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Interest in the mathematical modeling of infectious diseases has increased due

to the COVID-19 pandemic. However, many medical students do not have the

required background in coding or mathematics to engage optimally in this approach.

System dynamics is a methodology for implementing mathematical models as

easy-to-understand stock-flow diagrams. Remarkably, creating stock-flow diagrams

is the same process as creating the equivalent differential equations. Yet, its visual

nature makes the process simple and intuitive. We demonstrate the simplicity of system

dynamics by applying it to epidemic models including a model of COVID-19 mutation.

We then discuss the ease with which far more complex models can be produced by

implementing a model comprising eight differential equations of a Chikungunya epidemic

from the literature. Finally, we discuss the learning environment in which the teaching of

the epidemic modeling occurs. We advocate the widespread use of system dynamics to

empower those who are engaged in infectious disease epidemiology, regardless of their

mathematical background.

Keywords: system dynamics, epidemic modeling, undergraduate teaching, engagement with COVID-19 models,

mechanistic epidemiology

INTRODUCTION

Compartmental modeling of infectious disease epidemic behavior in terms of differential
equations depends on so-called dynamical or mechanistic epidemiology, as distinct from classical
epidemiology (1, 2). Both approaches have great utility. However, the skills needed to engage with
the dynamical approach, include coding and fluency in the mathematics of differential equations.
These are frequently absent in undergraduate and postgraduate courses (1). This is compounded
by the fact that models of epidemics tend to be non-linear (2).

As the COVID-19 pandemic sweeps the world, it seems likely that an interest in mechanistic
modeling will grow. Indeed, compartmental modeling of the spread of the COVID-19 pandemic
(3–9), has become critical in our efforts to address the crisis. However, undergraduate medical
students are not typically equipped with the tools to follow the details of such research let alone
to perform their own modeling.

Bellan et al. (2) addressed this by gamifying epidemiology teaching in a manner reminiscent of
the beer distribution game (10). Handel addressed this by developing a set of epidemic simulators
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for the R programming language (1). While both gamification
and so-called epidemic flight simulators are valuable
pedagogical tools, we suggest extending this to facilitate
independent modeling by students who lack experience in
differential equations.

The question we address in this discussion is: can students of
epidemiology who have little or no background in differential
equations or coding, engage meaningfully with the process
of constructing models? Remarkably, the answer to this is a
resounding yes. To achieve this, we propose the adoption of
system dynamics in epidemiology education.

Our advocacy for a system dynamics approach to address
the teaching of deterministic models of epidemics is only one
of many modeling paradigms and approaches. For example,
stochastic models, including agent-based models (ABM) offer an
alternative approach, and they hold advantages in modeling the
early phase of an epidemic while there are still small numbers
of infected individuals, and also when the demographic and
environmental parameters are subject to variability over the
course of the epidemic (11).

Allen (11) showed the utility of these models for Susceptible,
Infected, Recovered (SIR) behavior and for transmission of
malaria involving both humans and mosquitoes. He compared
them to deterministic models. However, these models tend to
require mathematical sophistication and a deep understanding
of the underlying probability distributions which would make
them less suitable for students who do not have a formal
mathematical background.

ABM have been found to be very useful to model respiratory
epidemics (12). With the availability of user-friendly ABM
software, the possibility of including this approach in an
introductory course may be considered.

PEDAGOGICAL PRINCIPLES

Forrester developed the discipline of system dynamics, wherein
all models are expressed in terms of quantities known as
stocks (levels) and flows (rates) (13). The creation of stock-flow
diagrams is analytically identical to writing the equivalent set
of coupled first-order differential equations, and facilitates the
modeling of complex, non-linear systems in a highly intuitive and
accessible manner.

Galea advocates the adaptation of old methods and the
adoption of new ones in epidemiology (14). System dynamics
falls into the category of long-established methods with as yet
untapped potential in the educational sphere of epidemiology
and public health. Indeed, Galea et al. point out the importance
of mathematical models dealing with complexity, feedback
and causality (15), all of which may be addressed by system
dynamics approaches.

Consider the simple example of water accumulating in a
bathtub. The accumulated quantity, known as the stock, is the
water in the tub. This stock results from the inflows and outflows
representing the rates of change of the stock known as flows.
Other examples of stocks include the inventory of vaccines in

a rural clinic, and the number of infected individuals during
an epidemic.

In the vaccine example, the flows would be the rates of
vaccine delivery and usage, respectively. In the case of infected
individuals, the flows represent the rates of infections and
recovery. In each case, the stock is the accumulation of the
difference between the inflow and outflow rates.

Figure 1 shows the stock-flow diagram of the flows called
delivery rate (Rdelivery) and usage rate (Rusage) of vaccine
represented by pipe-like arrows with a valve symbol indicating
variable flow. The diagrams in this paper are constructed in
the Personal Learning Edition (PLE) version of the system
dynamics software Vensim R© (Ventana Systems, Inc., Harvard,
MA, USA) which is available free of charge for educational use.
The accumulating or diminishing stock of vaccines is represented
by the rectangular box. Anyone with an interest in the field can
construct these diagrams, yet they may be surprised to know that
they have created a differential equation, i.e., the rate of change
of the stock of vaccines, dV/dt, is equal to the difference between
the inflow and outflow rates. Mathematically:

dV

dt
= Rdelivery − Rusage. (1)

The two flows and the stock can be populated with numerical
values and units, after which the simulation can be run. This
produces graphical output allowing us to examine the behavior
of vaccine stock.

System Dynamics Applied to
Compartmental Models of Infectious
Epidemics
Many authors, for example Ford (13), have used system dynamics
to implement an SIRmodel.We provide a brief description of this
model’s implementation in Vensim PLE.

This SIR model comprises three accumulations, viz. S, I, and
R, each represented by a stock as shown in Figure 2 (top). For this
example, we will assume zero births and deaths.

We begin by examining how the stock S changes. S has zero
inflow rate and becomes depleted as people become infected and
convert to I. Let us call the flow out of S, and into I, the infection
rate, which is known to be equal to the product of a constant
(β), the proportion of infected individuals (I/N), where N is total
population size, and S. Stated succinctly, infection rate= β(I/N)S.

As the inflow to S is zero and thus infection rate is the only flow
affecting S, we conclude that the rate of change of S, dS/dt, is 0 –
β(I/N)S. A mathematician would state this as the first differential
equation of the SIR model as follows:

dS

dt
= −β

(

I

N

)

S. (2)

The stock, S, and its outflow, infection rate, shown in Figure 2

(top), is the highly visual system dynamics way of stating this first
differential equation of the SIR model.

For the infected stock I, the rate at which I changes is the
difference between the inflow to I, which is the infection rate =
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FIGURE 1 | Stock-flow diagram showing the model of a vaccine (stock) being replenished through the deliveries and depleted through usage (flows). This is a visual

representation of the associated differential equation.

FIGURE 2 | Stock-flow diagram of the SIR epidemic model representing the three differential equations (top) and results of the simulation (bottom) showing the

behavior of S (thick line), I (dashed line), and R (thin line) with parameters S(0) = 106; I(0) = 100; R(0) = 0; β = 0.75/day; and γ = 0.2/day.

β(I/N)S, and the outflow from I, which we will call the recovery
rate. The recovery rate is equal to the product of a constant, γ ,
and I, i.e., recovery rate = γ I. Stated in words, the rate of change
of I is equal to the infection rate minus the recovery rate, which
is also shown in Figure 2 (top) by the stock, I, and its inflow and
outflow. Stated mathematically:

dI

dt
= β

(

I

N

)

S− γ I. (3)

Finally, we examine what brings about the rate of change of
the stock of recovered people, R. As there is no outflow from

R in this model, the rate of change of R must simply be the
recovery rate = γ I, which is again shown visually in Figure 2

(top). Mathematically, this is:

dR

dt
= γI. (4)

Thus, Figure 2 (top) represents the SIR model in a way which
circumvents the need to write the differential equations. Each
of the three stocks, S, I, and R, with their accompanying in
and out flows, represent the respective differential equations.
Once populated with numerical values, including the initial

Frontiers in Public Health | www.frontiersin.org 3 February 2021 | Volume 9 | Article 593417

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Rubin et al. Epidemic Modeling With System Dynamics

values for the stocks, the model may be simulated. The output
is shown graphically as in Figure 2 (bottom). Details of this
model’s construction and simulation can be found in the video
SIR_epidemic.mp4 in the Supplementary Material.

A SIRS model is shown in Figure 3 (top), where the recovered
people gradually lose immunity at a rate that is proportional to
R with a constant α, i.e., immunity loss rate = αR. This waning
immunity requires a modification of two of the stocks because
αR becomes an inflow to S and an outflow from R. The output
of this simulation for a specific set of numerical parameters and
initial values is shown in Figure 3 (bottom).

The utility of SystemDynamics in COVID-19 is demonstrated
by modeling the behavior of the epidemic when a single instance
of a mutated variant arises de novo on day 60 of the simulation.
The mutant strain is assumed to be 50% more infectious than
the primary strain. A standard pair of SIR models with common
S and R are used, one for the primary virus in the infected
population, Ip and the other for themutant variant in the infected
population, Im. With the specific parameters chosen as shown in
Figure 4, the mutant strain becomes the dominant variant.

A number of fundamental epidemiological concepts can be
elucidated through system dynamics models. For example, our
students are typically introduced to the concepts of incidence
rate and point prevalence at various times during their study
of public health. However, these concepts can be understood
from the graphical output of infection rate and the stock I,
respectively. These can be scaled to S or N, respectively. Another
example of conceptual understanding is the basic reproduction
number, R0. This can be explored by experimenting with
the numerical values in the model to determine under what
conditions the epidemic fails to ignite. This gives students an
intuitive sense of the behavior of epidemics with various values
for R0. and the parameters that influence R0. While fundamental
to the study of the spread of epidemics in populations, the
basic reproduction number has also found application in a
complex mathematical model describing the dynamics of the
HTLV-1 virus in the body in the face of a cellular immune
response (16).

Highly nuanced epidemic models have been proposed,
for example the application of an SIR model to a dynamic
network topology in the presence of inter-city commuting
and varying populations (17). Other models include the
influence of the spread of awareness about an epidemic with
a resulting interaction between the two layers of awareness
and infection (18). This idea has been extended to take
account of the influence of the spread of various types of
behavior-modifying information, both positive and negative,
over social networks in the setting of real-world topologies
(19). While a variety of modeling approaches will generally be
required to address this level of complexity, it is certainly
possible to build limited deterministic models of these
systems using system dynamics in order to appreciate their
essential characteristics.

One of the objectives in teaching system dynamics to
medical students is to further an understanding of published
articles and to facilitate access to a domain, which would
otherwise be too mathematically abstract for their training.

To appreciate the utility of the system dynamics approach in
this objective, it is useful to examine an epidemic dynamical
model in the literature and compare it to the equivalent system
dynamics implementation.

Renault et al. (20) reported on field data from the 2005/2006
Chikungunya epidemic on Réunion Island, and Yakob and
Clements (21) developed a deterministic model of this epidemic
comprising eight coupled ordinary differential equations, which
includes both the human host and mosquito vector populations.
In addition to S, I, and R, they include two additional human
host stocks, viz. exposed (E) and asymptomatically infected (Ia),
and three mosquito stocks, viz. susceptible (X), exposed (Y), and
infected (Z). All other symbols represent constants.

The eight differential equations of the Yakob–Clements model
are (21):

dS

dt
= −β1SZ; (5)

dE

dt
= β1SZ − λ1E; (6)

dI

dt
= φλ1E− γ I; (7)

dIa

dt
= (1− φ) λ1E− γIa; (8)

dR

dt
= γ (I + Ia) ; (9)

dX

dt
= µ − β2X (I + Ia) − µX; (10)

dY

dt
= β2X (I + Ia) − λ2Y − µY; (11)

dZ

dt
= λ2Y − µZ. (12)

The equivalent system dynamics model in Figure 5 represents
an alternative to working directly with differential equations
to recreate the Yakob–Clements model. The eight stocks, each
with their respective inflows and outflows constitute a visual
representation of the eight differential equations.

Figure 6 shows the incidence rate generated by both the
system dynamics model and by simulating the equivalent set
of differential equations in Matlab (The Mathworks, Nattick,
MA, USA). This is superimposed on a graph of the incidence
rate produced by Yakob and Clements (21) and field data from
the epidemic (20, 21). By experimentally adjusting the model
parameters, initial stock values, and the level of prior herd
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FIGURE 3 | Stock-flow diagram of the SIRS epidemic model representing the three differential equations (top) and results of the simulation (bottom) showing the

behavior of S (thick line), I (dashed line), and R (thin line) with parameters S(0) = 106; I(0) = 100; R(0) = 0; β = 0.75/day; γ = 0.2/day; and α = 0.01/day.

immunity, the system dynamics simulation achieved a good fit
with the field data, as shown in Figure 6.

The expected exact equivalence between the system dynamics
model output and the output produced by directly simulating the
differential equations in Matlab when using the same parameters
and initial values, is evident (Figure 6). Moreover, as reproduced
in Figure 6, the Yakob–Clements model (21) produced a good fit
with the field data collected during the Chikungunya epidemic
on Réunion Island (20).

As seen in Figure 6, we too were able to achieve a good
fit to the data by implementing the Yakob–Clements model
in Vensim PLE and Matlab. However, the PLE version of

Vensim, which is the primary teaching tool discussed in this
paper, does not support model calibration, and the fit was
achieved by eye. This may, in part, explain the discrepancy
between the output of the original Yakob–Clements model
(21) and our implementations. We point out that model
calibration is a higher-order process which is not included
in our introductory course for medical students. Also, in our
implementations, we determined incidence directly from the
conversion rate of the exposed compartment (E) to symptomatic
infected compartment (I) at each incremental time step. Yakob
and Clements determined the incidence by summing the
daily incidence every 7 days, which facilitated fitting their
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FIGURE 4 | Stock-flow diagram of a simple COVID-19 model with a mutation starting at 60 days, based on the SIR epidemic model (top) and the result of the

simulation (middle) showing the behavior of S (thick line), Ip + Im (dashed line), and R (thin line) with parameters S(0) = 106; Ip(0) = Im(0) = 1; R(0) = 0; β = 0.19/day; γ

= 0.125/day; and infectiousness multiplier = 1.5. The incidence graph (bottom) shows the primary infection rate (thick line) and mutation infection rate (thin line) per

100,000 people.
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FIGURE 5 | Stock-flow diagram of the Yakob–Clements model (21) of the 2005/2006 La Réunion Island Chikungunya epidemic. This is a visual representation of the

eight associated coupled first-order differential equations.

model to the weekly incidence data acquired in the field
study (20).

LEARNING ENVIRONMENT

The application of system dynamics to epidemic modeling is
taught within a larger context in a course entitled Health
System Dynamics (HSD). HSD is run for undergraduate first-
year students in both the 6-year medical school curriculum
and the 3-year medical science curriculum. Most of our
students have not studied mathematics beyond high school
level. Thus, other than the few students who have taken
advanced program mathematics in high school or other
advanced instruction in mathematics, most are acquainted
with differential calculus but not with integral calculus or
differential equations. This is compounded by the fact that our
health sciences curricula do not include any further courses
in mathematics.

The class sizes for both groups are nominally 200 students
per group, and the teaching of such large classes is challenging.
We have produced an online edX course called System
Dynamics for Health Sciences, and we use this course as
part of a flipped classroom model. Students watch the videos
and attempt the exercises. The students subsequently attend
tutorial sessions conducted by senior academic staff, where

they are able to raise any aspects of the course and their
questions are discussed in a group session. In this way, most
of the group benefits from the questions and the direction
of the ensuing discussion is guided largely by the students’
questions. This combined lecture/tutorial style has the advantage
of being student-driven.

The laboratory aspect of the course requires approximately
3 h/week of student time. The students use Vensim PLE
on workstations to solve tasks requiring the development
and analysis of models, including epidemic examples. These
laboratory sessions are usually conducted by junior teaching
assistants who provide assistance with both the modeling
process and with any difficulties students may have with use of
the software.

Assessment involves theory and a laboratory task and students
have frequently been required to perform epidemic modeling in
the laboratory aspect of the examination.

DISCUSSION AND CONCLUSION

Dynamical (mechanistic) methods in infectious disease
epidemiology are important tools in the epidemiologist’s
armamentarium, however, many students don’t have an
adequate background in coding and differential equations to
engage in dynamical modeling.
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FIGURE 6 | Simulation results of the Yakob–Clements model (21) using system dynamics (thin line). The MATLAB® simulation results (plusses) confirm the system

dynamics results, demonstrating the equivalence between system dynamics and direct differential equation modeling. The Yakob–Clements model (21) simulation

results (bars) and the field data (20, 21) (dots) are superimposed for comparison. Week 1 corresponds to week 45 of 2005 in Yakob and Clements’ paper (21).

System dynamics offers a highly intuitive approach to
modeling in epidemiology. It provides a visual representation
of dynamic phenomena in epidemiology in terms of two basic
elements, viz. the rates of conversion from one population
category to another called flows (rates), and the accumulated
populations in each category called stocks (levels).

Building models of epidemics in system dynamics is intuitive
and easy, yet the models actually represent sets of coupled
first-order differential equations. However, the system dynamics
methodology is readily accessible to students of epidemiology
who do not have a background in differential equations
or coding.

Unlike the use of so-called flight simulators, which facilitate
simulation of epidemics with user-chosen numerical constants,
system dynamics allows the student of infectious disease
epidemiology to engage with the process of creating their own
models. This intuitive approach facilitates model development

in a manner, which is equivalent to working directly with the

differential equations.
An ability to engage with deterministic models affords

undergraduate medical students a far greater participation in
the public health debates on epidemics, which are frequently
dependent on mathematical models. The COVID-19 pandemic
has highlighted this need for greater modeling capacity
among medical professionals. In addition to mathematically
naïve students, the system dynamics approach may also

have utility for the community of experienced modeling
practitioners by facilitating a rapid prototyping environment
for the development and exploration of complex models. The
ability to create a model in a way that explicitly shows
the accumulations and flows has great advantages both in
terms of iteratively exploring model designs, and also in
terms of demonstrating the models to policymakers and other
interested stakeholders.
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