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As multifactorial and chronic diseases, cancers are among these pathologies for which

the exposome concept is essential to gain more insight into the associated etiology and,

ultimately, lead to better primary prevention strategies for public health. Indeed, cancers

result from the combined influence of many genetic, environmental and behavioral

stressors that may occur simultaneously and interact. It is thus important to properly

account for multifactorial exposure patterns when estimating specific cancer risks at

individual or population level. Nevertheless, the risk factors, especially environmental, are

still too often considered in isolation in epidemiological studies. Moreover, major statistical

difficulties occur when exposures to several factors are highly correlated due, for

instance, to common sources shared by several pollutants. Suitable statistical methods

must then be used to deal with these multicollinearity issues. In this work, we focused

on the specific problem of estimating a disease risk from highly correlated environmental

exposure covariates and a censored survival outcome. We extended Bayesian profile

regression mixture (PRM) models to this context by assuming an instantaneous excess

hazard ratio disease sub-model. The proposed hierarchical model incorporates an

underlying truncated Dirichlet process mixture as an attribution sub-model. A specific

adaptive Metropolis-Within-Gibbs algorithm—including label switching moves—was

implemented to infer the model. This allows simultaneously clustering individuals with

similar risks and similar exposure characteristics and estimating the associated risk

for each group. Our Bayesian PRM model was applied to the estimation of the risk

of death by lung cancer in a cohort of French uranium miners who were chronically

and occupationally exposed to multiple and correlated sources of ionizing radiation.

Several groups of uranium miners with high risk and low risk of death by lung

cancer were identified and characterized by specific exposure profiles. Interestingly,

our case study illustrates a limit of MCMC algorithms to fit full Bayesian PRM models
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even if the updating schemes for the cluster labels incorporate label-switching moves.

Then, although this paper shows that Bayesian PRM models are promising tools for

exposome research, it also opens new avenues for methodological research in this class

of probabilistic models.

Keywords: Bayesian inference, ionizing radiation, lung cancer, multicollinearity, profile regression, survival data,

truncated Dirichlet process mixture

1. INTRODUCTION

Over the last decade, the human exposome has emerged as
a novel and promising research paradigm in epidemiology,
biomedical, and environmental health sciences (1–3). Originally
proposed by Dr. Christopher Wild in 2005 (4), it encompasses
the totality of human environmental (meaning all non-genetic)
exposures throughout life—from conception to death. This
concept, that argues for a holistic and integrated consideration
of all environmental exposures simultaneously (5, 6), is the key
complement to the genome in terms of understanding human
health. Its initial aim is to decipher how complex environmental
exposure situations lead to disease development. Its final aims
are to gain more insight into the etiology of multifactorial and
chronic pathologies, and, ultimately, to lead to better primary
prevention strategies for public health. Obviously, cancers are
among these pathologies for which the exposome concept is
essential, as they result from the combined influence of many
genetic, environmental (i.e., physical, biological, chemical) and
behavioral stressors that may occur simultaneously and interact
(7–11).

In epidemiological studies, it is thus important to properly
account for multifactorial exposure patterns when estimating (or
predicting) specific cancer risks at individual or population level.
However, historically, epidemiological studies linking the adverse
effects of environmental stressors and human health have mostly
focused on characterizing the effect of a single stressor. This one is
typically considered of “main interest” for investigation (12, 13).
A few additional risk factors, including other environmental
stressors, are usually considered, but this is most frequently
because of their feared role as potential confounders. They
are therefore adjusted for in regression models, in order to
estimate the effect of the “main environmental stressor of
interest” but independently from the potential influence of
the other risk factors (14, 15). Only a few studies aim to
estimate the interaction between exposure to an environmental
stressor and other risk factors (e.g., smoking and asbestos
or radon) (16, 17), and, even more rarely, the joint effects
of exposure to several environmental stressors (e.g., ambient
particles and ozone) (18). In the specific field of protection
against the effects of ionizing radiation—that will be of interest
in this paper—estimating radiation-related cancer risks and
its uncertainty has been a key objective for decades, for the
purpose of setting exposure limits (19). However, although
ionizing radiation epidemiology has successfully reached that
goal, the question of estimating how simultaneous environmental
exposures to multiple radiological stressors of different nature

potentially affect cancer risks has not yet been investigated
thoroughly (20).

Estimating cancer risks due to simultaneous exposures to
multiple environmental stressors may be challenging for several
reasons, which are detailed elsewhere (21, 22). Particularly, major
statistical difficulties occur when exposure-based risk factors are
highly correlated. This occurs when collecting data on multiple
environmental stressors during life. This may be also the case,
for instance, when a worker is simultaneously exposed to many
chemical and physical stressors in the course of his occupational
activity. This situation will be referred to as co-exposure in the
following. In this context, it is well-recognized that applying
standard multiple regression models—in which at least two
highly correlated predictors are assessed simultaneously- may
lead to unstable risk coefficient estimates with high variance.
Therefore, this approach may lead to misleading conclusions
and unrealistic interpretations about the effect of each of the
collinear predictors on the outcome variable (23–25). More
sophisticated statistical methods must then be used to deal with
this multicollinearity issue.

Although not yet widely used in practice (26), several
statistical methods have been proposed to deal with
multicollinearity and then, to potentially investigate the
combined effect on health outcomes of highly correlated
environmental stressors. Many previous studies relied on an
environment-wide association approach (EWAS) where, in its
simplest version, the association between each single exposure
factor and the outcome was estimated separately (27, 28). Even if
potentially useful to discover priority risk factors, this approach is
mainly considered in an exploratory research phase and leads to
limited investigations of an health-exposome association. Other
approaches that have been proposed in this specific context
mainly rely on: (a) variable selection in a regression context
using, for instance, the elastic net criterion (29) or the Graphical
Unit Evolutionary Stochastic Search (30); (b) data-driven
dimension reduction using regression on principal components
(31) or the sparse partial least squares regression (32, 33); (c)
machine learning algorithms like recursive partitioning using
random forests (34); and (d) clustering approaches to profile
multiple correlated data (35) like k-means, the latent class
analysis (LCA) (36) and the Bayesian profile regression mixture
(PRM) models (37). Variable selection approaches are very
interesting tools to identify a small subset of environmental
stressors that are the “true villain” most responsible for affecting
the health outcome of interest. They are particularly adapted
when a huge number of stressors is considered. However, when
only a few highly correlated exposure covariates are available,
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the idea is not to omit some of them in the study but rather
to estimate an exposure-risk relationship using all available
covariates and appropriate statistical methods to deal with
multicollinearity issues. They may also be limited in their
ability to efficiently differentiate true predictors from correlated
covariates when the latter are very highly correlated (38).
Data-driven dimension reduction aims at constructing summary
latent variables as linear combinations of the original exposure
covariates and then, to include these new uncorrelated variables
in a multiple regression model (39). One major drawback is
that these variables are constructed without considering the
disease outcome of interest in principal component regression
(PCR). Even if the sPLS (32) corrects for this by constructing
uncorrelated latent variables as linear combinations of the
original covariates and response variables, another drawback
of data-driven dimension reduction approaches concerns the
uncertainties related to this construction. Indeed, given that the
disease risks are estimated in a second disjoint step, the loss of
information about the uncertainty associated to this construction
may lead to misleading interpretation of risk estimates. Finally,
machine learning algorithms are both relevant and efficient
approaches to deal with a huge number of stressors.

In this work, we focused on the specific problem of estimating
the combined health effect—in terms of disease excess risk—of
a few but highly correlated environmental exposure covariates,
from a censored survival outcome. We opted for the PRM
models. They are infinite mixture models that link a disease
outcome to a set of correlated covariates through cluster
membership. They are based on a Dirichlet process mixture as
an attribution sub-model. By capturing the heterogeneity among
the covariates, the PRM models allow both identifying specific
patterns of covariate values—called covariate profiles—that are
representative of a subpopulation (i.e., a cluster) and associating
them with the disease outcome via a regression model. Then,
inferring this probabilistic model allows both simultaneously
identifying fine exposure profiles based on several correlated
covariates, clustering individuals with similar risks and similar
exposure characteristics and estimating the associated risk for
each cluster. This joint modeling approach allows to rigorously
capture uncertainty on all estimated parameters included in the
different submodels. Compared to LCA and k-means algorithm,
one of the principal motivations for PRM models is that the
disease outcome influences cluster membership so that they
can inform each other. Thus, the disease outcome may guide
inference toward the most relevant clustering structures and is
not only used during post-treatments. Another motivation for
PRM models is that the number of clusters is unknown and
informed by the data. Moreover, fitting PRM models under
the Bayesian paradigm offers additional advantages. First, it
allows dealing with the numerous latent variables included in
these complex models and getting probabilistic answers to the
studied question. Second, all uncertainty, including uncertainty
associated with the clustering of the individuals, is reflected
in credible intervals of risk parameters. Third, it provides the
possibility to include external information on parameters in the
form of prior distributions which is particularly useful when
some unknown quantities of interest are not or only poorly

informed by the data. Finally, it allows predicting the disease risk
of a multi-exposed individual while conserving the uncertainty of
estimated parameters. These models have already been employed
in a variety of fields including genetics (40), environmental
epidemiology (37, 41–44) and occupational epidemiology (45,
46) but never in ionizing radiation epidemiology. Note that an R
package called PReMiuM (47) implements the Bayesian inference
of PRM models for Gaussian, binary, ordinal, categorical,
Poisson, and censored survival outcomes based on a Weibull
distribution.

We extended the class of PRM models to deal with a
censored survival outcome following an instantaneous excess
hazard ratio model. This class of survival models is commonly
used to estimate cancer risks in ionizing radiation epidemiology
(48) but is not implemented in the PreMiuM package. The
Bayesian inference of the proposed PRM model is conducted
with a specific adaptive Metropolis-Within-Gibbs algorithm,
implemented in Python and including three label switching
moves. To illustrate our point, we applied our PRM model
to the specific problem of estimating the risk of death by
lung cancer among multi-exposed French uranium miners.
Indeed, in the context of their work, underground uranium
miners are simultaneously exposed to radon, external γ -ray and
uranium dust (as well as other chemical and physical agents).
Interestingly, these three sources of radiation exposure are highly
correlated to each other in the French cohort of uranium miners.
Actually, they are associated with the same initial phenomenon
of disintegration of uranium, which is ubiquitous in uranium
mines (49). Moreover, at this stage, an additive or synergic
effect of co-exposure to these various radiological components
on lung cancer risks cannot be excluded. Until now, most of the
epidemiological studies on the French cohort of uranium miners
have focused on studying the association between a chronic and
low-dose exposure to radon and lung cancer mortality, as if
radon—that is considered to be the second leading cause of lung
cancer after smoking (50)—had an isolated effect. An EWAS
approach was performed where the association between each
single source of ionizing radiation and the risk of death by
lung cancer was estimated separately, using a Poisson regression
model. It showed that each source of ionizing radiation was
significantly associated to a higher risk of death by lung cancer,
in the French cohort of uranium miners (28). We propose to
treat the multicollinearity issue in this case study, using our
proposed Bayesian PRM model. Up to our knowledge, this is
the first application of Bayesian PRM models to deal with highly
correlated co-exposure in ionizing radiation epidemiology.

2. MATERIALS AND METHODS

2.1. Study Population
The French cohort of uranium miners is a retrospective cohort
whose characteristics, sources of data and methods of data
collection (e.g., vital status, causes of death, . . .) have been
described previously (28). Briefly, the last update included 5,086
males who were employed as uranium miners for at least 1
year in the CEA-COGEMA group between 1946 and 1990 and
who were followed from 1946 to December 31, 2007. Uranium
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TABLE 1 | Main characteristics of the post-55 French cohort of uranium miners.

No. of miners 3,377

Age at entry into study, mean [min, max] 28.3 [16.9, 57.7]

Duration of work in years, mean [min, max] 16.7 [1.0, 40.9]

Duration of follow-up in years, mean [min, max] 32.8 [0.1, 51.0]

Vital status, n (%)

Alive <85 years old 2,412 (71.4)

Alive ≥85 years old 74 (2.2)

Death from lung cancer 94 (2.8)

Death from another cause 777 (23.0)

Lost to follow-up 20 (0.6)

Exposure to radon∗

Exposed miners, n (%) 2,910 (86.2)

Duration of exposure (in years), mean [min, max] 12.9 [1.0, 35.0]

Cumulative exposure (in WLM), mean [min, max] 17.8 [0.003, 128.4]

Exposure to γ -rays∗

Exposed miners, n (%) 3,240 (95.9)

Duration of exposure (in years), mean [min, max] 13.2 [1.0, 36.0]

Cumulative exposure (in mSv), mean [min, max] 54.9 [0.2, 470.1]

Exposure to uranium dusts∗

Exposed miners, n (%) 2,746 (81.3)

Duration of exposure (in years), mean [min, max] 12.9 [1.0-35.0]

Cumulative exposure (in kBq·m−3·h), mean [min, max] 1.64 [0.01, 10.4]

*Results only on measured exposures.

miners are simultaneously exposed to three sources of ionizing
radiation: radon and its short-lived decay products (simply
called radon hereafter), external γ -ray and uranium dusts. In
the French cohort of uranium miners, the annual exposures to
radon were assessed from 1946. On the other hand, the routine
recording of occupational annual exposures to external γ -ray
and uranium dust only began in 1956 in the French mines,
following the introduction of radiation protection measures like
the introduction of forced ventilation. In this paper, the study
population was thus restricted to the so-called post-55 subcohort,
in order to have simultaneous exposure measurements for the
three sources of ionizing radiation. This subcohort included
3,377 miners from the original cohort who were first employed
after December 31, 1955. At the end of follow-up, 94 miners had
died of lung cancer. An age limitation of 85 years for follow-up
was fixed due to the imprecision in determining the exact cause
of death in those occurring after the 85th birthday (28). Main
characteristics of the post-55 subcohort are recorded in Table 1.

2.2. Multiple Exposure Assessment, Proxy
Variables, and Multicollinearity
In the French cohort of uranium miners, information on
radon, external γ -ray exposures and uranium dusts exposure
was assessed individually for each year of employment, but
the method of measurement changed over time. Between 1946
and 1955, there was no systematic exposure assessment in the
French uranium mines. Therefore, the annual radon exposure,
expressed in working level months (WLM), was retrospectively
reconstructed by a group of experts for this period, based

on environmental measurements performed in the mines and
information concerning the miners’ type of work and location.
Then, from 1956, the individual radon exposure was recorded
systematically, following the new radiation protection measures
which were set up at this date. More specifically, from 1956
to 1982, individual radon exposure was assessed from monthly
ambient concentration measurements and information about
the miners’ activity (i.e., job type, location, and time spent
at each location). From 1983, annual radon exposure was
individually recorded, using personal dosimeters integrated
to the Individual System of Integrated Dosimetry (ISID).
Personal dose equivalents due to γ -ray exposures, expressed
in millisieverts (mSv), were recorded individually since 1956,
using two different types of personal dosimeters, depending
on the calendar period: personal film badge dosimeters (CEA
PS1 type) from 1956 to 1985 and personal thermoluminescence
dosimeters (TLDs) integrated to the ISID from 1986 onwards.
Finally, the annual exposure to long-lived radionuclides arising
from uranium ore dust, expressed in Becquerels per cubic
meter hour (Bq·m−3·h), was retrospectively reconstructed for
the period 1956–1958 (51). It was then assessed from monthly
ambientmeasurements from 1959 to 1982. From 1983, individual
measurements were collected with the ISID.

Potentially relevant proxy variables are also available in the
French cohort of uranium miners to reflect the uranium miners’
working conditions and any other occupational exposures. First,
there are the job types of French uranium miners which are
classified into five categories : (1) hewers before mechanization,
(2) hewers after mechanization, (3) other underground work
before mechanization, (4) other underground work after
mechanization, and (5) surface worker. The mechanization of
work in the French uranium mines began in 1977, with the
introduction of trucks. Thus, from 1977 onwards, the uranium
miners’ working conditions can be assumed to be less physically
demanding compared to the period before mechanization. But
on the other hand, an additional occupational exposure to diesel,
recognized as a lung carcinogen (52), appeared in the mines at
the same period. Finally, hewers were assumed to have a more
physically demanding labor and harsher working conditions
than other underground and open-pit uranium miners. An
additional proxy for uranium miners’ working conditions is the
working location which includes four different mining districts:
(1) Vendée, (2) Crouzille, (3) Forez, and (4) Hérault. Actually,
the type of uranium deposits (i.e., granitic, sedimentary) has an
impact on the undergrounds galleries of the uranium mines and
then, on the miners’ working conditions. Note that the type of
uranium deposits depends on the mining district. It is granitic
for the districts of Vendée, Crouzille, and Forez and sedimentary
for the district of Hérault (53).

An estimation of Pearson’s correlation coefficients, using all
the available pairs of cumulative exposures to two different
sources of ionizing radiation, clearly shows that the assessed
values of occupational exposures to radon, γ -ray and uranium
dusts are highly correlated in the post-55 subcohort of French
uranium miners. Indeed, the estimated coefficients are pretty
high. It is equal to 0.90 between radon and γ -ray, to 0.82
between uranium dusts and γ -ray and to 0.78 between radon and
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FIGURE 1 | Scatter plots of the observed cumulative exposures to γ -rays and radon (left-hand panel), γ -rays and uranium dust (at the center), radon and uranium

dust (right-hand panel).

uranium dusts. Figure 1 displays the scatter plots of the observed
cumulative exposures to the three sources of ionizing radiation.
It clearly confirms that we are faced with a multicollinearity issue,
requiring the use of a suitable statistical approach to estimate
the combined effect of these three radiological exposures, the job
type and the localization of the mine on the risk of death by lung
cancer in the post-55 subcohort of French uranium miners.

2.3. Model Formulation
To deal withmulticollinearity in the specific context of estimating
the combined effect of a few but highly correlated exposure
covariates, we opted for a Bayesian profile regression mixture
PRMmodel. In this approach, three submodels must be specified
and linked, through conditional independence assumptions: the
disease, the exposure and the attribution submodels. A Bayesian
PRMmodel is a hierarchical model that allows jointly describing:
(a) the association between a disease outcome (e.g., the age at
death by lung cancer of a miner) and an exposure profile (disease
sub-model); (b) the probability distribution of the different
covariates of interest in each cluster, in order to characterize
specific exposure profiles (exposure sub-model); and (c) the
random assignment of an individual to a given profile (or cluster)
(attribution sub-model).

The disease sub-model conventionally used in radiation
epidemiology is an Excess Hazard Ratio (EHR) model. Let Si be
the age (in days) at death by lung cancer of miner i, i ∈ 1, 2, ..., n

where n is the total number of miners. Let Ri be the right-
censored age defined as the earliest age of miner i among age at
death by a cause other than lung cancer; age on December 31,
2007; age in days corresponding to his 85th birthday and age
until loss to follow up. For each miner i, the observed outcome
of interest can therefore be represented by the non-negative
continuous variable Yi = min(Si,Ri) and the binary variable δi
where δi = 1 if Si ≤ Ri (i.e., miner i died of lung cancer at age
Yi = Si) and δi = 0 if Si > Ri (i.e., miner i “would have died of
lung cancer” after age Ri). The instantaneous hazard rate of death
by lung cancer of miner i at age t, noted hi(t) is defined by

hi(t) = h0(t) · (1+ βCi ) (1)

Baseline hazard h0(t) is the instantaneous risk of death by lung
cancer at age t by not exposed profile (the reference cluster of
miners not exposed to ionizing radiation), Ci is the cluster label
of miner i and βc is the instantaneous excess risk of death by lung
cancer of the cluster c. Thus, two miners belonging to the same
cluster c have the same risk of death by lung cancer. Note that ∀c,
βc is subject to the constraint βc > −1 to ensure the positivity of
hi(t).

Following Hoffmann et al. (48), h0(t) is assumed to be
piece-wise constant on four age intervals for which values of
baseline hazard are assumed to be constant. These four intervals
correspond to a partition of age axis defined by before 40 years
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old, between 40 and 55, between 55 and 70 and finally after 70
years old. The corresponding four constants of baseline hazard
are denoted by λ1, λ2, λ3 and λ4.

When modeling lung cancer mortality in the French cohort of
uranium miners, we considered the age at death by lung cancer
of each miner as disease outcome. Indeed, Kleinbaum suggested
to favor age as time-scale whenever age at event is likely to have a
larger effect on the hazard than time-on-study (54). Moreover,
based on previous findings on cohorts of uranium miners, we
can assume that, contrary to the attained age of a miner, the
timing of study initiation has no inherent meaning in terms of
the risk of lung cancer mortality in the cohort. Finally, several
authors recommend to favor age as time-scale whenever possible
since the modeling of the effect of age can be complex and prone
to misspecification errors. Based on these arguments, we chose
attained age as time scale. Thus, age is still accounted for in the
disease model.

The exposure sub-model defines clusters based on covariates
levels and on a similar risk to lung cancer death. Probability
distribution of the covariates conditionally to a cluster is
introduced. The different covariates considered for clusters
include cumulative radiation exposures and other characteristics
of miners. Details on these covariates are the following:

• Cumulative exposure of occupational radon XR
i , γ -rays XG

i ,
and uranium dust XD

i during the whole following up period
of miner i;

• Job type Ji most occupied by miner i. This categorical variable
have five modalities: (1) hewers before mechanization, (2)
hewers after mechanization, (3) other underground work
before mechanization, (4) other underground work after
mechanization, and (5) surface work;

• Age at first exposure Ai of miner i. Sensibility of radiation can
be function of age of exposure (55);

• Localization of the mine Mi. We distinguished Hérault mine
and the others based on the deposit’s type;

• Exposure duration Ti of the miner i. Four duration periods
with similar number of miners are considered: miners who
were exposed 5 years and less, 6–12 years, 13–18 years, and
finally those who have been exposed for at least 19 years.

The probability distribution of each covariate depends
on parameters which are function of the cluster c. We
assumed lognormal distributions LogN(µX

c , σ
X
c ) for positive

and continuous variables and multinomial distributions
Multinomial(pXc ) for categorical variables.

The different distributions are the following:







































XR
i |Ci = c,µR

c , σ
R
c ∼ LogN(µR

c , σ
R
c )

XG
i |Ci = c,µG

c , σ
G
c ∼ LogN(µG

c , σ
G
c )

XP
i |Ci = c,µP

c , σ
P
c ∼ LogN(µP

c , σ
P
c )

Ai|Ci = c,µA
c , σ

A
c ∼ LogN(µA

c , σ
A
c )

Ji|Ci = c, pJc ∼ Multinomial(pJc)

Mi|Ci = c, pMc ∼ Multinomial(pMc )

Ti|Ci = c, pTc ∼ Multinomial(pTc )

(2)

The attribution sub-model associates miner i to a cluster Ci based
on the probability φc of belonging to the cluster c. Let Cmax

be the maximum number of clusters, φ = (φ1,φ2, ...,φCmax )
defines the vector of the probabilities of assignment to each
cluster among the Cmax ones. The parameter vector φ follows a
Dirichlet process. Due to the Dirichlet process, the number of
non-empty groups is not arbitrarily fixed but estimated, only the
maximum number of clusters Cmax is given. The construction of
these mixing weights φ = (φ1,φ2, ...,φCmax ), also called “stick-
breaking,” is the following:

Vc ∼ Beta(1,α), c ∈ {1, ...,Cmax − 1} (3)

φc = Vc · (1−

c−1
∑

k=1

φk), c ∈ {1, ...,Cmax − 1} (4)

φCmax = 1−

Cmax−1
∑

k=1

φk (5)

The number of non-empty clusters is guided by α. A small
value of α reduces the probability to have a large number of
non-empty clusters, and respectively. This “stick-breaking”
construction approximates the infinite cluster model with a finite
one. The value of Cmax has to be chosen large enough to give
a good approximation but small enough to avoid unnecessary
calculations. Cmax should be set so that the probability φCmax is
expected to be small (56). The choice of Cmax is highly affected
by the value of α, and for α up to 10, the probability φCmax is
negligible with Cmax equals to 50 (57). Some guidelines and more
detailed description are given in Molitor et al. (37).

2.4. Prior Distributions and Bayesian
Inference
2.4.1. Prior Distributions

Prior distributions are chosen poorly informative except for
parameters involved in baseline hazard, in stick-breaking prior
as well as means of exposure for which external information were
available.

Thus, normal centered distributions with large variance were
considered for the risk parameters βc and for the means of age at
first exposure µA

c (on log scale) in each group c, c = 1, ...,Cmax.
Large Uniform distributions were considered for the geometric
standard deviation parameters of the lognormal distributions σR

c ,
σG
c , σ P

c , and σA
c . Dirichlet prior distributions with parameters

equal to 1/2 were considered for the parameters of multinomial
distributions, namely pJc, p

M
c , and pTc .

Concerning the mean of γ -rays µG
c , radon µR

c , and uranium
dust µP

c exposures (on log scale), information are available
from German uranium miner cohort (58). Normal prior were
considered for µG

c , µ
R
c and µP

c with means and variances based
on exposure levels of this cohort.

As parameters involved in baseline hazard are poorly
informed by data in particular for young miners, external
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TABLE 2 | Prior probability distributions assigned to the unknown parameters of a

Bayesian PRM model including the disease sub-model, the exposure sub-model

and the attribution sub-model.

Parameter Family

Disease sub-model βC Normal N (0, 106)

λ1 Gamma G (23.7, 4.9 · 108)

λ2 Gamma G (35.5, 2.6 · 107)

λ3 Gamma G (88.1, 1.6 · 107)

λ4 Gamma G (29.7, 3.2 · 106)

Exposure sub-model µG
c Normal N (0.10, 2.25)

µR
c Normal N (−2.3, 8.08)

µP
c Normal N (1.01, 11.79)

µA
c Normal N (0, 106)

σG
c , σR

c , σ
P
c , σ

A
c Uniform U [0,100]

pJc,p
M
c ,p

T
c Dirichlet D [0.5, …, 0.5]

Attribution sub-model α Uniform U [0.3, 10]

data on lung cancer mortality among men in France between
1968 and 2005 were used to specify the informative prior
gamma distributions on the parameters λ1, λ2, λ3, and λ4
defining the baseline risk of death by lung cancer among French
uranium miners (assumed constant by age intervals). Finally,
as recommended by Molitor et al. (37), we used a uniform
distribution on the interval [0.3, 10] for the parameter α which
influences the number of non-empty clusters a posteriori. All
details are given in Table 2.

2.4.2. Bayesian Inference

Figure 2 shows the directed acyclic graph for the full hierarchical
model combining the disease sub-model, the exposure sub-model
and the attribution sub-model. R package “PReMiuM” already
exists to implement the Bayesian profile regression (47) for
Bernoulli, Binomial, Poisson, Normal, categorical response as
well as Weibull survival model. Unfortunately, the EHR survival
model is not a possible option in this package. Thereby, a Markov
Chain Monte Carlo (MCMC) algorithm was implemented in
Python to sample from the joint posterior distribution of all
unknown parameters and latent variables. Simulations were
performed in order to validate the code, results of these
simulations can be found in the Supplementary Material. We
used a Metropolis-within-Gibbs algorithm (59) to conduct the
Bayesian inference, as full conditional distributions were not
always analytically tractable. An adaptive phase of Metropolis-
Hastings steps, which is necessary to improve the convergence
and the efficiency of the algorithm, updates the variance of each
proposal distribution to target an acceptance rate of 40% for
single parameters and 20% for vectors (59). The parameters and
the latent variables were updated separately. We ran 100 steps of
100 iterations for the adaptive phase, then 10,000 iterations were
dropped for the burn-in phase and finally 150,000 additional
iterations were run. To decrease within-chain autocorrelations,
we thinned the sample by storing only every 20 iterations.
Posterior sample of each unknown quantity therefore contains
7,500 values. A particular attention was done on the convergence

toward local modes by considering different initial values for
parameter α directly linked to the number of non-empty clusters.
Moreover, as suggested by Liverani et al. (47), we introduced
three label switching moves in order to try to best avoid
convergence to local mode (60, 61). The use of this three
label switching moves is justified by the weak identifiably of
the clusters labels leading to multiple modes of the posterior
distributions of the φc’s. To explore multimodal posterior
distributions, Papaspiliopoulos and Roberts (60) introduce two
label switching moves which allow moves particularly at the
beginning of MCMC algorithm. To improve ability of moves,
Hastie et al. (61) add a third one . The basic idea of moves
is to switch two labels j and k according to a probability min
(1,rjk). Details on rjk are given in Table 3. Main characteristics
of these three moves are the following. The first move has
high acceptance probability of switching j and k when weights
φj and φk are close. On the other hand, two clusters with
similar number of miners are rarely switched. The two other
moves propose only switch between two neighboring clusters
namely j and j + 1. When label switching is accepted according
to the second or third switching moves, the respective beta
components V involved in the stick-breaking procedure are
simultaneously modified (and consequently the weights φ).
The second move corresponds to high acceptance probability
for neighboring clusters including different number of miners.
For the third label switching, the respective beta components
V are modified so that the corresponding weights φj and
φj+1 are close to their expectation conditional on these new
labels. Details on r and V are given in Table 3. For the three
switching procedures, corresponding excess risks β and other
cluster specific parameters are simply exchanged when move is
accepted.

2.5. Post-treatment
As described in Molitor et al. (37) and in Liverani et al. (47), the
post-treatment is realized after running the MCMC algorithm.
We chose to determine an optimal partition corresponding
to a partition sampled from our MCMC algorithm. The
main advantage of using a sampled partition is to avoid
difficult problems linked to clusters labels which could be
different between iterations. There are different techniques to
obtain this optimal partition. We decided to use the post-
processing approach based on a posterior similarity matrix.
Another possibility could have been to use the MAP estimate
corresponding to the partition leading to the highest value of
the marginal posterior distribution. As mentioned by Liverani
et al. (47), the MAP estimate is more sensitive to the Monte
Carlo error than the techniques based on the similarity matrix.
If K is the number of iterations, K binary square matrices Sk
of dimension n × n are determined at each iteration k where
Sk(i, j) = 1 if miners i and j share the same cluster at iteration
k of the MCMC sampler, and 0 if not. The mean S of these
K matrices (S1, ..., SK) thus contains the proportion that two
miners belong to the same cluster during MCMC sampler. The
estimated best partition called Cbest is the one that minimizes
the least-squared distance to matrix S. Cbest is a vector such
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FIGURE 2 | Directed Acyclic Graph associated to the full Bayesian PRM model. Circles indicate unknown quantities and rectangles indicate observed variables. Single

arrows indicate oriented probabilistic links between two quantities and double arrows indicate oriented deterministic links between two quantities. Z
Cat,q
i denotes the

observed value of any categorical covariate q for uranium miner i and Z
Cont,q
i denotes the observed value of any continuous covariate q of uranium miner i.

that cbesti is equal to the cluster label of miner i in this optimal
partition.

Posterior distributions of parameters are obtained
conditionally to the best partition Cbest . Generally speaking, if
θc denotes a parameter depending of cluster c, a sample from
posterior distribution of parameter θc conditionally to partition
Cbest is {θ̄c,k, k = 1, ...,K} such that

θ̄c,k =
1

nc

∑

i : cbesti =c

θcki ,k
(6)

with nc the number of uranium miners in cluster c
and cki the cluster of miner i at iteration k. This post-
processing procedure is apply on all parameters depending
on cluster label involved in the three sub-models that is

(β ,µR, σR,µG, σG,µP, σ P,µA, σA, pJ , pM , pT) as well as the
weights φ of clusters.

3. RESULTS

3.1. Univariate and Multivariate EHR Model
Without Clustering
In order to assess impact of multicollinearity on EHR model,
classical Excess Hazard Ratio model was implemented without
clustering procedure. The instantaneous hazard rate of death by
lung cancer of miner i at time t hi(t) is here directly function
of exposures, without taking into account of multicollinearity.
A first approach consists in considering each radiation source
separately and secondly, to include simultaneously the three
ones. Posterior median and 95% credible interval of β are
obtained in each case. With only one exposure, hi(t) is then
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TABLE 3 | Label switching moves.

Move 1 Move 2 Move 3

rjk (
φj

φk
)nk−nj







(1−Vj+1 )
nj

(1−Vj )
nj+1

k = j + 1

0 otherwise







( φ+

φc+1R1+φcR2
)nj+nj+1R

nj+1

1 R
nj
2 k = j + 1

0 otherwise

V ′
l Vl















Vj+1 l = j

Vj l = j + 1

Vl otherwise



















φ′
j

∏

k<j (1−Vk )
l = j

φ′
j+1

(1−V ′
j
)
∏

k<j (1−Vk )
l = j + 1

Vl otherwise

The switching between labels j and k is accepted with probability min(1, rjk ). If label

switching is accepted, V ′ is the new value of beta-component V. nj is the number of

miners in cluster j.

φ+ = φj + φk , φ
′ = φj+1

E(φj |C
′ ,α)

E(φj+1 |C,α)
+ φj

E(φj+1 |C
′ ,α)

E(φj |C,α)
,

R1 =
1+α+nj+1+

∑

l>j+1 nl

α+nj+1+
∑

l>j+1 nl
and R2 =

α+nj+
∑

l>j+1 nl

1+α+nj+
∑

l>j+1 nl

defined by hi(t) = h0(t) · (1 + β · Xi) where baseline hazard
h0 is assumed piece-wise constant as previously, β the excess
risk of death by lung cancer associated to cumulative exposure
X and Xi the cumulative exposure of miner i. When considering
single exposure, X can be XR, XG or XD for respectively radon,
γ -rays and uranium dust. Posterior medians of β and associated
95% credible intervals are 2.7 [1.1 , 5.2], 0.78 [0.28 , 1.67], and
3.34 10−2 [1.07 10−2 , 7.00 10−2] for respectively radon, γ -
rays and uranium dust. As zero is excluded from each credible
interval, the excess risk of death by lung cancer is strictly
positive for each exposure. When considering simultaneously
the three exposures of ionizing radiations, then hi(t) = h0(t) ·
(1 + βRX

R
i + βGX

G
i + βDX

D
i ). Posterior medians of βR, βG

and βD with associated credible intervals are now 2.7 [−0.2 ,
5.8], 0.00 [−0.39 , 1.17], and −0.15 10−2 [−1.66 10−2, 3.81
10−2], respectively. None of the exposures were significantly
associated to the risk of death by lung cancer anymore. This
result highlights the issue of multicollinearity of the exposures
in our case. When considering exposure one per one, the values
of estimated risks are difficult to interpret because could also be
due to confusing effect from the other radiation sources which
are both correlated with death by lung cancer and with studied
exposure. As expected, introduction of simultaneous exposures
leads to huge imprecision and consequently to no significant
associations for some radiological exposures.

3.2. Convergence Toward Local Mode
Under PRM Model
PRM model as defined in section 2.3 is implemented on the
post-55 sub-cohort. As already mentioned in Liverani et al. (47),
parameter α in Equation (3) is directly linked to the number
of non-empty clusters. Under PRM model, this number is also
estimated (only the maximum number of clusters Cmax is fixed)
and a particular attention has to be made on local convergence
issue even if label switching moves are introduced. To assess
a convergence toward a local mode, MCMC samplers were
run from different initial values of α. Initial values are chosen
from 0.5 to 9.5 covering the prior support of α. For a given
initial value, the number of non-empty clusters systematically
converges to a single value without moves during the sampler,

while there is no convergence issue for the other parameters.
Results are presented in Figure 3 where the number of non-
empty clusters takes four possible values from 5 to 8 (including
the cluster of non-exposed uranium miners) according to the
different initial values of α. Local convergence issue is also
clearly suspected despite the three label switching procedure.
An explanation could be the low proportion of miners died
from lung cancer. This proportion is indeed near 3% giving a
low signal to infer the risk between clusters and lung cancer.
Consequently, a restricted profile regression mixture RPRM
model is considered where the number K of non-empty clusters
is fixed. The attribution sub-model defined section 2.3 is then
simplified where the weights φ have now a fixed number K of
component. We ran MCMC algorithm from two different sets
of initial values. A solution to choose K could have been to
choose one value among the four values suggested by Figure 3.
Deviance information criteria (DIC) (62) as well as Watanabe-
Akaike, also called Widely Applicable, Information Criterion
(WAIC) (63) are presented in Table 4 for K from 5 to 8. These
two criteria are concordant in favor of 8 non-empty clusters. As
penalized deviance is well-known to possibly select most complex
models, we prefer to present results with K equal to 8 non-empty
clusters but also to compare with the three other RPRM models
corresponding to 5, 6, or 7 non-empty clusters (results given in
the Supplementary Material). Note that when the number of
non-empty clusters is fixed, no convergence issue was found for
all other parameters.

3.3. Results With Fixed Number of
Non-empty Clusters
Results for eight clusters model are summarized on Figures 4,
5 while results for the 5–7 clusters can be found in the
Supplementary Material.

On the left of Figure 4, number of miners (top) and number of
cases (bottom) per cluster are represented except for the cluster
of non-exposed uranium miners. The seven resulting clusters are
denoted by A to G. The order of clusters representation follows
the order of the associated estimated risk of each cluster. Thus,
cluster A corresponds to the lowest estimated posterior median
of β and cluster G to the higher one. The number of miners
varies from 285 to 633 and the number of cases per cluster from
4 to 30. On the right of Figure 4, results on the excess risk
of death by lung cancer of each cluster (βA to βG) are given.
Boxes correspond to the posterior quartiles of β and the whiskers
extend to the posterior 2.5% and 97.5% quantiles illustrating
95% credible interval of β . Colors indicate whether posterior
95% credible interval of β is greater than zero (red) or include
zero (blue). A cluster is called “significant high risk cluster” (or
respectively “significant low risk cluster”) if whiskers are >0
(respectively lower than 0). Two significant high risk clusters are
here identified, namely clusters F and G. The posterior median
excess risk of cluster G is estimated to 1.14 and to 0.66 for
cluster F. Note that an excess risk of 1.14 means that miners
belonging to this cluster have a risk multiplied by 2.14 compared
to non-exposed uranium miners.
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FIGURE 3 | Estimated number of non-empty clusters according to the initial value of α.

TABLE 4 | DIC and WAIC of Bayesian PRM model according to the fixed number

K of non empty clusters.

Number K of non-empty clusters DIC WAIC

5 146,345 110,872

6 136,714 108,773

7 118,602 107,004

8 104,566 105,704

Characterization of each cluster in terms of covariates
is illustrated on Figure 5. Each column corresponds to one
covariate, cluster labels being specify on horizontal axis. For
continuous covariates, such as cumulative exposures and age at
first exposure, results onmedians (eµ) are on the top while results
on standard deviation (on log scale) on bottom. For categorical
covariates, such as Job type, Mine and Exposure duration,
posterior distribution of probability of each category is shown.
Boxes and whiskers are defined as previously. The two different
colors, green and red, correspond to a 95% credible interval,
respectively under or upper the global median on all miners
(whatever the cluster) while blue color shows no particular values
of the covariate for this cluster.

The cluster G with the highest risk of death by lung cancer
corresponds to the most exposed uranium miners as credible
intervals of the mean for cumulative radon, γ -rays and uranium
dust exposure are high. They were mainly working before
mechanization or as hewer after mechanization, not in Herault’s
mine, pretty old when they started working compared to the
other groups and being exposed during long time (longer than
19 years). This cluster corresponds to the most difficult working

conditions. This high risk cluster is found for 5, 6, or 7 non-
empty clusters (see Supplementary Material). Its systematic
identification is reassuring in terms of model validity since it is
consistent with standard assumptions in the field.

The cluster F associated to the second highest risk of death
by lung cancer is characterized by miners who were also highly
exposed but less than in cluster G, worked as hewer after
mechanization or other underground job before mechanization,
not working in Hérault’s mine, were young when they started
working compared to the other groups and exposed more than
13 years. Working conditions of this second cluster can also
be considered as difficult but less than those of cluster G in
particular concerning hewer before or after mechanization and
the duration of exposure a little lower. On the other hand, this
second cluster highlights risk profile of miners who started to
work early compared to the other groups. Results concerning this
second cluster differ slightly depending on the fixed number of
non-empty clusters (see Supplementary Material). Indeed, this
cluster is associated to a positive excess risk which is significant
for RPRM with K = 7, nearly significant with K = 6 but not
significant with K = 5. Posterior medians of βF and βG as well
as characteristics of these two clusters are very similar with K = 6
and K = 7 to those already found with K = 8. Concerning RPRM
model with 5 non-empty clusters, results on cluster G are similar
while posterior median of excess risk βF and characteristics of
cluster F are different. Indeed, this second cluster F not contains
exactly the same number of uranium miners for different values
of K. Almost 630 common miners belong the second cluster for
all fixed number K except for K = 5where there are approximately
250 miners more (cluster F in Supplementary Figures 1, 2).
When comparing the 630 commons miners to these 250 miners,
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FIGURE 4 | Number of French uranium miners (top left), number of deaths by lung cancer (bottom left) and instantaneous excess hazard ratio (per 100 WLM) of death

by lung cancer (β) in each cluster (right), when fitting a Bayesian RPRM model assuming 8 non-empty clusters from the French cohort of uranium miners. The cluster

including non-exposed miners is not displayed. The boxes represent the three quartiles (1st quartile, median, and 3rd quartile) of the posterior distribution of β and the

whiskers of the boxplots show the 95% credible interval of the posterior distribution for each group.

we notice that common miners received a higher cumulative
exposure to radon and they were all working in other mines than
Hérault’s one. The 250miners who differed with K = 5, have lower
cumulative exposure to radon and slightly more than half of them
worked in Hérault’s mine. Finally, there are only two cases of
lung cancer death among these 250 miners. The risk associated
to the 630 common miners is also higher than that associated to
880 miners belonging the second cluster with the partition in 5
non-empty clusters. Consequently, this second cluster F is again
significant or nearly significant with partitions in 6 or 7 clusters
but not with the partition in 5 non-empty clusters. The posterior
median of βF is estimated near to the same value for 6 and 7
clusters than 8 clusters but near 0.3 for model with 5 clusters.
Despite these differences, this second high risk cluster exists for

all models with very near characteristics, in particular with less
important cumulative exposures to radon, γ -rays and uranium
dust exposure but with young age at the start of work.

We do not systematically observe an increasing risk
corresponding to increasing exposure levels. It is particularly
the case when focusing on cluster B (Figure 5). This cluster is
associated to the second lowest risk whereas the miners in this
cluster are highly exposed. The main differences compared to
other clusters are the important proportion of uranium miners
working in Hérault’s mine and the period after mechanization.
Modeling association between profiles and mortality allows to
obtain finer interpretation of effect of exposure levels than
studies including direct associations with exposures could not
have done.
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FIGURE 5 | Characterization of the exposure profiles associated to each cluster, when fitting a Bayesian RPRM model assuming 8 non-empty clusters. The cluster

including non-exposed miners is not displayed.

4. DISCUSSION

In this work, we developed an original Bayesian PRM model
based on an instantaneous excess hazard ratio model as
disease submodel and a truncated Dirichlet process mixture as
attribution submodel. This model was applied to the estimation
of the lung cancer mortality associated with multiple cumulative
exposures to ionizing radiations as well as any other occupational
exposures through proxy variables (i.e., job types and localization
of the mines). An adaptive Metropolis-Within-Gibbs algorithm,
including three label switching moves, was implemented in
Python to sample from the joint posterior distribution of all
the unknown parameters and latent variables. Simulations were
performed in order to validate the implemented algorithm
(Results can be found in the Supplementary Material).

After fitting our full Bayesian PRM model to the post-
55 sub-cohort of French uranium miners, the target posterior
distribution was suspected to be highly multi-modal and our
MCMC algorithm to converge to local modes. Consequently,
Bayesian RPRM models were also fitted to the post-55 sub-
cohort, where the number K of non-empty clusters was fixed to
5, 6, 7, and 8. In this paper, we focused on the results provided
by the Bayesian RPRM with 8 non-empty clusters (including
the cluster of non-exposed miners) that led to very interesting
clusters of miners. Two of them were associated with a strictly
positive and statistically significant EHR of death by lung cancer.
The first group (EHR = 1.4, 95%IC = [0.60, 2.60]) corresponded
to the miners the most highly exposed to radon, gamma rays
and uranium dust and for more than 19 years (mainly before
mechanization or as hewer after mechanization not in the mine
located at Herault). The second group (EHR = 1.2, 95%IC = [0.17,
2.80]) corresponded to the miners who were very young when

first exposed and who were highly exposed to radon, gamma rays
and uranium dust for more than 13 years (mainly hewer after
mechanization or other underground job before mechanization).
Finally, the model showed that the group of miners who worked
after the mechanization and mainly in the mine located at
Herault (the only included uranium mine with sedimentary
soil) had the second lowest risk whereas the miners in this
cluster were highly exposed. Thus, this Bayesian RPRM model
allowed providing an original, rich and fine interpretation of the
potential association between the risk of death by lung cancer and
specific radiation exposure profiles of French uranium miners,
especially by modulating the effect of radiation co-exposures by
other information, such as age at first exposure and duration of
exposure. Results with the three other possible values of K from 5
to 7 are described in Supplementary Material.

Unfortunately, the target posterior distribution of our full
Bayesian PRM model was suspected to be highly multi-modal,
given the data available in the post-55 sub-cohort of French
uranium miners. This could be due to a lack of signal in the
database avoiding to strongly highlight, if it exists, an “optimal”
partition of uranium miners (i.e., with the highest posterior
probability). Additionally, the Bayesian PRM models have a
large number of parameters and latent variables and, thus, in
the specific context of a lack of signal in the available data,
applying a MCMC algorithm might not be the most suitable
Bayesian inference. As illustrated by Gelman et al. (64), due to
the random walk of Gibbs sampler and Metropolis algorithm,
the simulations can take a long time before moving to the
target distribution. Particularly, for complex models with high
dimensional target distribution, a random walk can remain
local. Betancourt and Girolami (65) also illustrated that Gibbs
samplers and Metropolis-Hastings algorithms explore the target
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distribution slowly, and it get worse when the number of groups
or levels increases. Although difficult to tune, Hamiltonian
Monte Carlo (HMC) (66) algorithms may be more efficient than
adaptative Metropolis-Within-Gibbs algorithms to fit Bayesian
PRMmodels (65).

Other limitations, which are specific to our case study, open
new avenues for methodological research in Bayesian PRM
models. First, in this paper, we only considered the sum of
exposure measurements collected for each covariate, over the
entire career of each miner. The Bayesian PRM models could
be extended to take into account the temporal dynamics of
multiple exposures. Each individual could be assigned to a
unique cluster that would depend on his whole trajectory of
exposure. Alternatively, the class label of each individual could
change over time depending on the temporal dynamics of his
exposures. Secondly, this study does not account for the tobacco
consumption of miners whereas it is known to be the most
important cause of lung cancer. The smoking status is only
available for 4.2% of the miners in the post-55 sub-cohort of
French uranium miners. This major lack of information makes
it very unreliable to adjust for smoking status when estimating
the risk of death by lung cancer due to multiple exposures. It
makes it also very unreliable to impute about 96% of smoking
status given that no potential predictors for smoking status are
available in the French cohort of uranium miners. Actually, if
tobacco consumption is the main responsible for the excess
hazard ratio of death by lung cancer in the French cohort of
uranium miners then a higher proportion of smokers should be
observed in the clusters with high excess hazard ratio compared
to the ones with low excess hazard ratio (and reciprocally). Given
the available data, this does not appear to be the case. The
ratios between the number of smokers and the number of non-
smokers for clusters A, B ,C, D, E, F, G (defined in Figure 4)
are 12/3, 7/0, 14/5, 17/4, 5/5, 16/8, 34/12, respectively, where
clusters F and G have the highest excess hazard ratios of death by
lung cancer. The associated proportions of smokers for clusters
A, B ,C, D, E, F, G are 0.8, 1.0, 0.74, 0.81, 0.50, 0.67, 0.74,
respectively. Of course, these estimated ratiosmust be interpreted
with caution given the limited available data (i.e., 142 miners
with smoking status data). Nevertheless, previous analyses on the
impact of smoking in occupational cohort studies of uranium
miners suggested that smoking was not a source of confounding
in these studies (67). This is not surprising since there is actually
no strong reason to think that the smoking status is strongly
associated with occupational exposure levels. Interestingly, if the
proportion of missing smoking status was reasonable (about
30%). The Bayesian PRM models could deal with these missing
covariates while accounting for their associated uncertainty
to identify exposure profiles. Note that our results should be
interpreted with caution given the small number of death by
lung cancer in the post-55 French cohort of uranium miners
and the lack of data about the tobacco consumption of French
uranium miners. As a third limitation of our study, exposure
measurement error on radon, γ -rays and uranium dust was
not accounted for when identifying the clusters and estimating
the associated risks of death by lung cancer. However, complex
structures of measurement error were identified in the French
cohort of uranium miners (48, 53, 68). It is also well-known that

exposure measurement error questions the validity of statistical
inference in epidemiological studies (69, 70). When it is not or
only poorly accounted for, it may lead to biased risk estimates,
a loss in statistical power and a distortion of the exposure-
response relationship. Owing to their hierarchical structure,
the Bayesian PRM models could be extended to account for
exposuremeasurement error which is, withmulticollinearity, one
of the most important issues when assessing exposome-health
associations (21).

Defining and monitoring the human exposome is a strongly
difficult task, given the wide variety of environmental factors,
biological endpoints and gene-environment interactions (4, 6,
22). Wild suggested that measuring exposure in any one of the
following broad exposure categories—internal (e.g., hormones,
microflora), specific external (e.g., toxicants) and general external
(e.g., social, psychological)—can reflect certain aspects of the
overall exposome (5). Moreover, following Bennett et al. (71), it
can be advantageous for the development of statistical methods
to narrow the focus of the exposome to a particular class of
exposures or/and specific life stages as a way to improve and
validate them to apply them later to the broader exposome
concepts in a risk assessment or regulatory framework. This was
the case in this work that focused on occupational exposure to
several types of ionizing radiations of French uranium miners,
considering only a small number (i.e., 7) of exposure covariates.
This paper shows that the PRM models are promising for
exposome research in this context. Interestingly, they could
also guide some extensions for higher dimensional data. A
great number of covariates including environmental and genetic
risk factors could be included in the PRM models in order
to study, for instance, gene-environment interactions but the
performances of the PRM models should then be assessed in this
more challenging context.
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