised as to whether fasting during the pandemic
is safe or not. This situation has led physicians and scientists
to consider the risks and benefits of fasting for their patients
during the pandemic. This exceptional situation shows promise

in providing data for observational clinical studies which will
be shown progressively in future scientific literature (289–291).
For these reasons, we will briefly review the risks and benefits of
fasting during the COVID-19 pandemic.

A study in this regard conducted by Develioglu and colleagues
revealed that lymphocyte numbers increased significantly, that
serum IgG and salivary IgA decreased and that there were no
changes in serum IgM (292). In fact, some evidence suggests
that “Ramadan” fasting can actually change the functions of
the immune system (291, 293). Other studies have shown the
beneficial effect of intermittent, prolonged fasting during the
month of Ramadan and how this could affect the inflammatory
state (293–296). An investigation of 50 healthy volunteers who
practiced “Ramadan” fasting was conducted 1 week before
“Ramadan” fasting, at the end of the third week of “Ramadan,”
and 1 month after the cessation of “Ramadan” (293). In this
study, the authors showed that intermittent Ramadan fasting
for a month, attenuated pro-inflammatory cytokines (IL-1β, IL-
6) and decreased the number of lymphocytes, neutrophils, and
monocytes in circulation as well as decreased the abdominal
fat in healthy subjects (293). Similarly, another study on fasting
for 1 month examined the effect of this prolonged intermittent
fasting on serum cytokines levels in healthy and obese individuals
(295). This study showed that the levels of different inflammatory
biomarkers, including serum white blood cells (WBCs), IL-2, IL-
8, and TNF-α, were significantly lower in both the control group
and the obese group in comparison to pre-Ramadan values (295).
Although these two studies showed that immune cells decreased
during Ramadan but remained within the reference ranges, much
more data are needed on this topic.

A recent study revealed that fasting can be quite safe
for normal healthy individuals and can lead to “some
beneficial changes in some inflammatory markers, as well as
metabolic measurements” (297). Results showed decreased
levels of pro-inflammatory chemokines GRO (growth-
regulated oncogene)-alpha (Gro-α), IP-10, and stromal
cell-derived factor 1 (SDF-1) in comparison with cytokine
and chemokine profiles of COVID-19 patients that show marked
elevation (298).

Furthermore, another study demonstrated that prolonged
intermittent fasting has some positive effects on the inflammatory
status (296). This study showed not only that the level
of IL-6 decreased during fasting but the data also showed
increases in circulating levels of vitamin B12 and folate, which
have been previously found to be beneficial in supporting
the immune system against viral infection. Another study
showed that Ramadan fasting does not alter oxidative stress
parameters or biochemical markers of cellular damage in healthy
subjects. Although this study revealed a decrease in the level
of carotenoids, which has previously been shown to exert
immune-modulating functions (196), a slight reduction in lipid
peroxidative damage in erythrocytes and no changes in retinol,
vitamin E, and C have been observed (299). In fact, oxidative
stress has been shown to be implicated on viral pathogenesis
and infections (300, 301) and reducing lipid peroxidative
damage in erythrocytes may reduce the consequences of
viral infection.
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It has been shown that fasting can decrease
immunosenescence, extend life expectancy (302), reduce
markers of oxidative stress and inflammation, and improve lung
function, as well as to alleviate or reverse autoimmune disorders
(303–305). The other studies on Ramadan fasting also showed
reduced immune cell numbers, even though some found no
changes (301). Only one study (292) on a small number of male
subjects showed increased lymphocyte numbers.

Although some of the discussed results may support the
hypothesis that fasting during the pandemic lockdown might
not have a negative effect and might actually support the
immune system response in case of an infection by SARS-CoV2,
much more data are needed on this topic. One recent review
and systematic analysis on the effects of Ramadan fasting on
immunity by Adawi et al. (306) showed that the effects were

diverse, and that the study samples were small, thus, a definite
conclusion cannot be made.

CONCLUSION

Nutrition and diet are able to promote the functioning of
the immune system as a preventive measure by reducing
both inflammation and oxidative stress that might be caused
by various factors. Deficiencies in some micronutrients can
increase inflammation and the risk of infection (196). Several
of the micronutrients discussed in this review, can interact with
transcription factors to regulate the expression of receptors used
by viruses such as ACE2 (196). In addition, nutrition and diets
modulate the gut microbiota, which can affect gut permeability
and inflammatory status.

FIGURE 2 | Important role of nutrition in strengthening the immune system in regard to the fight against SARS-CoV-2 infection. Red box: The effect of an unbalanced

diet on the immune system response. Different host factors including age, smoking, diabetes, autoimmune disorders, malnutrition, or an unbalanced diet may affect

the immune system response, leading to high levels of inflammation which explain the severe cases of COVID-19. In fact, in this case, invasion of the respiratory

epithelium and other target cells by SARS-CoV-2 involves T-lymphocytes infection and apoptosis, leading to their decreased number and activity, and the consecutive

impaired activation of B cells and the production and secretion of antibodies. This leads to the compensatory increased neutrophil and macrophage activity, their

accumulation in the lungs and hyper-secretion of cytokines, in order to re-activate the adaptive immune system. The viral clearance is delayed and prolonged infection

causes a decrease in ACE2 receptors, leading to over-activity of renin-angiotensin II system (RAS), which causes endothelial dysfunction and thrombosis. This could

lead to a cytokine storm, accompanied by Respiratory Distress Syndrome (ARDS) and multiorgan dysfunction—characteristics of severe cases of COVID-19. Green

box: The effect of a balanced diet on the immune system response. Vitamins A, C, D, B, E, iron, magnesium, zinc, copper, iodine, selenium, proteins, SCFAs,

omega-3, a low-carb diet, polyphenols, probiotics, and a balanced diet were shown to directly support the body’s natural defense system by enhancing the different

levels of immunity and, therefore, might participate in the development of a strong immune system, which may help the body’s immune system fight any viral infection

and promote virus clearance.

Frontiers in Public Health | www.frontiersin.org 16 August 2020 | Volume 8 | Article 476

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chaari et al. Upgrade Immune Response During COVID-19

It is essential that probiotics and necessary nutrients
such as vitamins—which affect the immune system—
are not neglected before and during infection. Vitamins
A, C, D, B, E, iron, magnesium, zinc, copper, selenium,
iodine, proteins, SCFAs, omega-3, a low fat diet, and
polyphenols were shown to directly support the body’s
natural defense system by enhancing the different levels
of immunity and therefore might promote virus clearance
(Figure 2). It follows that infected patients who already have
nutritional deficiencies or excess may have an inadequate
inflammatory reaction causing more severe negative
clinical outcomes.

Future clinical studies should not neglect the potential of
minerals, vitamins, polyphenols, and probiotics in modulating
the immune response (307). Moreover, close monitoring of
micronutrient levels during treatment of COVID19 patients
would contribute to a great advance in understanding the role
of nutrition in treatment of COVID19.
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