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In the absence of a consensus protocol to slow down the spread of SARS-CoV-2,

policymakers need real-time indicators to support decisions in public health matters.

The Effective Reproduction Number (Rt) represents the number of secondary infections

generated per each case and can be dramatically modified by applying effective

interventions. However, current methodologies to calculate Rt from data remain

somewhat cumbersome, thus raising a barrier between its timely calculation and

application by policymakers. In this work, we provide a simple mathematical formulation

for obtaining the effective reproduction number in real-time using only and directly daily

official case reports, obtained by modifying the equations describing the viral spread. We

numerically explore the accuracy and limitations of the proposed methodology, which

was demonstrated to provide accurate, timely, and intuitive results. We illustrate the use

of our methodology to study the evolution of the pandemic in different iconic countries,

and to assess the efficacy and promptness of different public health interventions.

Keywords: COVID-19, public-health policies, epidemiologic modeling, SARS-CoV-2, effective reproduction

number Rt

INTRODUCTION

Several mathematical models to fit public databases on the SARS-CoV-2 outbreak have recently
been proposed (1–4). Despite their particularities, a great part share the same compartmental
structure, inspired on the well-known SIR model (5). Besides the interest in modeling the spread
of this virus, there is a need for indexes to evaluate the efforts made to prevent new cases, and to
assess how likely a particular demographic group is to be infected. One of the parameters used
for that means is the Basic Reproduction Number R0, which value represents the average number
of persons a single infected individual infects if the population is fully susceptible and unaware
of the virus (6). From its definition, R0 ≥ 1 indicates the outbreak has an exponential behavior,
while R0 < 1 would account for a disappearing infection. When we study an ongoing outbreak, of
which the population is aware and public measures are taking place, the parameter that represents
the number of offspring infections produced by a single individual within a generation time [time
between consecutive infections; (7)] is the Effective Reproduction Number Rt (8). An intuition on
how it works is presented on Figure 1.
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FIGURE 1 | Different stages can be identified during the outbreak of an infection, characterized by the number of people that a single infected individual may infect. In

the figure, a single infected individual (in red) can spread the virus among different individuals (in black), not reaching part of the population (in gray). Some individuals

go into isolation (in green), effectively lowering their contagion chance. At the right-hand side of the plot, Rt represents the number of possible new infections caused

by a single patient in each outbreak stage. In the first days of the outbreak, a single individual can infect several people before isolation, but as the amount of cases

gets public awareness, health policies restricting movement and self-driven actions may help to control the outbreak, which is effectively captured by a decreasing Rt.

Even though several authors have claimed to have provided
guidelines for obtaining both reproduction numbers (6, 9–
11), the truth is that estimation methodologies remain
somewhat cumbersome, especially for those readers untrained
in mathematical modeling. The above raises a barrier to
its applicability, as decision-making actors might consider
it not simple enough to evaluate different public health
plans. Regarding the mathematical approaches followed to
estimate the different reproduction numbers, some rely on
the population-level exponential growth rate (12), which,
however, might work only in the early stages of the outbreak
(13). Similarly, for later stages, compartmental mathematical
models have been used to infer the virus’s spreading rate and
subsequently calculate the reproduction number (14–16).
Chen et al. (1) uses a time-dependant SIR-model, where the
different involved rates are allowed to change over time. After
numerically finding the value that minimizes a curve-fitting
functional, they evaluate the basic reproduction number
considering two types of spreaders. Alternatively to these
approaches, Luchini et al. (17) proposes a mathematical model
that allows evaluating the convexity/concavity of trends in
epidemiological surveillance data, evaluating the progression
of the pandemic based on changes between acceleration and

deceleration based on epidemiological metrics. The resulting
plots of convexity or concavity, which would describe pandemic
acceleration or deceleration, can be used as an adjunct criterion
to the analysis of surveillance data to assess the pandemic’s
evolution (18).

In the present work, we propose a useful and simple
methodology to calculate Rt directly from available
epidemiological data in real time during an outbreak. The
key feature of this practical methodology is that no specific
knowledge in mathematics or scientific computation is needed
to generate estimations of this parameter, thus being particularly
handy for its use for day-to-day assessment in public health
matters. We provide numerical insights on the accuracy of
the proposed methodology, analyzing its stability considering
different controlled levels of Gaussian noise. As our methodology
does not involve a parameter fitting stage, which would be needed
if solving the SIR system numerically to represent continuous
trends, we can use it to evaluate the immediate impact of the
different actions used to prevent the spread of SARS-CoV-2.
In a case study, we assess the effect on Rt of the different
ongoing measures taken by the Chilean government, and we
compare their result with the current panorama of different
iconic countries.
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METHODS

Assuming the outbreak follows approximately an SIR model
(Equations 1–3), we consider three compartments: susceptible
S, healthy individuals, susceptible to be infected, infected I,
individuals that have already contracted the virus, and removed
R, individuals that are no longer infectious nor susceptible.
Therefore, the dynamics are represented by:

S′ = −
β(t)SI

N
, (1)

I′ =
β(t)SI

N
− γ (t)I, (2)

R′ = γ (t)I. (3)

In particular, Equations (1) and (2) can be combined applying the
chain rule and the derivative of the inverse function theorem, so
we can write:

dI

dS
=

β(t)SI

N
− γ (t)I

−β(t)SI

N

⇐⇒
dI

dS
= −1+

γ (t)

β(t)

N

S
. (4)

In terms of the parameters of the SIR model, we can calculate Rt
as the ratio between the time-dependant infection and recovery
rates, β(t) and γ (t), respectively (1, 9), multiplied by the
probability of finding a susceptible individual

(

S
N

)

:

Rt(t) =
β(t)

γ (t)

S

N
. (5)

Note that, from its definition, not only variations in the infection
and recovery rates affect the value of the effective reproduction
number Rt , but also the depletion of the susceptible pool. Using

Equation (5),
γ (t)

β(t)

N

S
=

1

Rt(t)
. Therefore, Equation (4) can be

re-written as

dI

dS
= −1+

1

Rt(t)
. (6)

Equation (6) can be discretized in an interval [ti−1, ti] where we
can assume that Rt(t) = Rt(ti) is constant:

Rt(ti) =
1

1iI

1iS
+ 1

. (7)

Extending the classical SIR model to consider also deaths, a
population balance dictates the discrete differences to follow
1iS + 1iI + 1iR + 1iD = 0. Then, Equation (7) takes its
final form.

Rt(ti) =
1

1−
1iI

1iI + 1iR+ 1iD

⇐⇒ Rt(ti) =
1iI

1iR+ 1iD
+ 1.

(8)

The last expression can be further simplified noting that 1iI =

(−1iS)−(1iR+ 1iD), namely, the variation on active cases1iI
equals new infections (−1iS)minus the new -clinical- recoveries
plus new deaths (1iR+ 1iD). Therefore, Equation (8) can also
be expressed as:

Rt(ti) =
−1iS

1iR+ 1iD
, (9)

or, in words,

Rt(ti) =
New Infections

New Recoveries+New Deaths
(10)

This last expression is particularly intuitive, it is straightforward
to apply to understand the disease progression: when Rt > 1
there are more new infections than recoveries, thus the number
of infecting individuals in the population is increasing, while for
Rt < 1 the number of infecting individuals must be decreasing
for the opposite reason.

Reach, Advantages, and Limitations of the
Proposed Methodology
Equation (8) stands in front of other methods because of
its simplicity and usability, as there is no need for specific
mathematical or scientific computing knowledge for obtaining
realistic values of Rt for a given population during an epidemic
or pandemic outbreak. However, due to the nature of its
dependence on real-time data, uncertainties on the input values
would have a significant effect on the outcome. A priori, several
practical uncertainty sources could affect the different variables
that determine Rt , mainly related to the non-uniformity in
the case-reporting protocols, temporal delay on diagnosis, and
other report or measurement biases (19). Since most common
uncertainties are related to the time frame between contagion,
sampling, detection and report (temporal misclassification),
recovery criteria (PCR or fix quarantine time after which the
patient is considered healed), we suggest to perform a data-
pretreatment stage, where delayed curves could be corrected to
the day of contagion before applying moving averages to smooth
trends and estimate their variability while Rt . The use of an one-
week averaging window is suggested for minimizing the impact
of the “weekend-effect” (20).

Another limitation of the proposed methodology relates to
the low-case limit, where the different quantities involved in
Equation (8) are (or are close to) zero. This situation may happen
in the event of a sudden outbreak or a second wave in an
already declared pandemic, where sensible sanitary measures
in order to control the spread should be taken disregarding
the value of any model-derived parameter. Moreover, in such
cases, where contacts are known, and the number of cases
remains low, contact-tracing is useful and should take place
disregarding the calculated value of Rt (21). As this parameter
relies on the hypotheses of the SIR model, it should be used with
care; countries with strong heterogeneity between regions, the
existence of different delays both in the infectious timeline and
in the reporting procedure might affect its value (14, 19).
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FIGURE 2 | Numerical accuracy of the proposed methodology. We try to infer the values of Rt of a noisy time series generated from a SIR model with several change

points spaced by 4 weeks (dotted red line–ground truth). (A,D), (B,E), and (C,F) represent the effective reproduction number and the relative error for 5%, 10%, and

25% proportional noise, respectively. The spreading rate β is such that, for a fixed recovery rate γ = 0.1 we obtain the ground-truth

Rt = [1.25, 1.15, 1.25, 1.00, 0.90, 0.75] plotted. Initial conditions, N = 50 million people, I0 = 100, S0 = N − I0, and R0 = 0 individuals.

Estimations of the effective reproduction number with other
methods do not necessarily match in value the ground-truth
reproduction number of the disease Rt (22). Yet, they expose
the same tipping point when they reach the value 1. This is the
typically addressed tipping point which separates exponential
growth from exponential extinction at the first stages of an
outbreak. Nevertheless, other dynamics than exponential can
arise from non-pharmaceutical interventions (NPIs), as the
test-trace-and-isolate strategies (23), and in later stages of
the outbreak.

RESULTS

On the Accuracy of the Proposed
Methodology
To evaluate the accuracy of the proposed methodology, we set
up a numerical experiment to infer known values of Rt using a
simulated SIR model with different levels of Gaussian noise and
several Rt change points as a ground-truth. These change points
may account for notable drifts in the population’s behavior or
for the application of different non-pharmaceutical interventions
(NPIs). The standardmethodology consisted of the use of 1-week
rolling averages for the calculated Rt , and we simulated different
levels of noise to be added to the ground-truth1I and1R values.
For a noise level l = {5%, 10%, 25%}, we defined noisy variables

(1I)noise = (1I)model
(

1+ lN (0, 1)
)

, and we took random
samples in a Monte Carlo-like experiment to build up confidence
intervals (Figure 2, nsample = 500). We can observe that, as the

change points are discontinuous for Rdatat , the relative error is
higher in the transitions. However, the method quickly captures
the real Rt value for the different levels of noise in a period of less
than the averaging-window time. This readily demonstrates the
accuracy and robustness of the proposed methodology to capture
different values of the time-dependent reproduction number Rt
under the assumptions of this work.

Effect of Non-pharmaceutical Interventions
(NPIs) on the Spread of COVID-19
Countries that successfully control case numbers should exhibit
Rt trends consistently lower than 1. A quick control of the viral
spread can be recognized by an earlier decrease in their Rt trends
when comparing them from the day of the first reported infection
(Figure 3B). The efficacy of Non-Pharmaceutical Interventions
can be assessed by the magnitude of the negative slope of the
curves. Most countries also show second viral spread waves
and even third ones. Noteworthy, those waves seem to be
uniformly separated by a period of 2 months, even in cases like
Germany, in which low amplitude waves took place with Rt
slightly above the control threshold. South Korea seems again
to be an exception, with second and third waves separated
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FIGURE 3 | Comparative analysis of the values of Rt for different countries, using a moving average window of ± 3 days, in both daily reports and the calculated Rt.
The control threshold is represented by a horizontal red dashed line (Rt = 1). (A) Daily trends for Rt in different countries, from March 28 to October 13. (B) Rt trends
from the day of detection of the first case, and their standard deviation in the moving average time-frame (confidence interval defined as mean plus/minus standard

deviation). Note that the plot starts on day 50 after the first case report. Official data from Worldometers.info (October 13, 2020).

by approximately 3 months. There is also a notable difference
in how second and third waves develop considering western
and eastern countries, with the former appearing later than in
China and Korea. Regarding peak amplitudes, it is noteworthy
that in second and third waves, China, South Korea, and Italy
(together with other non-shown European countries) show
higher peaks than in other nations. However, this might also
be a numerical effect since estimation methodologies for Rt do
not agree well in the low case-number scenario. German and
Chilean cases, among the countries shown in Figure 3A, seem
to have been more successful in controlling the appearance of
new spread waves, although using very different NPIs. However,
Germany is lately following an ascending trend. In the case
of Chile, the Government adopted a strict lockdown approach
with border closure made effective 2 weeks after detection
of the first case, compulsory quarantine with restriction of
travel, movement, and meeting of people inside and between
areas with higher case rates, restrictions in the commerce and
closure of public and private schools, universities, restaurant,
cinemas, shops, and public parks and other heavily transited
meeting places, and compulsory use of face masks and hand
disinfection measures in public places. Restrictions were applied
differently by city, area, and region, depending on the number
of cases, and changing over time. In Germany, governmental
measures were radically different, and did not include severe
lockdown measures or quarantines, relying only on people’s

compliance, high test rates, and high-surveillance and contact
tracing policies.

Additionally, different sets of governmental measures
were applied in Chile during the first months, sometimes
with unfortunate public announcements that lead people
to misinterpret the evolution of the pandemics and related
measures, which are reflected by changes in the Rt number
in time. For instance, in March 27, the Chilean Government
declared a partial quarantine for districts with high case-density
in Santiago (capital city concentrating 42% of the national
population) and other cities, which were slowly applied to
other districts. From May onward, contagion in Chile shows a
steep increase that was maintained for a couple of weeks but
then decreased to approach the control threshold, which can
be related to new quarantine measures applied afterwards to
more districts in Santiago and other cities. We can observe
a somewhat irregular oscillatory behavior around Rt = 1,
reflecting the efforts of the step by step governmental plan, which
systematically release restrictions to boost economical activities,
from July 19 on (24).

The USA case deserves special attention. Besides showing
a comparatively slower and late decrease in Rt to control the
first wave, which took more than three months to be lowered,
revealing an inefficient approach to the control threshold, with
only short periods around or below 1. Since the country’s
total population is high, values of Rt above one represent a
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catastrophic effect in terms of risk to the general population, with
51,564 new cases in October 13th (25).

DISCUSSION

We have developed a fast and simple methodology to estimate
the Effective Reproduction Number Rt directly from raw real-
time data of an evolving epidemic outbreak. Our results have
also shown that this index can be a useful decision parameter
to evaluate the impact of Non-Pharmaceutical interventions
(NPIs) in controlling COVID-19. We studied the accuracy of the
proposed methodology in a numerical experiment, concluding
that results remain precise even when including a white noise
of 25%. The simplicity of the proposed method to calculate
Rt (Equation 8) remarks its applicability, and our analysis
of Rt trends in different countries during the current SARS-
CoV-2 outbreak highlights how it can be applied to assess
both the speed of reaction and the efficacy of public-health
measures. This provides decision-makers with a simple and
easily calculable tool to timely understand the impact of their
policies. As the proposed equation does not need vast volumes
of data, it results particularly handy for its use when data
resolution is not high enough to fit continuous models, in the
analysis of short-time trends, or to compare different regions
in the world or even inside a single country with different
time density of data. This parameter should be calculated only
for populations with shared characteristics, as it relies on the
hypotheses of typical compartmental models (14). Countries
with high heterogeneity in population density, climate, and
behavior of different economic classes should be studied with
care. The epidemiologic scenario of those zones concentrating
the most significant part of the population would mask the
spreading dynamics’ local features. This case is especially
highlighted in Chile, where the national average is dragged
by the city of Santiago, not reflecting the situation of the
most extreme regions, where the progress of the infection has

been exponential even after remission in the capital, which
in turn warns of the need to analyze local data in the
same detail as national data. Consistently, as varied as the
uses for the proposed methodology are the opportunities to
improve it.

We look forward to seeing how this contribution of a
real-time estimator of Rt would impact how we analyze the
ongoing contingency and how the scientific and decision-making
community would adapt it to tailor propagation models and
obtain better and timely insights on the application of emergency
public-health policies.
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