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Evidence has emerged that SARS-CoV-2, the coronavirus that causes COVID-19, can

be transmitted airborne in aerosol particles as well as in larger droplets or by surface

deposits. This minireview outlines the underlying aerosol science, making links to aerosol

research in other disciplines. SARS-CoV-2 is emitted in aerosol form during normal

breathing by both asymptomatic and symptomatic people, remaining viable with a

half-life of up to about an hour during which air movement can carry it considerable

distances, although it simultaneously disperses. The proportion of the droplet size

distribution within the aerosol range depends on the sites of origin within the respiratory

tract and on whether the distribution is presented on a number or volume basis.

Evaporation and fragmentation reduce the size of the droplets, whereas coalescence

increases the mean droplet size. Aerosol particles containing SARS-CoV-2 can also

coalesce with pollution particulates, and infection rates correlate with pollution. The

operation of ventilation systems in public buildings and transportation can create infection

hazards via aerosols, but provides opportunities for reducing the risk of transmission in

ways as simple as switching from recirculated to outside air. There are also opportunities

to inactivate SARS-CoV-2 in aerosol form with sunlight or UV lamps. The efficiency of

masks for blocking aerosol transmission depends strongly on how well they fit. Research

areas that urgently need further experimentation include the basis for variation in droplet

size distribution and viral load, including droplets emitted by “superspreader” individuals;

the evolution of droplet sizes after emission, their interaction with pollutant aerosols and

their dispersal by turbulence, which gives a different basis for social distancing.

Keywords: evaporation, wind, turbulence, ventilation, ultraviolet, mask

INTRODUCTION

Liquid or solid particles <5–10µm in diameter are classed as aerosol-sized and remain suspended
in the air over times of seconds to hours (1), whereas particles or droplets above this threshold
diameter settle quickly out of still air onto surfaces. Contrary to initial guidance (2), there
is growing evidence that airborne transport in aerosol particles is significant in the spread of
SARS-CoV-2, in addition to infection via larger droplets from coughing or sneezing via and surface
deposits (fomites) (3). It was initially questioned whether SARS-CoV-2 was viable in aerosols,
and thus whether the presence of infective virus could be inferred from viral RNA (1, 4). A
number of studies have now shown that the virus does remain viable in aerosols with a half-life
of about an hour indoors (5–8). Because aerosol transmission does not require coughing but
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is possible through normal breathing (9, 10), asymptomatic
individuals, known to be carriers of COVID-19 infection (11),
can infect others by this route (12–14). The quantitative
importance of aerosol transmission relative to transmission by
other routes is still under debate (15–17) and may vary between
environments, but the precautionary principle demands that
measures to block this transmission route should be vigorously
adopted (18). The behavior of aerosols in indoor and outdoor
environments differs in its physical basis from the behavior
of larger droplets (1), and different, additional containment
measures are therefore needed (19, 20).

This minireview covers mechanisms of aerosol emission,
evolution and transport, together with some implications for
SARS-CoV-2 transmission in non-clinical public buildings and
transportation. Transmission in hospital settings, including
generation of aerosols during clinical procedures involving
COVID-19 patients, and fecal bioaerosols from toilets are
excluded, having been reviewed elsewhere (21–24).

The literature survey was based on Web of Knowledge
searches, including “snowball” searching, up to August 2020.
Preprints that have not yet been peer reviewed are excluded.

PHYSICAL PRINCIPLES

Aerosol Generation
During coughing and sneezing, liquid droplets with a wide
diameter range from sub-µm to >100µm are atomised from
saliva and from fluids further down the respiratory tract (25, 26).
It is now recognized that normal breathing and speech atomise
droplets also (9, 27–29). Half a minute of speech releases a liquid
volume comparable to a cough (10). The volume of droplets
emitted during speech depends on loudness (30, 31) and may
be greater during singing (1, 30). The breath emission rate is
considerably increased during physical exercise (32).

The formation of aerosols and larger droplets within the
respiratory tract, involving disruption of mucus layers by abrupt
airflows, has been reviewed (10, 25, 33). The details differ
between the lower respiratory tract, which is the principal
atomisation site during normal breathing (25, 34), and the
laryngeal and oral/nasal regions where further droplets are
created during speech, coughing and sneezing (35–37). Each site
has a characteristic droplet size range (10, 36). Aerosol-sized
(∼1–3µm) droplets are produced in the lower respiratory tract
and the laryngeal region (36), and any larger bronchial droplets
may be redeposited before exhalation (38). Large droplets up to
500µm come from the oral and nasal cavities (35, 36). When
generated by speech these vary with loudness (30, 36) and
articulation (30, 31, 35, 39).

Overall droplet size distributions for speech, coughing and
sneezing depend on the relative contributions of each site of
origin. However, caution is needed. Published size distributions
vary greatly due to differing instrumental sensitivity, especially
for large droplets, and wide variation between individuals (27, 40,
41). Droplet size distributions can be continuous (26), bimodal
(42, 43), or trimodal (27, 36). They are often presented on a
number basis (36), which is more robust than a volume-weighted
basis when comparing measurements by methods that vary in

their upper diameter limit. Figure 1 shows that a broad or
bimodal size distribution is very different when presented on
number and volume-weighted bases. It might be suggested that
volume-weighted distributions (26) give a better indication of
how the virus is distributed across the spectrum of droplet sizes,
but that assumes the largest droplets are adequately measured
and the viral concentration is constant whatever the droplet size
and origin, which it is not (44): the disease progresses downward
from the nasal region (45), therefore the origin and droplet
size range of exhaled virus changes with disease progression.
Other influences include effects of infection on airway surfaces
(34, 40, 46, 47) age (45, 48) and conceivably viral genotype (49).

It would be useful to know whether “superspreader” events
(40, 50) involve specific droplet size distributions, large emitted
volumes, high viral load or a combination of these factors.
Very wide variation between subjects (x105 or more) has been
observed for droplet volumes emitted during breathing (51) and
for viral load (25, 27–29, 33, 36, 40, 46, 52–54).

Drying of Aerosol Droplets
Droplets are exhaled in water-saturated air and dry quickly to
what in the medical literature is called a droplet nucleus (27).
Particularly for an initial diameter of some tens ofµm, drying can
convert droplets large enough to settle out of the air into aerosol-
sized particles that remain suspended (55). Whether droplets
dry on the relevant timescale of seconds can depend on either
kinetics or thermodynamics. The kinetic effect is the dominant
factor for large droplets, whereas the thermodynamic effect [i.e.,
the equilibrium water content of the droplet in contact with the
ambient air], is dominant for aerosol-sized droplets (55).

Aerosol evaporation kinetics are well-understood in
combustion science. In the size range above 1µm the evaporation
rate depends on the square of the diameter (D2 rule) (56) and on
temperature (56). For water droplets it also depends on absolute
humidity (57) and turbulent flow (58). The drying conditions
are not constant, because the temperature and humidity of the
breath or cough plume decrease as it mixes with ambient air (32).
In dry air 1µm droplets dry in milliseconds, 10µm droplets in
tenths of second and 100µm droplets in about 1min (10). For
comparison, 10µm droplets take several minutes to settle to the
floor from 1.5m in still air (57), whereas 100µm droplets settle
in about 5 s (10). The settling has been visualized by laser sheet
imaging (28, 43).

After 1 s, droplets of aerosol size, <5–10µm, have had
time to dry to equilibrium. Their equilibrium moisture content
depends on the relative humidity, their salt content which
determines the water activity, and for smaller particles, their
size through the Kelvin effect (55). Exhaled droplets become
completely dry at 50–70% relative humidity and their equilibrium
water content increases, roughly exponentially, at higher relative
humidity levels (42, 59). Droplet drying, along with settling
and entrainment in cough airflows, has been modeled by
computational fluid dynamics (55, 60, 61) to make important
predictions about virus transmission in confined settings. In
some of these studies (60, 61), an unrealistically high salt content
was assumed [100 g/L NaCl, compared with <10 g/L salts in
saliva (62)] so that the dry diameter and settling rate were
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FIGURE 1 | Number-based (A) and volume-weighted (B) diameter distributions for one data set of droplets emitted by healthy subjects during breathing, speech, and

coughing [Sneezing gives a distribution similar to coughing but with more >100µm droplets (26, 43)]. Data recalculated from (36). A skew to larger diameter is inherent

in volume weighting. For example, speech droplets within the aerosol size range in this data set comprise 96% of the total number but only 0.01% of the total volume.

The corresponding fully dried droplet diameter distributions (C,D) are based on the assumption that the volume of dried solutes is 1.4% of the original droplet volume.

considerably overestimated. A droplet with 1.4% solids content,
mainly organic (55), is reduced in diameter by a factor of about
four on complete drying (Figure 1).

Drying equilibria for aerosol droplets are also modeled in
atmospheric science, where the term droplet nucleus is not
used but the concept is well-understood, and the effect of
salt composition is modeled more rigorously (59) than in the
medical literature. Adopting this approach, it can be shown that
substituting an equivalent NaCl concentration for the complex
ionic composition of saliva (62) is a poor approximation that
leads to overestimation of partially hydrated diameter in the
most detailed published drying model (55). Saliva also contains
surfactant proteins (63) which may influence the Kelvin effect
and hence the equilibrium hydration of small aerosol particles.

These issues may be responsible for a quantitative discrepancy
in drying behavior observed between saliva and simple
aqueous media (55) although the drying curves published for
cough droplets (42) and natural aerosol droplets (59) are
qualitatively similar. Saliva also contains 1–2% glycoproteins and
mucopolysaccharides (27), which have been considered simply

as insoluble solids contributing to the size of the droplet nucleus
(55). Such polymers also contribute viscosity and are known to
hinder the rehydration of dried residues, at least at macroscopic
length scales (64). They might therefore retard the rehydration
of aerosol nuclei when the humidity rises on inhalation, allowing
them to lodge deeper in the respiratory tract.

Coalescence and Fragmentation of
Droplets
Droplets are generated when surface fluid is detached and
fragmented in the strong airflows of sneezing, coughing, and
speech (25, 26). Fragmentation continues in the shear field of the
violently expelled air (37, 65), prolonged by the viscoelasticity
of the mucus polymers (66). In turbulent airflows, collisions
between droplets can lead to either fragmentation or coalescence.
Collisions occur when large droplets are pulled through a mist of
small droplets by gravity, as in rain clouds, or by centrifugal force
in turbulent eddies. Colliding droplets may fuse or may separate
again, leaving a spray of smaller droplets between them (67, 68).
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The outcome of droplet collisions can be affected by electrostatic
effects but if significant, these are hard to predict (69). There are
large non-intuitive effects of surfactants (70) and viscosity (71)
that might be relevant to droplets containing SARS-CoV-2.

Exhaled aerosols can also coalesce with natural water droplets
(mist) or with solid or liquid pollution particulates (smoke
or smog). SARS-CoV-2 sorbed on air particulates has been
observed (72). There is mounting evidence for association
of Covid-19 outbreaks with conditions where there are high
levels of particulate pollution in the size range 0.2–10µm
(73). Such associations been observed in Italy (74–76), China
(77), the USA (78), and Iran (79). How air pollution might
enhance transmission of SARS-CoV-2 is not clear: effects on
the respiratory physiology of recipients (80) are not excluded
(76). The reactive environment of smog particles (81) does not
seem likely to enhance the stability of viruses, but sorption
into porous carbon (soot) particles would give protection from
sunlight. The mechanism of interaction of SARS-CoV-2 with
airborne particulates is a current research gap. Until more is
known it would seem prudent to segregate pedestrians from
traffic in places like busy city streets and around school entrances.
In less developed regions, the combination of poorly ventilated
housing and smoke from cooking fires may exacerbate infection
hazards (82).

Virus Stability and Inactivation in Aerosols
SARS-CoV-2 is viable with a half-life of approximately an hour in
artificially generated aerosols (5, 7, 83)much shorter than on hard
surfaces (6, 8, 84). A preprint suggests some residual viability up
to almost a day, longer than for other coronaviruses (85). Many
viruses are sensitive to temperature and humidity (86) but effects
of humidity on SARS-CoV-2 in aerosols have been considered
quite small (5, 7), in contrast to its effect on viability in surface
residues (84). A suggestion that SARS-CoV-2 is inactivated
by specific combinations of temperature and humidity needs
experimental confirmation (87). Strong sunlight reduces the half-
life in aerosols to 2–3min (7). The UV component of sunlight is
likely to be responsible (88). UVB and UVC do not pass through
window glass. UVC radiation is in general the most effective
waveband for virus inactivation (89).

Transport of Aerosols in Moving Air
Large (>50µm) droplets are directly infective only if they reach
another person before settling below face height (46, 55). That
is the idea underlying social distancing guidelines of 1 or 2m,
although violent coughing or sneezing can carry the virus >2m
(90). Aerosol particles move with the air. Remaining infective
for an hour or more, they can potentially travel much greater
distances in that time (10), although social distancing is still
effective because the virus concentration is reduced by dispersion
(91). Using published data for vertical and horizontal dispersion
of a cough jet (55) and assuming similar dispersion along the jet
axis, the aerosol concentration appears to fall by a factor of about
7 from 1m distance to 2m distance from the source, roughly
in line with existing social distancing measures based on large-
droplet trajectories. However, an important gap in our knowledge
is how the effectiveness of dispersion depends on environmental

conditions, particularly turbulence: an infectious cloud in gentle
convection movement, for example, might stay compact over
comparatively long distances.

In still air the plume of warm breath rises above the emitting
person (10), and even the aerosol fraction projected during
a cough rises slightly (55). Thus, a person standing is more
exposed to aerosol infection from a person sitting, the converse
of infection by larger droplets. Opening and closing doors moves
aerosols from room to room (10) and a person walking tows
a potentially infective wake behind them (10, 92), in which the
turbulent airflow is complex with a tendency to draw downward
behind the head (93). Wind obviously carries and disperses
aerosols, and its turbulence may keep larger particles airborne
(61). Downwind infection is therefore a hazard, for example
in street cafes, but wind movements in built-up environments
are complex and difficult to model. Modeling of the transport
of environmental pollutants [e.g., (94, 95)] may provide a
starting point.

PRACTICAL IMPLICATIONS FOR COVID-19
CONTROL

Implications for Ventilation
The survival of SARS-CoV-2 in aerosol form means that
ventilation can have both positive and negative impacts. In an
enclosed space, the airborne viral concentration from an infected
person will build up over time to a level that depends on the ratio
of the emission rate (44) to the number of fresh-air exchanges per
hour (23, 96). The risk then depends on the duration of exposure
(16) as well as the fresh air ventilation rate. Conversely, long-
distance indoor transport by natural or mechanical ventilation
is a potential hazard that does not exist for infection by larger
droplets (23, 97, 98).

To minimize infection, heating and ventilation in public
buildings and in transportation may need to be modified or
operated in different ways from those intended at installation
(87). This provides opportunities for rapid, simple interventions
(17, 99–102). These were noted by the building services industry
at an early stage of the pandemic, and detailed practical guidance
is available for an American context (101, 102) and from trade
associations in Europe (103, 104) and the UK (105). Hospital
ventilation is not considered here because it is designed to
prevent infection (86).

The principle that air should move from clean to potentially
contaminated spaces (100) is more difficult to implement when it
is not known who is infected. If possible, air should not flow from
any person toward other people, especially at face height. Above-
seat ventilators on coaches (60) and aircraft (19, 106) may cause
exactly that if used inappropriately. In public buildings, clean air
may be obtained by recirculating through HEPA filters (19, 102,
107, 108) or by ventilating with outside rather than recirculated
air (103, 105) or simply by opening windows (102), accepting that
indoor air temperatures may then be colder than guideline limits
in winter or hotter in summer. Old and repurposed buildings
are particularly challenging and may need to be individually
assessed for potential hazards. Portable air filtration units may
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have applications in these settings (107–110). Intelligently placed
screens (111) may be effective in reducing exposure by disturbing
the airflow. Air conditioning or heating set to recirculatemay also
transfer aerosols between car or taxi passengers (19).

Implications for Virus Inactivation
Unless SARS-CoV-2 can be inactivated by changing humidity
or temperature (87), UV radiation seems more promising (7,
112). It would be helpful to know more about the wavelength
sensitivity of the virus (7) for insights into effects of weather (113)
and of opening windows to let sunlight UV enter. Within the
limitation of their direct hazard to humans, UVC lamps as used
in the food industry are a promising countermeasure (88, 89),
although they have not prevented COVID-19 clusters centered
on meat processing plants (114). UVC radiation may have value
in treatment of aerosols in unoccupied spaces such as lift shafts,
ventilation ducts and beamed under high ceilings where rising
aerosols collect (112, 115–117). There could be opportunities
to programme UV lamps in lift compartments, stairwells and
corridors to switch off when motion sensors switch lighting on.

Implications for Mask Design
There is epidemiological evidence that masks reduce infection,
even when imperfect (118, 119). Any face covering will catch
large droplets from a cough or sneeze (120), but aerosol particles
follow the airflow and escape through any gaps at the edges (19).
Good fit is therefore important (121, 122). It might be expected
that aerosols would be challenging to filter because the droplet
diameter is smaller than the mesh size. However, the choice of
filter materials depends on some quite complex physics including
coagulation, surface adhesion (123) electrostatic interactions
(124). A fairly wide range of multilayer filters (125–127) and
even some combinations of natural fibers (121, 126) seem to give
worthwhile filtration of aerosol-size particles in practice. Even
single cloth layers that do not capture aerosols reduce the range of
exhaled air (119, 122, 128), Rapid screens for filtration efficiency
are available (129, 130). There is no support for the argument that
aerosol transmission makes masks useless (120).

DISCUSSION

Airborne transmission of SARS-CoV-2 is a significant factor in
the pandemic, not yet tightly quantified but possibly comparable
in magnitude to the accepted transmission routes via large
droplets and surface deposits. Accumulation of infective
aerosols in indoor spaces where ventilation is inadequate or
largely recirculated means that exposure time is a key factor
(16), and helps to explain why asymptomatic individuals,
including young people, participate in the transmission
chain (14). Social distancing (91) and well-fitting masks
(121) help to reduce aerosol transmission as well as large
droplet transmission, but other precautions specific to
aerosols are also needed. These could include operational
changes to ventilation systems in public buildings and public
transport (98–101), UV lamps in some indoor locations
(112, 116, 117), and attention to wind (61) and sunlight (7) in
outdoor settings.

New knowledge about SRAS-CoV-2 is desperately needed,
and is accumulating fast. Some knowledge gaps identified here
include the nature of “superspreader” events; experimental data
on the evolution of droplet size after emission; coalescence with
air pollutants; effective wavebands of UV radiation; and the
dispersal of aerosols in airflows, influencing requirements for
social distancing.
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