
ORIGINAL RESEARCH
published: 11 May 2021

doi: 10.3389/fpubh.2021.584955

Frontiers in Public Health | www.frontiersin.org 1 May 2021 | Volume 9 | Article 584955

Edited by:

Konstantin G. Arbeev,

Duke University, United States

Reviewed by:

Ronja Foraita,

Independent Researcher,

Bremen, Germany

Fulvio Ricceri,

University of Turin, Italy

*Correspondence:

Nicole Probst-Hensch

Nicole.probst@swisstph.ch

orcid/org.0000-0001-8561-5976

Specialty section:

This article was submitted to

Life-Course Epidemiology and Social

Inequalities in Health,

a section of the journal

Frontiers in Public Health

Received: 07 September 2020

Accepted: 01 April 2021

Published: 11 May 2021

Citation:

Probst-Hensch N, Jeong A, Stolz D,

Pons M, Soccal PM, Bettschart R,

Jarvis D, Holloway JW, Kronenberg F,

Imboden M, Schindler C and

Lovison GF (2021) Causal Effects of

Body Mass Index on Airflow

Obstruction and Forced

Mid-Expiratory Flow: A Mendelian

Randomization Study Taking

Interactions and Age-Specific

Instruments Into Consideration

Toward a Life Course Perspective.

Front. Public Health 9:584955.

doi: 10.3389/fpubh.2021.584955

Causal Effects of Body Mass Index
on Airflow Obstruction and Forced
Mid-Expiratory Flow: A Mendelian
Randomization Study Taking
Interactions and Age-Specific
Instruments Into Consideration
Toward a Life Course Perspective
Nicole Probst-Hensch 1,2*, Ayoung Jeong 1,2, Daiana Stolz 3, Marco Pons 4,

Paola M. Soccal 5, Robert Bettschart 6, Deborah Jarvis 7,8, John W. Holloway 9,

Florian Kronenberg 10, Medea Imboden 1,2, Christian Schindler 1,2 and

Gianfranco F. Lovison 1,2,11

1Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland, 2Department

of Public Health, University of Basel, Basel, Switzerland, 3Clinic of Pulmonary Medicine and Respiratory Cell Research,

University Hospital Basel, Basel, Switzerland, 4Division of Pulmonary Medicine, Regional Hospital of Lugano, Lugano,

Switzerland, 5Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland, 6 Lungenpraxis Aarau,

Hirslanden Klinik, Aarau, Switzerland, 7Medical Research Council-Public Health England, Centre for Environment and Health,

Imperial College London, London, United Kingdom, 8 Population Health and Occupational Disease, National Heart and Lung

Institute, Imperial College London, London, United Kingdom, 9Human Development and Health, Faculty of Medicine,

University of Southampton, Southampton, United Kingdom, 10Division of Genetic Epidemiology, Department of Medical

Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria, 11Department of

Economics, Business and Statistics, University of Palermo, Palermo, Italy

Obesity has complex links to respiratory health. Mendelian randomization (MR)

enables assessment of causality of body mass index (BMI) effects on airflow

obstruction and mid-expiratory flow. In the adult SAPALDIA cohort, recruiting 9,651

population-representative samples aged 18–60 years at baseline (female 51%), BMI

and the ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity

(FVC) as well as forced mid-expiratory flow (FEF25–75%) were measured three times

over 20 follow-up years. The causal effects of BMI in childhood and adulthood on

FEV1/FVC and FEF25–75% were assessed in predictive (BMI averaged over 1st and

2nd, lung function (LF) averaged over 2nd and 3rd follow-up; N = 2,850) and long-term

cross-sectional models (BMI and LF averaged over all follow-ups; N = 2,728) by

Mendelian Randomization analyses with the use of weighted BMI allele score as an

instrument variable and two-stage least squares (2SLS) method. Three different BMI

allele scores were applied to specifically capture the part of BMI in adulthood that likely

reflects tracking of genetically determined BMI in childhood. The main causal effects

were derived from models containing BMI (instrumented by BMI genetic score), age,

sex, height, and packyears smoked as covariates. BMI interactions were instrumented

by the product of the instrument (BMI genetic score) and the relevant concomitant

variable. Causal effects of BMI on FEV1/FVC and FEF25–75% were observed in both
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the predictive and long-term cross-sectional models. The causal BMI- LF effects were

negative and attenuated with increasing age, and stronger if instrumented by gene

scores associated with childhood BMI. This non-standard MR approach interrogating

causal effects of multiplicative interaction suggests that the genetically rooted part of

BMI patterns in childhood may be of particular relevance for the level of small airway

function and airflow obstruction later in life. The methodological relevance of the results

is first to point to the importance of a life course perspective in studies on the etiological

role of BMI in respiratory health, and second to point out novel methodological aspects to

be considered in future MR studies on the causal effects of obesity related phenotypes.

Keywords: Mendelian randomization, body mass index, genetic score, lung function, COPD, longitudinal cohort

INTRODUCTION

Obesity, mostly measured as body mass index (BMI) is
an established asthma risk factor. Its etiological role with
regard to other respiratory phenotypes including chronic
obstructive pulmonary disease (COPD) remains unclear (1–
4). Observational evidence on the association of obesity with
spirometry-derived lung function (LF) is inconclusive (5–12). In
adulthood, increasing BMI has been often, but not exclusively,
associated with lower forced expiratory volume in 1 second
(FEV1) and forced vital capacity (FVC). Bariatric surgery
improved FVC and FEV1 in asthmatics over 5 years (13).
FEV1/FVC was sometimes preserved or even increased in the
presence of excess body weight, but overall the association with
airflow obstruction (AO) remains unclear (12). Inconsistencies
between studies reflect differences in the study populations (age,
health state, ethnicity, lifestyles, environments, socio-economic
profile), differences in obesity parameters studied, and statistical
models (confounders and effect modifiers considered).

Mechanisms by which obesity in adults can impair LF
include increased abdominal pressure due to fat mass, a related
decrease in the recoil properties of the chest wall, distal airway
closure and lung volume reduction. In addition, excess fat
mass may exacerbate systemic and airway inflammation (1, 14–
16). In fact, adipose tissue associated immunological and pro-
inflammatory factors may already impact on respiratory health
during childhood. Weight change patterns in early life were
recently associated with dysanapsis in which FVC is higher
relative to FEV1 as a result of a possible imbalance between
alveolar and airway growth (17). Although no study was able
to investigate the association of early life weight change patterns
with respiratory health in older adults, small airways are known
to be frequently involved at a very early stage of COPD and
possibly asthma (18).

Small airways are more difficult to study in the absence of
a gold standard for measuring their dysfunction. Forced mid-
expiratory flow (FEF25–75%, abbreviated as FEF2575 hereafter)
is thought to better capture small airways dysfunction than
FEV1/FVC (19). It may therefore be more sensitive to reflect
chronic effects of obesity on small airways. Few observational
BMI–LF studies in adults have considered FEF2575 (20–22). But
impulse oscillometry (IOS) studies, more reliable in assessing

distal airway function, found increased airway resistance and
decreased airway reactance with elevated BMI (15).

Further insight into the causality of the BMI-LF association
can be gained by Mendelian randomization (MR) studies (23).
Increasingly larger genome-wide association studies (GWAS),
primarily in adults, have identifiedmore andmore loci associated
with BMI at effect sizes and allele frequencies becoming smaller
and smaller (24–26), enabling derivation of an instrumental
variable. The different GWAS, conducted in adults or in children,
allow deriving instrumental variables more specifically targeting
either BMI in adulthood or BMI in childhood and thereby
reflecting age-related differences in pathways to BMI, an aspect
largely ignored in previous studies on BMI and lung function.
While the largest BMI GWAS in adults to date (24) (named
“Yengo score” in this paper) was not tested for association with
childhood BMI, the single nucleotide variants (SNPs) identified
in the earlier adult BMI GWAS (named “Speliotes score” in this
paper) were explicitly confirmed for association with childhood
BMI (26). Yet, the correlation between this latter genetic score
with one derived from a recent GWAS meta-analysis on BMI of
more than 40 000 children (named “Felix score”) was reported
at only 0.73 (25), pointing to differences in genetic pathways
determining childhood vs. adulthood BMI.

Only one, large MR meta-analysis has investigated the causal
effect of BMI on adult LF and it applied the adult BMI-derived
genetic score (“Speliotes score”) (25, 26), but not the childhood
BMI-derived genetic score (“Felix score”) (25). This study relied
on FEV1, FVC and BMI measured at a single time point in
almost 500,000 participants, and supported a causal effect of BMI
(2). The causal effect of BMI on other LF parameters relevant
to asthma and COPD such as FEV1/FVC, the physiological
parameter used to define AO, and FEF2575 (27–30), has not been
investigated using an MR approach.

The SAPALDIA cohort with 20 years of BMI and LF follow-
up offered the opportunity to study the chronicity of BMI-LF
association over an extended period of time in the context of
an MR study. We evaluated causal effects (a) of BMI averaged
over time points 1 and 2 on lung function averaged over time
points 2 and 3 (predictive model) and (b) of BMI and lung
function averaged over 3 time points (long-term cross-sectional
model). Since BMI fluctuates over time, we instrumented long-
term average BMI as a more meaningful exposure measure than
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BMI from a single time point. Similarly, since lung function
fluctuates over time and is measured with error (compliance of
participants, field worker effects, spirometry device effects), we
focused on long-term average LF as a more meaningful outcome
phenotype than level or change in lung function. We applied
MR to BMI, even though BMI is only an imprecise measure
of adiposity for the following reasons: First, better instrument
is available for BMI thanks to large GWAS, compared to other
adiposity metrics. Second, SAPALDIA has not longitudinally
measured other adiposity metrics as complete as BMI. Third,
BMI has been the most common obesity metric associated with
lung function in previous studies. The study a priori focused on
FEV1/FVC and FEF2575 as outcomes and a priori instrumented
BMI in three different ways (Yengo score, Speliotes score, Felix
score) in an attempt to specifically capture the part of BMI in
adulthood that reflects the tracking of genetically determined
BMI in childhood.

METHODS

Study Population
SAPALDIA has been described previously (31). Random
population samples aged 18–60 years were invited in eight Swiss
study areas for the baseline survey in 1991 (SAP1). Of the 9,651
baseline participants, 8,047 (83.4%) participated in follow-up
SAP2 (2001/3) and 6,139 (63.6%) in follow-up SAP3 (2010/11).
This paper was restricted to participants in all three surveys with
complete spirometry, BMI, genotype and covariate data for the
respective causal model (Supplementary Figures 1A,B).

Ethical approval was obtained for each survey and study
area from the central ethics committee of the Swiss Academy
of Medical Sciences and the Cantonal Ethics Committees.
Participants provided informed consent. All methods
were performed in accordance with the relevant guidelines
and regulations.

Lung Function
Spirometry was conducted with heated-wire spirometers
(SensorMedics, Yorba Linda, California) (SAP1 & SAP2),
and by portable, ultrasonic EasyOne spirometer (ndd
medizintechnick AG, Zürich, Switzerland) (SAP3), according
to American Thoracic Society recommendations (32) (see
Supplementary Material). The LF parameters considered
for this study are the ratio FEV1/FVC, forced mid-
expiratory flow FEF2575, and FEF2575/FVC (results in
Supplementary Material), derived from pre-bronchodilation
spirometry. FEV1 and FVC decline as airway narrows. A reduced
FEV1/FVC defines AO, resulting if the decline in FEV1 is
out of proportion to the decline in FVC, while reduced FVC
indicates restriction. FEF2575 is an early indicator of AO and
sensitive to small airway dysfunction. Reduced FEF2575/FVC
is an indicator of dysanapsis where lung volume increases as a
result of air trapping in the presence of AO. SAP3 measurements
were re-calibrated to assure comparability with SAP1 and SAP2
measurements (33).

BMI and Covariates
Height was measured. Weight was asked for at baseline, but
measured at follow-up. BMI was calculated in kg/m2. Exact
age was calculated based on birth and examination dates. Sex
was self-reported. Smoking was self-reported and measured as
pack-years smoked up to baseline and during the two follow-
up periods. Non-asthmatics where defined as those who never
reported a doctor diagnosis of asthma.

Genotyping
DNA was extracted from EDTA blood. 570k SNPs were
genotyped for 1,612 SAPALDIA samples by Human610-Quad
BeadChip (Illumina, San Diego, CA, USA) (34) and ∼1 million
SNPs were genotyped for additional 3,015 SAPALDIA samples by
Infinium Human OmniExpressExome-8 (Illumina, San Diego,
CA, USA) (35). Samples with call rate <0.97 or population
outliers were excluded. Markers with call rate <0.95, minor allele
frequency <0.05, or out of Hardy-Weinberg equilibrium (p <

10−6) were excluded. The genotype datasets were then phased
using ShapeIT (v2.r790) (36) and imputed using MiniMac2
(version 2014) (37) to 1,000 Genome phase 1 reference panel
comprising of 1,092 samples. The imputed datasets were merged
to yield 38 million markers.

BMI Allele Score
The genetic instruments for BMI were single-nucleotide
polymorphisms (SNPs) independently [linkage disequilibrium
(LD) R2 measure < 0.2] associated in Caucasians with the BMI
at a genome-wide level (P < 5 × 10−8). Three scores were
derived, i.e., “Speliotes Score” (adult BMI GWAS also associated
with childhood BMI, used in the only previous BMI-LF MR
study); “Felix Score” (childhood BMI GWAS); and “Yengo Score”
(largest adult BMI GWAS, unknown association with childhood
BMI). They were computed as weighted sum of 32, 12, and
862 BMI-increasing alleles reported by Speliotes et al. (26), Felix
et al. (25), and Yengo et al. (24), respectively, using the reported
coefficients for each SNP as weights, following the same approach
as earlier MR studies of BMI (2, 38). We excluded SNPs with
poor imputation quality (r2 < 0.3) or with known association
with smoking phenotypes in PhenoScanner. rs13387838 for
which visual inspection of MR Egger regression results clearly
indicated pleiotropy was further excluded from Felix Score.
Supplementary Table 1 describes the 32, 12, and 862 SNPs used
to construct Speliotes et al. (26), Felix et al. (25), and Yengo et al.
(24) scores, respectively.

As the weights’ sum is bounded by the number of SNPs
considered, the effect size of each score can be interpreted as
average effect per one BMI-increasing allele. The three scores
were only moderately correlated (0.28–0.55). The correlation
was smallest between the Yengo and the Felix scores (0.28)
(Supplementary Table 2).

Statistical Analysis
Statistical analyses were performed in R, version 3.4.3 for
Windows (http://www.r-project.org/) (see the “Statistical
analysis” section in the Supplementary Material).
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Analysis Scheme
We investigated the causal association in a predictive model
(exposure: BMI averaged over SAP1 and SAP2, referred to as
SAP1-SAP2; outcome: LF averaged over SAP2 and SAP3, referred
to as SAP2-SAP3) and in a long-term cross-sectional model (BMI
and LF both averaged over SAP1, SAP2, and SAP3; referred to
as SAP1-SAP2-SAP3).

Descriptive Analysis
Characteristics of study participants were summarized for the
combinations of surveys involved in the modeling phase: SAP1-
SAP2, SAP2-SAP3, and SAP1-SAP2-SAP3. Partial correlation
coefficients were computed: (i) between the same LF variables
over the 3 occasions in time to assess temporal auto-correlation;
and (ii) between the different LF variables (and their derived
averages) at each occasion in time to assess their degree of
(linear) relationship. Partial correlations were computed using
residuals of each LF variable from models that regress them
on Age, Age2, Height, Height2, Sex, and all their first-order
interactions. Pairwise complete cases analysis was performed, to
accommodate the differential presence of missing values in the
variables involved. BMI distribution at each survey was visualized
as histograms.

Checking MR Assumptions
In preparing for MR analysis, a set of assumptions as highlighted
in VanderWeele et al. (39) were checked:

(1) The genetic score is associated with the exposure. In the
context of our study, this requires testing the presence of an
association of BMI genetic score with BMI;

(2) The genetic score is not associated with confounders of
the exposure–outcome relationship. In the context of our
study, this required various actions: (2.1) testing that the BMI
genetic score is not associated with the observed confounders
Packyears andHeight; (2.2) SNPs identified in PhenoScanner
(40) as associated with smoking phenotypes, were excluded
from computing genetic scores; (2.3) MR-Egger regression
(41) was conducted to check for pleiotropy; (2.4) We
interrogated whether age or sex modify the influence of
BMI genetic score on phenotypic BMI by regressing the
BMI averages on a linear predictor including Age (averaged
over SAP1-SAP2 and SAP1-SAP2-SAP3, respectively, and
centered at 18 years), Sex, BMI genetic score and all
their interactions;

(3) The genetic score is not associated with the outcome,
conditional on the exposure and confounders of the
exposure–outcome relationship. In the context of our study,
this requires testing the absence of a BMI genetic score
association with LF, conditional on BMI and (observed)
confounders of the BMI-LF relationship.

In all these checks, the models used were chosen through a
selection procedure carried out within the class of (extended)
Generalized Linear Models, with the aim of making the choice
more flexible and finding the model most appropriate in terms
of both distribution of response and possible non-linearity

of the relationship of the response with the predictors (see
Supplementary Material for details).

Mendelian Randomization Analysis
As MR assumptions appeared to be satisfied in our data,
instrumental variable (IV) analyses were carried out to test and
estimate the causal effects of BMI on LF in the context of Linear
Gaussian models (42). Estimation was carried out using the two-
Stage Least Squares (2SLS) method. In the first-stage of 2SLS, the
exposure is regressed on the genetic score to give fitted values
of the exposure (“Exposure models”). In the second-stage, the
outcome is regressed on the fitted values for the exposure from
the first stage regression, along with other covariates (“Causal
model”). The causal estimate is this second-stage regression
coefficient for the change in outcome caused by a unit change
in the exposure. Details can be found in Burgess and Thompson
(43) (ch. 4.2). All MR analyses were carried out using the ivreg
command of the R library AER.

The first- and second-stage analyses were based on identical
data. The response variables were LF parameters averaged
over either SAP2-SAP3 (predictive model) or SAP1-SAP2-
SAP3 (long-term cross-sectional model). The causal variable
(instrumented by the respective BMI genetic score) was the
logarithm of the BMI averages over either SAP1-SAP2 (predictive
model) or SAP1-SAP2-SAP3 (long-term cross-sectional model).
The choice of log-transforming the BMI averages was made
through an AIC-based selection procedure. This transformation
appeared to be the best linear predictor for all LF outcomes and
the best choice in checking MR Assumption 1 (see the Results
for details).

Explanatory variables for each LF variable were chosen
through a model selection procedure. The initial (maximal),
and a priori sparse, model contained the following covariates:
(instrumented) BMI, Age (centered at 18 years, the minimal
admission age at SAP1), Sex, Height, and Packyears smoked,
along with all their pairwise interactions. Physical activity was
a priori not included in the model due to its potential role as
mediator of the BMI-LF association. We decided not to include
study center and educational level after we observed adding them
to the final causal and observational models did not materially
alter the effect estimates.

It is to be stressed that the inclusion of interactions implies
that all the interaction parameters between BMI and all other
variables must also be considered as causal, and must be
themselves instrumented; this represents an innovative aspect
of this paper, since models used in MR studies are usually
assumed to be additive, and no attempt is made to check
the appropriateness of this assumption. In a non-standard MR
approach and following a suggestion by Bun and Harrison (44),
the interrogation of causal interactions was instrumented by
the product of the instrument (BMI genetic score) and the
relevant concomitant variable. Given that age can be neither
genetically determined nor confounded, BMI:Age interaction is
a special case and our approach cannot be generalized into other
interaction MR analyses.

Starting from the maximal model, a model selection
procedure, based on AIC comparisons, provided the final model
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which retained (instrumented) BMI and its interaction with Age,
as well as Age, Sex, Height, Packyears smoked, Age× Sex and Age
× Height interactions. Standard errors for the causal parameter
IV estimates were obtained by second order delta method.
Wald confidence intervals were derived based on asymptotic
Normality. In all models, the error distribution was assumed
to be Normal, so that in all exposure models the response on
the original scale (BMIs1,s2 and BMIs1,s2,s3) was assumed to be
logNormal (see Supplementary Material for details).

The same final models were selected for the Mendelian
Randomization analyses on the two lung function variables of
main interest in this paper (FEV1/FVC and FEF2575). Their IV
representation is as follows.

Predictive Model

Causal model :E[LFs2,s3] = β0 + βc1log(BMIs1,s2)

+β1Age_cs1,s2 + β2Sexs2

+β3Heights1,s2 + β4PackYrss2

+βc2log(BMIs1,s2)×Age_cs1s2

+β5Age_cs1,s2×Sexs2 + β6Age_cs1,s2

×Heights1,s2 (1)

Exposure models : E[log(BMIs1,s2)] = α0 + α1BMIgs (2)

E[log(BMIs1,s2) :Age_cs1,s2]

= γ0 + γ1BMIgs×Age_cs1,s2 (3)

Long-Term Cross-Sectional Model

Causal model :E[LFs1,s2,s3] = β0 + βc1log(BMIs1,s2,s3)

+β1Age_cs1,s2,s3 + β2Sexs2

+β3Heights1,s2,s3 + β4PackYrss3

+β2log(BMIs1,s2,s3)×Age_cs1,s2,s3

+β5Age_cs1,s2,s3×Sexs2

+β6Age_cs1,s2,s3×Heights1,s2,s3(4)

Exposure models : E[log(BMIs1,s2,s3)] = α0 (5)

+α1BMIgs

E[log(BMIs1,s2,s3) :Age_cs1,s2,s3]

= γ0 + γ1BMIgs×Age_cs1,s2,s3(6)

where: LF (Lung Function) is either FEV1/FVC or FEF2575;

βc1 and βc2 are the causal effect parameters;
all variables with multiple subscripts are averages over the
relevant SAPALDIA surveys (e.g., BMIs1,s2 is the average of
BMIs1 and BMIs2);
Age_c is Age averaged over either SAP1-SAP2 or SAP1-SAP2-
SAP3 and centered at 18 years;
PackYrssi = Pack-years smoked up to SAPi (i= 2 or 3)
BMIgs is the BMI genetic score (either Speliotes, Felix, or
Yengo score).

Observational Association Analysis
The BMI-LF associations were analyzed using linear regression
analyses adjusted for Sex, Age, Height, and Packyears smoked.

TABLE 1 | Characteristics of study participants included in the sample: (A) used

to fit the predictive model; (B) used to fit the long-term cross-sectional model.

(A) Sample of the predictive model

SAP1, SAP2 SAP2, SAP3

N = 2,850

Sex at s2, % female 49.35

Mean (s1, s2) Age, years

(mean; SD)

44.71 (10.81)

Mean (s1, s2) Height, cm

(mean; SD)

170.11 (8.85)

Mean (s1, s2) Weight, kga

(mean; SD)

71.64 (13.25)

Mean (s1, s2) BMI, kg/m2

(mean; SD)

24.44 (3.54)

Packyears of cigarettes at

s2 (mean; SD)

10.47 (17.13)

Mean (s2, s3) FEF2575, mlb

(mean; SD)

2.58 (1.08)

(N = 2,936)

Mean (s2, s3) FEV1/FVC2

(mean; SD)

0.74 (0.07)

(N = 2,939)

Asthma up to s2 (% doctor

diagnosed asthma)

10.30

(B) Sample of the long-term model

SAP1, SAP2, SAP3

N = 2,728

Sex at s2, % female 50.53

Mean (s1, s2, s3) Age, years

(mean; SD)

49.43 (10.78)

Mean (s1, s2, s3) Height,

cm

(mean; SD)

169.63 (8.87)

Mean (s1, s2, s3) Weight,

kga

(mean; SD)

72.02 (13.21)

Mean (s1, s2, s3) BMI,

kg/m2 (mean; SD)

24.95 (3.68)

Packyears of cigarettes at

s3 (mean; SD)

11.48 (18.74)

Mean (s1, s2, s3) FEF2575,

mlb

(mean; SD)

2.89 (1.07)

Mean (s1, s2, s3)

FEV1/FVC2 (mean; SD)

0.76 (0.06)

Asthma (% doctor

diagnosed asthma ever)

13.35

aWeight was self-reported at baseline, and measured at follow-up.
bLung function at SAP3 was corrected for change in spirometry device (33).

For comparability with the MR results, the same final models [(1)
and (4)] were re-fitted, using observed BMI (and observed Age×
BMI interaction) instead of instrumenting them, and estimated
by Ordinary Least Squares.

Sensitivity Analysis
The reliability of self-reported, instead of measured, weight
at SAP1 was assessed by comparing the estimated regression
coefficient and the estimated determination coefficient R2 of
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the BMIs1 vs. BMIs2 and BMIs3 relationships with BMI genetic
scores. In order to check the possible effects due to the non-
Normality of the LF variables we re-fitted the final models (1–
6) employed in MR analysis using log-transformed (FEF2575)
and logit-transformed (FEV1/FVC) parameters as outcomes.
MR analysis was repeated using the ratio FEF2575/FVC as
outcome (20) and for non-asthmatics, again re-fitting the final
models (1–6).

In a preliminary analysis, we also investigated the association
between changes in BMI and changes in LF, to check if this
was a better way of exploiting the longitudinal nature of our
data, compared to the use of medium- and long-term averages.
Notice that we could perform this analysis only in observational
association terms, since no genetic variants for BMI change
are available.

The attrition bias due to potentially disproportionate lost
to follow up over 20 years was interrogated by replicating
the observational association analysis using Inverse Probability
Weighted analysis, where the weights were either (1) the
probability of participation in SAP2 and SAP3 given the variables
used in the models (BMI, LF (either FEF2575 or FEV1/FVC),
Age, Sex, Height, Packyears) measured at SAP1; or (2) the
probability of participation in SAP3 given the variables used in
the models (BMI, LF (either FEF2575 or FEV1/FVC), Age, Sex,
Height, Packyears) averaged over SAP1-SAP2.

As a post-hoc analysis, we conducted stratified analysis
by fitting the same final models, except for the Age×BMI
interaction, in the strata defined based on tertiles of age at SAP1,
using Speliotes score as instrument.

RESULTS

Descriptive Analysis
Characteristics of the study samples used for fitting the
predictive and the long-term cross-section model are presented
in Table 1. Variability of the LF variables, both within and
between SAPALDIA surveys, and stratified by obesity is
graphically depicted in Figures 1A,B. LF was lower among
obese persons, but the difference became weaker (FEF2575)
or disappeared (FEV1/FVC), as participants aged. Inverse
associations not dependent on age were observed for FEV1 and
FVC (Supplementary Figure 2). Partial correlations between
the LF parameters, and the derived means, are presented in
Supplementary Table 3. Histograms of BMI at each survey are
presented in Supplementary Figure 3.

Checking the MR Assumptions
MR assumptions appeared to be satisfied (for details see
Supplementary Material and Supplementary Tables 4A,B). The
three BMI genetic scores derived from different life-course
specific BMI variants were predictors of adult BMI, with the
Yengo score being the strongest instrument (F-statistics 182
and 233 for long-term cross-sectional and predictive models,
respectively). They were not associated with Packyears or Height.
None of the SNPs included in the BMI genetic scores overlap
with 154 smoking-related SNPs (45–47). One of the BMI SNPs
(rs10767664) was in high LD with several smoking initiation

associated SNPs in BDNF (brain derived neurotrophic factor) (R2

= 0.681∼ 0.911), but was not associated with smoking initiation
in SAPALDIA, irrespective of adjustment for Age, Sex, and BMI.
None, two, and sixteen SNPs were excluded from Speliotes, Felix,
and Yengo Score, respectively, due to known association with
smoking phenotypes in PhenoScanner. MR Egger regression did
not indicate potential pleiotropy for main BMI effects. Slight
indication of pleiotropy for the Age × BMI interaction was
observed in FEV1/FVC and FEF2575 prediction models for
Speliotes Score and in FEF2575 cross-sectional model for Felix
Scores (see Supplementary Table 5, Supplementary Figures 4–
6). We did not observe Age, Sex, or their combination to modify
the association of BMI genetic score with phenotypic BMI (data
not shown).

Mendelian Randomization Analysis
Causal effects of BMI on FEV1/FVC and FEF2575 were observed
in the predictive and long-term cross-sectionalmodels (Tables 2–
4 for Speliotes, Felix and Yengo Scores, respectively). For the
Speliotes Score the causal effect of BMI on these two LF
parameters was negative, but attenuated with increasing Age.
Figure 2 illustrates the age-BMI interaction with a 175 cm tall
male never smoker as a reference individual. If he is 18 years old
at SAP1, and hence his average age is 28 over the 20 years period
between SAP1 and SAP3, and during this period his BMI changes
from 25 to 30, employing the estimates in Table 2 we can predict
he will experience on average a decrease in his FEV1/FVC ratio
approximately equal to 0.10. On the other hand, if he is 48 years
old at SAP1, and hence his average age is 58 over the 20 years
period between SAP1 and SAP3, the same change of BMI from
25 to 30 will cause an increase in his FEV1/FVC ratio ≈0.016.
Causal effects were in the same direction, but with confidence
intervals covering no effect, for the Yengo and the Felix Scores.
Effect estimates of the Felix Score were about as large as for
the Speliotes Score, whereas effect estimates for the Yengo score
were considerably smaller. Irrespective of the genetic score, no
BMI interactions with covariates other than Age were present.
No causal effect of BMI on FEV1 or FVC was observed (results
not presented).

Observational Association Analysis
The Ordinary Least Squares estimates of the observational
associations of BMI with FEF2575 and FEV1/FVC, in terms
of both main effects and interactions with Age, are presented
in Table 5. Associations of BMI with FEV1/FVC and FEF2575
were in opposite directions: negative main effects and positive
interactions with Age for FEV1/FVC, positive main effects and
negative interactions with Age for FEF2575.

The comparison of MR causal effects and observational
associations is visually helped by the forest plots in
Figures 3A–D. While directions of MR causal effects and
observational associations were consistent for FEV1/FVC,
they were opposite for FEF2575. Confidence intervals
were considerably wider for causal effects compared to
observational associations.

To further investigate possible sources of the considerable
discrepancy between causal and observational BMI effects, we
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FIGURE 1 | Distributions of lung function variables at each SAPALDIA survey, by obesity state (BMI < 30 kg/m2 vs. ≥30 kg/m2: (A) FEV1/FVC, (B) FEF2575.

tried to check whether this could be due to the “composite”
nature of BMI as a measure of obesity [for a related discussion
of the difficulty of conducting causal inference with composite
exposures, see (48)]. To this goal (see more detailed explanation
in the Supplementary Material), we refitted the second stage IV
models that contained both BMIinstrumented and BMIresidual =
BMI-BMIinstrumented, derived from the IV first stage. BMIresidual,
which reflects the non-genetically determined BMI variability,
explained over 90% of observed BMI variability. We confirmed
the positive association of BMIresidual on FEF2575 and the lack of
its association with FEV1/FVC, consistent with our observational
analysis (see results in Supplementary Table 6).

Sensitivity Analysis
The comparison of regression estimates for BMIs1, BMIs2,
and BMIs3 on the three BMI genetic scores confirmed
the reliability of BMIs1 derived from self-reported weight
(Supplementary Table 7). Irrespective of genetic score,
the regression results for log-transformed (for FEF2575)
and logit-transformed (for FEV1/FVC) outcomes were
not materially different from those obtained using non-
transformed parameters (Supplementary Table 8). No material
changes in causal BMI effects were observed in models using
FEF2575/FVC as outcome (Supplementary Table 9), in models
restricted to non-asthmatics (Supplementary Table 10),
or in models adjusting for study area and education
(Supplementary Table 11). No association between change
in BMI and change in lung function was observed. The
Inverse Probability Weighted analyses did not show material
changes in the associations of BMI with FEV1/FVC and

FEF2575, although slightly attenuated associations were
observed (Supplementary Table 12). Stratified analysis showed
negative causal effects in younger age tertiles [(18.2, 35.2)
and (35.2, 46.6)] but not in the oldest tertile [(46.6, 61.7)],
confirming the MR results found for the Age × BMI interaction
(Supplementary Table 13).

DISCUSSION

The results of this long-term study are consistent with a
causal effect of BMI on AO and possibly small airway
dysfunction. Higher levels of BMI cause lower levels of
FEV1/FVC and FEF2575 up to middle-age, but the effect
lessens with aging. The observed Age × BMI interaction,
together with the stronger effects observed when instrumenting
BMI with SNPs associated with childhood BMI, reflect the
complexity of the BMI phenotype in adults. Adult BMI is
the result of tracking of BMI over the life course and of
genetic influences as well as non-genetic influences on weight
change in both childhood and adulthood. Our results suggest
that the genetically rooted part of BMI patterns in childhood
may be of particular relevance for the level of small airway
function and AO later in life, but that this effect diminishes
with aging, when exogenous influences on BMI become
more relevant.

The observational association between BMI and AO or
COPD has not been well-studied. Results from the two
largest, post-bronchodilation spirometry based studies are
contradictory. In the world-wide BOLD study obesity was
less common in persons with AO (12). The opposite was
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TABLE 2 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.561 0.256 0.029

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.019 0.010 0.065

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.752 0.314 0.017

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.021 0.010 0.040

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −7.152 3.457 0.038

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.222 0.141 0.116

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

2,728 −9.251 4.433 0.037

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.242 0.146 0.096

BMI genetic score: (Speliotes; 32 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age × BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages; for a graphical representation of such BMI total effects by selected ages see Figure 2.

observed in PLATINO study, conducted in Latin American
cities (49). The two studies differ in terms of environment,
lifestyle and adiposity patterns, but their modifying effect
on the BMI-AO association was not reported. SAPALDIA
and comparable cohorts previously pointed to important
interactions between BMI, physical activity and air pollution
with regard to FEV1/FVC and FEF2575 (50–53). In contrast
to the BOLD and PLATINO studies, this MR study was based
on pre-bronchodilation spirometry. But the observed causal
effects of BMI are possibly valid for post-bronchodilation LF,
because results did not change after excluding asthmatics (54,
55).

Composite Nature of BMI Explains the
Discrepancy Between Causal and
Observational Effects
The current novel results are consistent with confounding
in observational obesity- airflow obstruction links. MR and
observational regression coefficients were consistent in direction
for FEV1/FVC, but not for FEF2575. These parameter-specific
differences between observational and causal effects could reflect
differences in unmeasured positive confounders. FEV1/FVC and
FEF2575, with potentially different etiology, may have different

confounders with regard to the association with BMI. The
sparsity of model, which included a minimal set of covariates,
may be responsible in part for the large difference between
observed and causal BMI effects. We cannot exclude entirely
that the observed causal interaction with Age may be the result
of confounding.

But residual confounding unlikely explains most of
the observed difference between causal and observational
associations. Another possible explanation of this discrepancy in
our data is the composite nature of BMI, which is well-known
to be an imprecise measure of different adiposity phenotypes
(56), each with distinct genetic and non-genetic components,
the contribution of which may vary over the life course. This is
a form of measurement error with regard to the true adiposity
measure and susceptible time window of interest. In MR studies
it is usually assumed an exposure has the same impact on health
outcomes, regardless of whether it is due to genetics, or to other
sources. This may only hold true for well-defined biological
traits, but not for composite exposures like BMI. By refitting the
second stage IV model including terms for both, BMIinstrumented

(genetically determined BMI) and BMIresidual (non-genetically
determined BMI), we assumed a measurement error model
that considers misclassification of the true adiposity measure
of interest (see Supplementary Material for a more formalized
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TABLE 3 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.468 0.455 0.300

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.011 0.015 0.490

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.479 0.565 0.400

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.006 0.016 0.730

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −9.932 6.622 0.134

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.269 0.225 0.231

Long-term cross-sectional model

BMI main effect

log(BMIs,1s2,s3)→ FEF2575s1,s2,s3

2,728 −9.111 8.117 0.262

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.163 0.234 0.486

Childhood BMI genetic score: (Felix; 12 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age×BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages.

illustration). The fact that BMIresidual showed association
with FEF2575 but not with FEV1/FVC, consistent with our
observational analysis, supports our measurement error model
and points to different effects of non-genetically determined BMI
on FEV1/FVC and FEF2575. It is conceivable that genetically
determined BMI has negative causal effect, while non-genetically
determined BMI has positive effect, and the measurement error
due to the metric “BMI” as a mixture of the two components
can result in such a discrepancy. A recent metabolomics study
reported that genetic score of BMI predicted actual BMI but not
the metabolic signature of obesity, indicating that the genetic
score captures anthropometric phenotype rather than obesity as
a disease trait (57).

Given: (a) the observed negative effect of the genetic, but
not of the non-genetic, component of BMI on lung function,
(b) that the causal BMI effects were strongest for long-term
cross-sectional models, (c) that genetic scores derived from SNPs
associated with BMI in childhood led to stronger causal BMI
effects, and (d) the observed BMI gene score-age interaction with
inverse associations in the younger age groups, our results are
consistent with the hypothesis that:

1. BMI in childhood impacts on lung function growth and affects
the level of lung function in the first half of life (17), thereby
leading to lower levels of attained lung function later in life
and increasing the risk of chronic respiratory diseases.

2. BMI in adulthood is increasingly (with age) likely to reflect
lifestyle rather than genetic background, which may lead to a
different phenotype not well-captured by genetic instruments.
This phenotype may have no, or even a positive, effect on lung
function, following current discussions about what should be
considered a healthy BMI cutoff for older persons.

Age-Dependent Causal Effects of BMI: Life
Course Perspective of Lung Function
As some SNPs were reported to have specific effects on BMI in
childhood or divergent BMI effects across the life course (25),
the current results may point to specific BMI-related pathways
affecting lung function early in life. Besides age-specific genetic
effects on BMI (25), age-related differences in the distribution of
fat and muscle mass and also in their association with the course
of lung function have been reported (56, 58). These age-related
differences may reflect changes in gene-environment interactions
and the relative contribution of heritability and lifestyle to
BMI over the life course (59, 60). The relative contribution of
genetically determined BMI to lung function may decrease with
aging and the accumulation of molecular damage due to BMI,
determined by lifestyle and environmental risks may become
more relevant.

Besides the above argued potential effect of BMI in early
childhood on lung function growth and its trajectories into
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TABLE 4 | Causal effectsa of BMI on FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N βc1, βc2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.140 0.117 0.233

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.005 0.004 0.255

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.226 0.132 0.088

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.005 0.003 0.173

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

2,850 −2.715 1.594 0.089

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

0.087 0.056 0.118

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

2,728 −3.073 1.885 0.103

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

0.076 0.056 0.175

BMI genetic score: (Yengo; 862 SNPs).
aβc1, causal BMI main effect per one BMI-increasing allele; βc2, causal BMI*Age interaction effect per one BMI-increasing allele.

The negative sign of the causal main effect means that, keeping all other predictors fixed, at age 18 (which has been chosen as the origin in our analysis) BMI has a causal negative

effect on LF. The positive sign of the Age × BMI causal interactive effect implies that, as age increases, the detrimental effect of BMI on LF decreases. As a consequence, the total effect

of BMI becomes null at middle ages and protective at older ages.

adulthood, additional, not mutually exclusive explanations for
the observed evidence of causal Age × BMI interactive effects
on LF outcomes apply. First, it may be a chance finding. Second,
the results may reflect age-related differences in prevalence and
severity of AO. According to the obesity paradox in COPD,
excess weight has an adverse effect on the disease course in
the early stages. But at more advanced stages for the same
degree of AO, obese COPD patients fare better on average
than non-obese patients with regard to mortality and hospital
admission (4). BMI was positively associated with FEF2575/FVC
in heavy smokers with AO (20). Third, age-related changes
in inflammation, immunologic responses and mechanical lung
properties could alter the susceptibility of the airways to obesity
(61). Challenges in interpreting low FEV1/FVC in the elderly
have been discussed (62). Fourth, the observed age-interaction
could in part be explained by survivor bias, if survivors with
high BMI are those most resistant to the adverse LF effects of
obesity. Finally, this study does not allow differentiating between
causal biological BMI effects on LF and causal BMI effects on
phenotypes that are comorbid with LF. The increasing number,
but with decreasing effect size, of BMI associated SNPs arising
from ever larger GWAS is likely to increase the number of
comorbidity signals (24). Although the genetic scores we used in
this study did not show association with height, we cannot rule
out that the causal BMI effects are in part due to height.

BMI Effects on FEF2575, a Potential Early
Indicator of Small Airway Dysfunction
A causal effect on FEF2575 is of interest, as small airways are
frequently involved at an early stage in COPD and asthma
(18) and they have been shown to be adversely affected by
weight and growth patterns in early childhood (17). Adverse
peripheral airway effects of excess weight were demonstrated by
impulse oscillometry (15, 63). The insensitivity of spirometry
to peripheral airway abnormalities may in part explain the
contradictory findings on the BMI- LF association (63). The value
of FEF2575 for early detection of small airway dysfunction has
been questioned (64, 65), and attributed to the parameter’s wide
variability in healthy subjects (66). But several aspects of this
study justify the consideration of FEF2575 as an independent
phenotype. The partial correlations with FEV1, FVC, and
FEV1/FVC were between 0.182 (FEF2575: FVC at SAP1) and
0.868 (FEF2575s1,s2,s3: FEV1/FVC s1,s2,s3) across phenotypes
and time points. The intra-individual variability of FEF2575
was smaller than that of FEV1/FVC. FEF2575 was previously
correlated with functional imaging assessment of small airway
function (67). In obliterative bronchiolitis, the paradigm of small
airway disease, FEF2575 is considered a sensitive diagnostic
marker (68). FEF2575 was correlated with smoothmuscle α-actin
in the small airways, a marker of airway remodeling (69), and
predicted mortality from COPD after 20 years of follow-up (70).
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FIGURE 2 | Predictive and long-term cross-sectional total causal (26) effect of BMI on FEV1/FVC (A,B) and FEF2575 (C,D) for a reference individual (Male, Height =

175 cm., Never Smoker) at specific ages (Blue: at age 28, Orange: at age 38, Red: at age 48; Purple: at age 58; Black: at age 68). (A) Total predictive effect of BMI

(log mean over SAP1-SAP2) on FEV1/FVC ratio (mean over SAP2-SAP3); (B) Total long-term cross-sectional effect of BMI (log mean over SAP1-SAP2-SAP3) on

FEV1/FVC ratio (mean over SAP1-SAP2-SAP3); (C) Total predictive effect of BMI (log mean over SAP1-SAP2) on FEF2575 (mean over SAP1-SAP2); (D) Total

long-term cross-sectional effect of BMI (log mean over SAP1-SAP2-SAP3) on FEF2575 (mean over SAP1-SAP2-SAP3).

Strengths and Limitations
As in any study, results have to be evaluated in the light of
strengths and limitations. The assumptions of MR appeared
to be satisfied, strengthening the choice of carrying out an
MR study. The MR assumptions could still be violated by
unobserved confounders, though. Statistical power of this study

was limited, but the choice of considering medium- and long-
term averages, for both exposure and outcome, alleviated this
problem and allowed studying the stability and age dependency
of causal effects. This study did not confirm previously reported
causal effects of BMI on FEV1 and FVC (2) that were strictly
cross-sectional and based on data from a single time point.
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TABLE 5 | Observational associations of BMI with FEV1/FVC and FEF2575 in predictive and in long-term cross-sectional models.

N β1, βa2 SE p-value

FEV1/FVC

Predictive model

BMI main effect

log(BMIs1s2 )→ FEV1/FVCs2,s3

2,853 −0.006 0.025 0.803

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEV1/FVCs2,s3

0.001 0.001 0.378

Long-term cross-sectional model

BMI main effect

log(BMIs1s2s3 )→ FEV1/FVCs1,s2,s3

2,731 −0.047 0.026 0.076

BMI*Age interaction effect

log(BMIs1s2s3 ):Ages1,s2,s3→ FEV1/FVCs1,s2,s3

0.001 0.001 0.179

FEF2575

Predictive model

BMI main effect

log(BMIs1s2 )→ FEF2575s2,s3

0.746 0.330 0.024

BMI*Age interaction effect

log(BMIs1s2 ):Ages1s2→ FEF2575s2,s3

2,850 −0.019 0.011 0.085

Long-term cross-sectional model

BMI main effect

log(BMIs1,s2,s3)→ FEF2575s1,s2,s3

0.525 0.375 0.162

BMI*Age interaction effect

log(BMIs1,s2,s3):Ages1,s2,s3→ FEF2575s1,s2,s3

2,728 −0.017 0.011 0.114

aβc1, associational BMI main effect; β2, associational BMI*Age interaction effect.

FIGURE 3 | Comparison of associational and MR causal (26) effects for FEV1/FVC [(A): main effect of BMI; (B) AGE × BMI interaction] and FEF2575 [(C) main effect

of BMI; (D) AGE × BMI interaction].
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The sample size did not allow studying the causality of BMI
effects in respiratory health subgroups, e.g., COPD patients.
But the detailed participant characterization in SAPALDIA,
an internationally renowned respiratory cohort (33, 71–73)
allowed excluding persons with a self-report of doctor-diagnosed
asthma at any point during 20 years. Additional limitations
include the restriction of LF to pre-bronchodilation, whereas
post-bronchodilation FEV1/FVC forms the basis for diagnosing
COPD (74), and of obesity assessment to BMI in the absence
of visceral adiposity indicators (68). No measurements of BMI
in childhood of SAPALDIA participants were available, which
would have allowed to instrument childhood BMI. We were
limited in assessing longitudinal effects of BMI or its change on
LF decline in adults. Genetic variants to instrument BMI change
do not exist. Many more than three time points would be needed
to truly assess causal BMI effects on LF change over time. But
biological pathways underlying level of LF and LF decline may
differ. BMI and lung function averaged over a certain time period
as in this studymay be bettermeasures for assessing chronic long-
term associations between the two, given the intra-individual
volatility of these parameters over time. This is supported by the
fact that we found stronger associations by using medium- and
long-term averages, compared to single time point associations,
and a higher predictive ability when compared with that of BMI
change with lung function change. We acknowledge that by
taking averages of BMI and averages of lung function we are
faced with the problem that persons with higher BMI at baseline
and lower BMI at follow-up may have the same long-term BMI
average as persons with lower BMI at baseline and higher BMI
at follow-up. The same caveat may apply for two people with
the same average of lung function. Because this adds to the
problem of reverse causation (and would most likely bias the
associations toward the null), we were also taking a predictive
approach of investigating the associations of BMI averaged over
SAP1 and SAP2 with lung function averaged over SAP2 and
SAP3. As another limitation, we acknowledge that our study
did not investigate non-linearity of the causal effects. Finally, we
cannot exclude that the complete case analysis led to some bias
due to other sources of missingness, although attrition seems to
be by far the most important mechanism generating missingness
in our data. Although the Inverse Probability Weighted analysis
considered bias due to the most important attrition factor, and
for that matter a major mortality determinant, namely smoking,
not all factors influencing non-participation could be considered.
However, the attrition bias would likely bias the associations
toward the null, given that the dropouts would more likely have
experienced increase in BMI and decline in LF.

CONCLUSION

The results of this study suggest that AO and possibly small
airways disease may, in part, be the result of excess weight
in young and middle-aged adults, or even in children. The
results need to be confirmed in the context of a larger MR
study involving tests reflecting small airway dysfunction and

more specific parameters for adiposity at different stages in
life. In addition, the study points to important methodological
needs in future studies on the causal effects of obesity and
lung health, namely to consider adiposity- and lung phenotype-
specific associations from a life course perspective and to
derive and apply genetic instruments reflecting more specific
obesity phenotypes.
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