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We investigated the geographical character of the COVID-19 infection in China and

correlated it with satellite- and ground-based measurements of air quality. Controlling

for population density, we found more viral infections in those prefectures (U.S. county

equivalent) afflicted by high Carbon Monoxide, Formaldehyde, PM 2.5, and Nitrogen

Dioxide values. Higher mortality was also correlated with relatively poor air quality. When

summarizing the results at a greater administrative level, we found that the 10 provinces

(U.S. state equivalent) with the highest rate of mortality by COVID-19, were often themost

polluted but not the most densely populated. Air pollution appears to be a risk factor

for the incidence of this disease, despite the conventionally apprehended influence of

human mobility on disease dynamics from the site of first appearance, Wuhan. The raw

correlations reported here should be interpreted in a broader context, accounting for the

growing evidence reported by several other studies. These findings warn communities

and policymakers on the implications of long-term air pollution exposure as an ecological,

multi-scale public health issue.

Keywords: air pollution, SARS-CoV-2, risk factors, virulence, climate change

HIGHLIGHTS

- There is a significant correlation between air pollution and COVID-19 spread and mortality
in China.

- The correlation stands at a second-order administration level for several air pollutants, after
controlling for varying population densities and removing Wuhan and Hubei from the dataset.

- Living in an area with low air quality is a risk factor for becoming infected and dying from this
new form of coronavirus.

INTRODUCTION

COVID-19, initially detected in China and rapidly spread to the rest of the world, has ignited
a pandemic causing exorbitant human and economic cost (1). Within a few months since its
discovery in December 2019, eastern and western doctors, biologists, and sociologists alike have
turned their attention to disentangling the etiology of this airborne disease, a highly contagious
respiratory illness caused by a novel coronavirus (2). Various risk factors have been implicated
with the fast spread of the virus, assuming different characters, whether considered within or
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between countries. Even if free health care was dispensed to
everyone in the exceptional case of this epidemics, the Chinese
health system, like those of many other countries, is not adequate
without proper identification and evaluation of the multiple
epidemiological risk factors (3). On an individual level, an older
age, the male gender and smoking status have all been shown
to increase the coronavirus, SARS-CoV-2 (4). In particular,
the angiotensin-converting enzyme 2 (ACE2) receptors in our
respiratory system, hit by smoking and this new coronavirus, can
bind with air pollutants (5).

From the standpoint of the natural sciences and geography, we
can take a broader perspective to appreciate how a coronavirus,
transmitted once more from an animal species to us, may show
certain patterns in the way it affects and spreads among people,
which go beyond virological and medical mechanisms, spatial
proximity or apparently chaotic patterns. For example, elements
including human and livestock overpopulation, biodiversity loss
and climate change played a critical role in making the ground
suitable for yet again a new epidemics to flourish (6). A
multidisciplinary approach to study cultural and socioeconomic
factors may be included when studying the likeliness of the
populations to show stronger morbidity to this disease (7).
Pertaining to climate change, air pollution is notoriously known
to cause health problems and, in particular, viral respiratory
infections and pneumonia to individuals chronically exposed to
air pollutants (8, 9).

We therefore hypothesize a numerical and geographical
association between chronic exposure to air pollution and
the spread of SARS-CoV-2 (10). We investigated this possible
correlation taking China as a unique case study (11), and have
updated and expanded these findings here. A positive correlation
had been found between chronic high levels of air pollution
perceived as particulate matter found in 9 large Asian cities
(three of those being Chinese) and higher lethality related
to COVID-19 (12). Despite the strong containment measures
adopted over there, if pollution still plays a role, it should
be considered as an element of high concern in relation to
this disease.

DATA AND METHODS

We collected COVID-19 infection and fatality figures for every
prefecture of the People’s Republic of China (2nd administrative
divisions, equivalent to U.S. counties) from the Chinese
government health commission (Table 1). We normalized these
epidemiological values per 10,000 inhabitants of each prefecture.
The data included COVID-19 cases and deaths.

The dataset of COVID-19 cases and deaths analyzed in
this study captured the first and unique wave of SARS-CoV-2
infection for this country (19 December 2019–23 May 2020).
It includes the 17 April update, when an increase of 1,290
casualties was reported, following a revised WHO guideline,
showing a drastic rise of about 50% from the prior figure.
This update included an increase of 325 infections for the city
of Wuhan only.

While infections and fatalities inform on the extent of the
pandemic, mortality rates (fatalities/infections ∗ 100) provide
additional information on the severity of the virus in each

prefecture. It is important to note that China did not see a
systematic COVID-19 testing at a national scale. Tests were
mostly performed for people presenting symptoms and registered
in hospitals. In some later cases, large scale testing was performed
only to prevent localized outbreaks. As a result, asymptomatic
cases are not included in the data, and mortality rates may appear
inflated compared to other regions of the world.

Population densities were defined using the population totals
of each prefecture divided by its surface area. Air pollution
measurements from localized ground stations (monthly averages
2014–2016) as well as continuous tropospheric vertical column
density measurements (whole year 2019) of several air pollutants
were aggregated as the average values at the prefecture level. Time
series information of atmospheric air pollutants was retrieved by
the Sentinel-5, a satellite mission launched in October 2017 as
part of the Copernicus program of the European Space Agency
(13). The Google Earth Engine platform (14) was employed to
compute the 2019 averages of each air pollutant measurements
derived from satellite, namely the UV Aerosol Index, Carbon
Monoxide (CO), Formaldehyde (HCHO), Nitrogen Dioxide
(NO2), Ozone (O3), and Sulfur Dioxide (SO2). Air pollutants
collected from ground stations were PM 2.5, PM 10, O3, NO2,
SO2, and CO. Data types and their sources are shown in Table 1

and the fully compiled dataset, including an aggregated version
at the provincial level, are available on a dedicated GitHub
repository (https://github.com/DavideFornacca/COVID19/tree/
master/China).

Correlation and significance analyses between air
pollution, population, and the three COVID-19 variables
(infections/100,000 inhabitants, fatalities/100,000 inhabitants,
mortality rate) were performed for the prefecture-level dataset
using non-parametric Kendall rank correlation coefficient
because of the distributions of COVID-19 and population
variables being mostly skewed. To assess the potential influence
of outliers, we repeated the same tests by firstly removing
the prefecture of Wuhan and then the whole Hubei province
from the dataset. The significance threshold was set to <0.05.
Using the aggregated version of the dataset (mean values at the
provincial level), we identified the first 10 Chinese provinces
showing the highest values of each variable separately, and we
used this for comparative analysis. Furthermore, thematic maps
comparing COVID-19 and air pollution distributions in China
were produced for visual assessment.

Data processing and mapping was done with QGIS. Statistical
analysis was performed in Python programming environment.

RESULTS

Adescriptive statistics’ summatory table for the different satellite-
and ground-based air quality measurements can be found in
Supplementary Table 1.

Higher amounts of viral infections per 100,000 inhabitants,
fatalities per 100,000 inhabitants, and mortality rates
(fatalities/infections ∗ 100) were found in those Chinese
prefectures afflicted by several pollutants of the air: CO, HCHO,
PM 2.5, PM 10, and NO2, as shown by the significant positive
correlation coefficients in Table 2. In particular, stronger
associations for infections and fatalities were found with
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TABLE 1 | The analyzed datasets and their sources.

Data Measuring unit Time period Format Source

COVID-19 No. of infections,

No. of deaths

Updated on 23 May

2020

Tabular prefecture

level

DXY - DX Doctor:

http://ncov.dxy.cn/ncovh5/view/en_pneumonia

from Chinese government health commission

Population No. of residents Estimates 2017 Tabular prefecture

level

https://www.citypopulation.de/

Data from provincial governments

AIR QUALITY, GROUND STATIONS

PM2.5, PM10, O3, NO2, SO2,

CO

Air Quality Index (AQI) 2014-2016 Tabular GPS points University of Harvard Dataverse:

https://dataverse.harvard.edu

Data from http://aqicn.org

AIR QUALITY, SATELLITE

UV Aerosol Index Qualitative Index 2019 Continuous grid

(0.01 arc deg.)

Sentinel-5 Atmospheric variables

https://developers.google.com/earth-engine/

datasets/tags/air-quality

CO, HCHO, NO2, O3, SO2 mol/m2

TABLE 2 | Correlation between satellite- and ground-based air quality variables with (i) cumulated COVID-19 infections per 100,000 inhabitants, (ii) fatalities per 100,000

inhabitants, and (iii) mortality rate (fatalities / infections) in China at a prefectural level, until 23 May 2020.

Infections Fatalities Mortality

(/100k pop) (/100k pop) (fatalities/infections)

df (n-2) tau p-value df (n-2) tau p-value df (n-2) tau p-value

CO sat 337 0.28 <0.001 337 0.19 <0.001 313 0.16 <0.001

NO2 sat 337 0.23 <0.001 337 0.14 0.001 313 0.12 0.006

O3 sat 337 −0.08 0.030 337 0.00 0.967 313 0.02 0.635

SO2 sat 337 −0.10 0.005 337 −0.02 0.634 313 0.00 0.964

Aerosol sat 337 −0.12 0.001 337 −0.03 0.488 313 0.00 0.950

HCHO sat 337 0.34 <0.001 337 0.20 <0.001 313 0.17 <0.001

PM 2.5 ground 302 0.15 <0.001 302 0.18 <0.001 285 0.18 <0.001

PM 10 ground 302 0.04 0.330 302 0.12 0.006 285 0.13 0.005

CO ground 302 −0.01 0.840 302 0.11 0.012 285 0.12 0.007

NO2 ground 302 0.12 0.002 302 0.12 0.005 285 0.12 0.007

O3 ground 302 −0.03 0.477 302 −0.02 0.585 285 −0.03 0.482

SO2 ground 302 −0.01 0.843 302 0.04 0.409 285 0.06 0.178

population 337 0.23 <0.001 337 0.17 <0.001 313 0.14 <0.001

pop density 337 0.32 <0.001 337 0.16 <0.001 313 0.12 0.004

Note that the degrees of freedom (df) are different for the ground station results because of the limited data availability. p < 0.05 are marked in bold characters.

tropospheric column values of Formaldehyde (rτ = 0.34, p <

0.001 and rτ = 0.20, p < 0.001) and Carbon Monoxide values (rτ
= 0.28, p < 0.001 and rτ = 0.20, p < 0.001), while for mortality
rates, PM 2.5 was the most incident pollutant (rτ = 0.18, p
< 0.001). This trend holds also after removing in succession
(i) Wuhan city and (ii) the whole Hubei province from the
dataset (see Supplementary Tables 3, 4). Levels of particulate
matter measured by ground stations, especially the finer PM 2.5,
were associated with a greater number of fatalities and higher
mortality rates. Conversely, aerosol data from the satellite, which
potentially include PM 2.5 and PM 10, were not associated
with fatalities or mortality rates. They negatively correlated
with infections weakly. This is not surprising, given that the
measurement is related to UV-absorbing particles, which are in

general non-pollutant, being inert particulates such as dust, sand,
and sea salt, but they also include smoke from volcano ash and
biomass burning. To note that these sources of dust, however, are
often found far from highly-polluted development areas. Higher
levels of O3 and SO2 from both satellite and ground data were not
associated with more COVID-19 deaths and mortality rates. This
goes against the trend shown by the other pollutants, an aspect
that will require further investigation. Levels of CO, HCHO,
and PM 2.5 showed stronger correlation than the population
variables when analyzing fatalities and mortality rates. As
expected, several air pollutants correlated with population
density except for Sulfur Dioxide. Conversely, O3 and Aerosol
index showed weak negative correlations, suggesting their
presence in low populated areas (Supplementary Table 2).
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TABLE 3 | Summary table of mean values of COVID-19 (orange), air pollution (blue), and population density (green) variables at the provincial level.

Province

(prefectures

n)

Pop

density

(pop/m2)

Total

infections

Infections

/100k

pop

Total

fatalities

Fatalities

/100k

pop

Mortality

(%)

CO sat

(µmol/

m2)

NO2 sat

(µmol/m2)

O3 sat

(µmol/m2)

SO2 sat

(µmol/m2)

Aerosol

sat (index)

HCHO

sat

(µmol/m2)

PM25 gr

(AQI)

PM10 gr

(AQI)

CO gr

(AQI)

NO2 gr

(AQI)

O3 gr

(AQI)

SO2 gr

(AQI)

Hubei (15) 378.92 68,135 115.44

±

106.39

4,512 7.6449

±

8.3312

6.62 ±

1.63

46,393

± 4845

51.60 ±

21.80

123,670 ±

1,342

20.17 ±

13.46

−1.04 ±

0.03

176.50

± 27.82

133 ± 13 71 ± 12 10 ± 3 13 ± 4 24 ± 5 11 ± 3

Hainan (3) 541.16 169 1.83 ±

3.25

6 0.0648

±

0.0660

3.55 ±

3.44

40,725

± 1,175

21.00 ±

4.42

116,021 ±

101

−19.02 ±

8.73

−1.11 ±

0.09

146.33

± 17.63

61 ± 5 29 ± 4 6 ± 0 6 ± 1 20 ± 2 2 ± 1

Heilongjiang

(13)

93.29 559 1.47 ±

0.98

13 0.0341

±

0.0580

2.33 ±

2.76

38,689

± 1,588

21.34 ±

8.40

165,885 ±

2,284

93.47 ±

37.60

−0.93 ±

0.08

94.29 ±

16.13

91 ± 20 49 ± 11 6 ± 2 10 ± 4 24 ± 5 9 ± 4

Gansu (14) 124.46 91 0.35 ±

0.34

2 0.0076

±

0.0142

2.20 ±

1.68

28,325

± 3,199

25.23 ±

13.34

132,895 ±

4,450

72.38 ±

29.55

−0.79 ±

0.20

91.62 ±

17.26

98 ± 13 69 ± 14 10 ± 3 14 ± 5 30 ± 9 13 ± 5

Jilin (9) 165.48 154 0.56 ±

0.20

3 0.0109

±

0.0098

1.95 ±

2.36

40,300

± 1,983

36.23 ±

14.48

158,741 ±

2,422

105.60 ±

11.59

−0.93 ±

0.15

104.95

± 12.74

113 ± 19 64 ± 12 9 ± 2 13 ± 3 24 ± 2 12 ± 3

Hebei (11) 514.53 318 0.42 ±

0.25

6 0.0080

±

0.0144

1.89 ±

3.40

51,139

± 7,776

129.64 ±

46.39

144,916 ±

4,197

190.11 ±

46.96

−0.92 ±

0.08

175.63

± 41.13

157 ± 30 108 ± 28 12 ± 3 21 ± 5 24 ± 3 23 ± 6

Xinjiang (16) 145.23 56 0.23 ±

0.23

1 0.0041

±

0.0490

1.79 ±

9.45

28,671

± 4,747

23.41 ±

20.33

142,304 ±

4,832

68.02 ±

74.28

−0.53 ±

0.32

78.33 ±

17.42

108 ± 32 87 ± 43 11 ± 3 13 ± 5 24 ± 5 7 ± 2

Henan (17) 675.57 1,273 1.33 ±

0.87

22 0.0229

±

0.0189

1.73 ±

3.40

49,781

± 3,351

96.52 ±

30.76

131,876 ±

2,818

93.28 ±

38.83

−1.01 ±

0.03

190.87

± 14.88

145 ± 8 91 ± 9 15 ± 4 19 ± 4 23 ± 6 21 ± 7

Taiwan (1) 648.32 441 1.87 7 0.0297 1.59 34,858 39.1 115,054 −21.2 −1.09 121.27 – – – – – –

Liaoning (14) 319.55 128 0.29 ±

0.20

2 0.0046

±

0.0133

1.56 ±

4.82

45,853

± 2,591

72.03 ±

21.47

153,539 ±

2,061

154.65 ±

17.93

−0.97 ±

0.08

117.78

± 8.57

120 ± 10 70 ± 8 13 ± 3 17 ± 3 25 ± 4 22 ± 5

Tianjin (1) 1330.81 192 1.23 3 0.0193 1.56 54,124 175.04 146,921 193.42 −0.87 198.66 135 84 14 21 21 17

Beijing (1) 1313.10 593 2.75 9 0.0418 1.52 45,974 123.19 148,350 134.26 −0.94 173.28 145 83 11 24 27 11

Guizhou (9) 244.30 146 0.41 ±

0.19

2 0.0056

±

0.0125

1.37 ±

3.35

38,014

± 1,975

30.87 ±

7.21

117,525 ±

910

21.63 ±

12.63

−0.96 ±

0.07

136.68

± 5.70

106 ± 7 54 ± 7 7 ± 0 13 ± 1 20 ± 1 10 ± 1

Inner Mongolia

(12)

73.21 77 0.30 ±

0.33

1 0.0039

±

0.0171

1.30 ±

3.77

33,581

± 2,486

33.47 ±

32.68

150,964 ±

8,343

92.09 ±

48.43

−0.78 ±

0.15

81.38 ±

13.90

90 ± 18 58 ± 18 9 ± 6 11 ± 6 27 ± 7 14 ±

10

Shaanxi (10) 280.14 243 0.63 ±

0.41

3 0.0078

±

0.0106

1.23 ±

0.79

37,972

± 3,157

51.47 ±

26.39

130,735 ±

4,029

69.58 ±

22.96

−0.97 ±

0.04

140.57

± 20.20

121 ± 20 72 ± 16 15 ± 5 16 ± 4 20 ± 3 16 ±

11

Yunnan (18) 127.40 174 0.36 ±

0.33

2 0.0041

±

0.0229

1.15 ±

2.51

31,788

± 4,068

18.43 ±

6.32

115,465 ±

593

18.41 ±

15.22

−1.23 ±

0.08

118.73

± 22.77

74 ± 12 37 ± 8 7 ± 2 7 ± 2 26 ± 6 8 ± 4

(Continued)
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TABLE 3 | Continued

Province

(prefectures

n)

Pop

density

(pop/m2)

Total

infections

Infections

/100k

pop

Total

fatalities

Fatalities

/100k

pop

Mortality

(%)

CO sat

(µmol/

m2)

NO2 sat

(µmol/m2)

O3 sat

(µmol/m2)

SO2 sat

(µmol/m2)

Aerosol

sat (index)

HCHO

sat

(µmol/m2)

PM25 gr

(AQI)

PM10 gr

(AQI)

CO gr

(AQI)

NO2 gr

(AQI)

O3 gr

(AQI)

SO2 gr

(AQI)

Shanghai (1) 3513.05 667 2.76 7 0.0289 1.05 45,641 178.15 124,858 54.4 −0.94 156.15 116 57 7 21 35 9

Chongqing (1) 376.25 579 1.87 6 0.0193 1.04 41,471 35.8 121,772 20 −0.93 150.42 124 62 9 19 18 10

Shandong (15) 641.28 763 0.76 ±

0.69

7 0.0070

±

0.0140

0.92 ±

2.06

51,789

± 2,492

125.14 ±

22.32

138,473 ±

2,630

152.21 ±

23.38

−1.00 ±

0.03

178.85

± 21.53

146 ± 22 94 ± 18 11 ± 4 21 ± 4 31 ± 6 25 ± 8

Guangxi (14) 247.65 252 0.51 ±

0.76

2 0.0041

±

0.0171

0.79 ±

1.13

43,533

± 1,523

29.83 ±

4.08

116,588 ±

312

−16.53 ±

8.68

−0.94 ±

0.04

160.19

± 8.65

97 ± 13 47 ± 7 9 ± 2 9 ± 3 26 ± 7 9 ± 3

Anhui (15) 673.01 991 1.57 ±

1.26

6 0.0095

±

0.0359

0.61 ±

0.78

47,941

± 1,974

80.50 ±

22.67

126,466 ±

2,866

56.81 ±

13.74

−1.08 ±

0.03

181.35

± 7.91

117 ± 16 59 ± 10 8 ± 2 13 ± 3 25 ± 5 11 ± 4

Sichuan (19) 385.74 563 0.68 ±

1.36

3 0.0036

±

0.0041

0.53 ±

0.40

38,603

± 7,695

37.53 ±

16.58

121,486 ±

2,521

36.45 ±

23.37

−0.97 ±

0.12

144.81

± 35.70

109 ± 27 57 ± 14 8 ± 2 13 ± 4 25 ± 6 9 ± 4

Guangdong

(19)

1270.33 1,590 1.40 ±

1.39

8 0.0071

±

0.0143

0.50 ±

2.42

42,819

± 1,462

66.15 ±

43.52

116,397 ±

212

−32.14 ±

13.12

−1.05 ±

0.07

168.06

± 23.56

93 ± 7 44 ± 4 9 ± 1 12 ± 4 28 ± 5 7 ± 2

Hunan (14) 356.49 1,018 1.48 ±

0.82

4 0.0058

±

0.0082

0.39 ±

0.35

45,067

± 2,212

37.94 ±

10.56

119,555 ±

1,383

1.25 ±

9.58

−0.99 ±

0.03

173.23

± 17.23

114 ± 15 59 ± 8 9 ± 2 11 ± 4 27 ± 6 12 ± 3

Hong Kong

SAR (1)

6598.01 1,065 14.29 4 0.0537 0.38 42,420 139.17 116,276 −48.4 −1.02 176.42 92 46 10 17 28 4

Fujian (9) 652.50 296 0.75 ±

0.49

1 0.0025

±

0.0043

0.34 ±

0.46

39,331

± 848

36.99 ±

12.96

117,021 ±

627

−10.92 ±

11.61

−1.09 ±

0.05

142.37

± 10.48

76 ± 10 37 ± 7 7 ± 1 10 ± 3 24 ± 7 5 ± 2

Jiangxi (11) 340.40 934 2.02 ±

0.23

1 0.0022

±

0.0035

0.11 ±

0.40

45,074

± 1,956

43.39 ±

10.75

119,799 ±

1,251

18.69 ±

14.93

−1.07 ±

0.03

173.25

± 11.72

100 ± 7 51 ± 7 7 ± 2 10 ± 3 21 ± 4 12 ± 4

Zhejiang (11) 641.36 1,182 2.09 ±

1.45

1 0.0018

±

0.0033

0.08 ±

0.06

42,655

± 2,191

71.76 ±

34.48

121,312 ±

1,686

20.05 ±

14.83

−1.05 ±

0.05

163.04

± 19.40

114 ± 10 55 ± 6 8 ± 1 17 ± 4 30 ± 4 9 ± 3

Jiangsu (13) 856.03 631 0.78 ±

2.99

0 0 0 48,727

± 1,420

125.84 ±

30.98

128,531 ±

2,714

75.05 ±

24.14

−1.05 ±

0.03

175.42

± 13.30

120 ± 8 66 ± 8 5 ± 1 16 ± 4 29 ± 3 12 ± 3

Shanxi (11) 270.16 134 0.36 ±

0.27

0 0 0 39,921

± 4,031

89.14 ±

17.85

138,704 ±

3,975

150.68 ±

27.36

−1.05 ±

0.05

136.37

± 25.60

125 ± 11 77 ± 14 17 ± 4 17 ± 3 24 ± 5 28 ± 4

Ningxia (5) 155.56 74 1.09 ±

0.85

0 0 0 32,917

± 3,598

49.00 ±

28.86

136,458 ±

3,274

121.81 ±

43.19

−0.82 ±

0.06

103.16

± 9.05

112 ± 0 81 ± 1 9 ± 1 15 ± 3 24 ± 1 26 ± 5

Macao SAR (1) 19136.39 45 6.89 0 0 0 43,309 125.72 116,336 −42.5 −0.98 170.45 – – – – – –

Qinghai (8) 60.22 18 0.30 ±

0.41

0 0 0 20,107

± 3,157

13.54 ±

10.12

129,362 ±

3,269

36.08 ±

36.84

−0.89 ±

0.23

61.29 ±

12.75

109 ± 18 71 ± 5 10 ± 3 11 ± 6 31 ± 8 12 ± 3

Xizang (7) 5.70 1 0.03 ±

0.07

0 0 0 17,503

± 1,374

8.91 ±

1.60

118,934 ±

3,000

6.94 ±

6.13

−0.86 ±

0.22

59.39 ±

5.16

62 ± 25 37 ± 23 8 ± 5 6 ± 2 26 ± 5 6 ± 5

Colored cells represent the 12 highest values for each column. The table is in descending order according to mortality rates. Standard deviations of COVID-19 and pollution variables are also displayed. Sat, satellite measures; gr, ground

stations; AQI, Air Quality Index.
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A comprehensive statistical output of these data is reported
in Table 2.

The values shown in Table 3 include the prefectural detail
aggregated at a coarser provincial level, and they are sorted to
highlight the 12 provinces with the highest rates of mortality.
These provinces are often reported among the 12 most polluted
ones, except for Taiwan and Hainan. However, these provinces
are not the most densely populated, with the exception of
Henan, Taiwan (a densely populated island), Tianjin and
Beijing (two relatively small but highly populated provincial-
level municipalities).

The maps (Figure 1) offer a synoptic view of the correlations.
Those ones referring to different pollutants display continuous
values at 0.01 arc-degree (about 1 km) resolutions, which can
potentially highlight within-prefecture differences. Prefectural
mean values of each air pollutant can be found in the dataset
available in the dedicated repository. A clear longitudinal pattern
ranging from the northeast region down to Hong Kong is visible
for both COVID-19 variables and air pollution. In addition to
Wuhan and Hubei appearing heavily affected compared to the
rest of the country, the map shows mortality occurring in several
other hotspots, also in less populated yet industrial provinces of
central China.

DISCUSSION AND CONCLUSION

The present study suggests a strong association between the
incidence of COVID-19 and chronic exposure to air pollution
in China. Comparative analyses made in this study indicate the
role of air pollution as a critical risk cofactor for COVID-19 in
China, with a stronger influence of Formaldehyde and Carbon
Monoxide levels.

Our finding is in line with other studies observing a similar
influence of air pollutants. (i) Firstly, testing the more proximal
hypothesis that COVID-19 outbreaks could follow with a
temporal delay from days with high NO2 presence in the air,
colleagues in Shanghai have published detailed time series data
pointing at a lag of 12 days before hospitalizations for the
Hubei province (16). This suggests the role of air pollutants
as airborne vectors for this virus, also highlighted by another
study (18) conducted in three cities in Hubei province and a
further one illustrating a potential role of PMs in other Asian
cities (12). (ii) Secondly, in the United States, the correlation of
respiratory illness with chronic exposure to PM 2.5 was observed
stronger than 11 other demographic covariables, including
population density, patients’ age, socioeconomic status, ethnicity,
education, obesity, smoking status, number of hospital beds
per unit population, average daily temperature and relative
humidity, and lockdown state (15) This same finding for the
U.S. was replicated by others, e.g., (17). (iii) Thirdly, in Italy, a
similar positive correlation between COVID-19 occurrence and
chronic exposure to NO2, O3 and PMs was also reported (20)
controlling in addition for the extra five demographic variables
of mobility, temperature, housing density, health care density,
and age of the population (21), with the additional and novel
evidence that fragments of the RNA from this virus were found

in the particulate matter of the harshly hit northern Italian
city of Bergamo (19), laying in the most polluted European
area of the Po valley, severely affected by the virus (22). (iv)
Finally, our couple of multinational investigations employing
different satellite-based datasets has also observed trends similar
to the current paper in at least five countries other than
China, including Italy, United States, Iran, France, and U.K.
(23, 24). Having run and posted these significant correlations at
different moments throughout the expansion of the pandemic
is an element which further signals that the correlations stand
throughout time.

Our study combined data from two different sources: localized
ground-stations, directly measuring ambient air pollution, and
continuous, grid-based satellite observations. These two sources
present several technical and methodological differences that
could explain some degree of discordance in the resulting
correlation analyses, such as the one found between the satellite-
based UV Aerosol Index and the ground values of particulate
matter. We maintained the assessment of pollutants from the
traditional ground stations because they are more representative
of pollution levels to which populations living in their proximity
are exposed. Notwithstanding that, they are unevenly scattered
and their spatial coverage is very limited. On the other hand,
satellite observations offer the unique advantage of global
coverage, highlighting pollution differences at a regular and finer
spatial unit. We believe that the combined use of these two data
sources is instrumental in interpreting any detrimental role of
specific air pollutants.

A significant obstacle to the interpretability of these findings
in China is the availability of only limited information about
the associated covariables, such as high-resolution data regarding
health services and infrastructures, epidemiological traits, and
population movement, to ascertain the relative importance of
air pollution among many socio-environmental driving factors
of COVID-19 infections. For example, the spatial effect of
the strict lockdown adopted in China can be deduced by
the huge difference in the number of infections and fatalities
between Wuhan, its surrounding prefectures, and the rest of
China (see maps in Figure 1). We have considered population
density as chief cofactor and found that its correlation with
COVID-19 is similar to air pollution, although slightly weaker.
Moreover, highly populated areas are often more polluted
(Supplementary Table 2). These results preclude us from
understanding specific health consequences of air pollutants and
call for a pressing need to further investigate this matter. In the
past, the correlation between air pollution and human illness was
notified and attributable to PMs andNO2 acting as vectors for the
spread and extended survival of bioaerosols (25–30) in relation
to pathogenic microbes including the avian influenza, measles
and the syncytial virus (31–35). To generalize the results of the
present study, higher mortality rates were found in provinces
with the worst air pollution problems and only some of them
were among the most densely populated ones. Regardless, the
probability of dying from the virus once it infects is higher where
air pollution is heavier. We have also observed a similar pattern
for populations at risk of chronic exposure of PM 2.5 and NO2 in
the two less densely-populated countries of Italy and Iran (23).
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FIGURE 1 | Distribution of COVID-19 infections, fatalities and mortality rates (fatalities/infections * 100) across the prefectures of China (updated on 23 May 2020),

and the distribution of the tropospheric column amounts of three representative air pollutants derived from the 2019 averaged satellite measures of: Nitrogen Dioxide

(NO2), Carbon Monoxide (CO), and Formaldehyde (HCHO). The values in the square brackets show the COVID-19 cases’ counts of administrative units.

To conclude, despite the fact the SARS-CoV-2 was first
detected in Wuhan and that the first location of the pathogen
assumes a key role in the geographical spread of the infection,
the detrimental effect of air pollution on patients infected by
the virus remains evident. To overcome the limitations of
our study, longitudinal screenings performed on patients from
retrospective cohorts will help clarify the role of air pollution as a
cofactor for these types of airborne transmittable diseases (36).
In this century, in China as elsewhere, health policymaking is
not adequate unless following human and environmental “one
health” approaches. As a clear and immediate action to prevent
the trajectory of this and future epidemics, curbing climate
change (37) must be endorsed way more seriously. Will the
smallest of the parasites be able to awaken us, this time, so that

we convincingly start caring about the health of the environment
as much as we have clumsily been caring about our public health?
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