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Background: Previous studies have constructed prediction models for type 2 diabetes

mellitus (T2DM), but machine learning was rarely used and few focused on genetic

prediction. This study aimed to establish an effective T2DM prediction tool and to

further explore the potential of genetic risk scores (GRS) via various classifiers among

rural adults.

Methods: In this prospective study, the GRS for a total of 5,712 participants from the

Henan Rural Cohort Study was calculated. Cox proportional hazards (CPH) regression

was used to analyze the associations between GRS and T2DM. CPH, artificial neural

network (ANN), random forest (RF), and gradient boosting machine (GBM) were used

to establish prediction models, respectively. The area under the receiver operating

characteristic curve (AUC) and net reclassification index (NRI) were used to assess the

discrimination ability of the models. The decision curve was plotted to determine the

clinical-utility for prediction models.

Results: Compared with the individuals in the lowest quintile of the GRS, the HR (95%

CI) was 2.06 (1.40 to 3.03) for those with the highest quintile of GRS (P trend < 0.05).

Based on conventional predictors, the AUCs of the prediction model were 0.815, 0.816,

0.843, and 0.851 via CPH, ANN, RF, and GBM, respectively. Changes with the integration

of GRS for CPH, ANN, RF, and GBM were 0.001, 0.002, 0.018, and 0.033, respectively.

The reclassifications were significantly improved for all classifiers when adding GRS (NRI:

41.2% for CPH; 41.0% for ANN; 46.4% for ANN; 45.1% for GBM). Decision curve

analysis indicated the clinical benefits of model combined GRS.

Conclusion: The prediction model combined with GRS may provide incremental

predictions of performance beyond conventional factors for T2DM, which demonstrated

the potential clinical use of genetic markers to screen vulnerable populations.

Clinical Trial Registration: The Henan Rural Cohort Study is registered in the Chinese

Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). http://www.chictr.

org.cn/showproj.aspx?proj=11375.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a global health threat (1).
There has been an abrupt ascent of this disease worldwide,
particularly in developing areas (2). Even though low- and
middle-income countries account for 87% of diabetes-pertinent
deaths, they only account for 35% of diabetes-pertinent health
expenditure worldwide (2). Risk prediction tools have been
developed as a prevention strategy to identify individuals at high
risk of T2DM in specific populations (3–6). However, this work
has largely been conducted using classical statistical models with
strict and limited assumptions such as logistic and Cox regression
and only include common conventional T2DM risk factors.
Recently, machine learning methods have been used to solve
these prediction problems with considerable discrimination (7–
9), and could provide an appropriate approach to data involving
interrelated and complex structures.

Genetic factors as well as common conventional risk factors
are contributed to the causes of T2DM and have led to much
interest in disease prediction (10). Along with the rise of
the genome-wide associations study (GWAS), a handful of
significant single nucleotide polymorphisms (SNPs) associated
with T2DM have been identified in recent years (11, 12). The
SNPs are often massed as a genetic risk score (GRS) using genetic
information (13–17). However, the practical use of genetic
variation is still controversial (18) and is rarely used as a practical
prediction factor in clinical applications. Genetic predisposition
presents disparity among contrasting ethnicities (10) and recent
studies for genome analysis have largely involved non-Asian
populations (14–17) with few cohort studies conducted (13).

It is therefore imperative to undertake a study of genetic
prediction for T2DM in individuals from an Asian cohort.
Furthermore, low socioeconomic status is associated with an
increase in T2DM risk (19, 20) and few studies have performed
T2DM prediction in economic and resource-limited areas in
China. Therefore, this study aimed to establish an effective T2DM
prediction tool and further evaluate the potential of GRS in
T2DM prediction among a rural Chinese population from a
3-years follow-up cohort study using machine learning methods.

MATERIALS AND METHODS

Study Design and Participants
The Henan Rural Cohort Study was a large-scale study with the
long-term purpose examining the natural histories of chronic
non-communicable diseases (NCDs) in the Henan Province
of China. Detailed descriptions of study design and eligibility
criteria have been published elsewhere (21–23). Participants who
were permanent residents aged 18–79 years old were recruited.
A subpopulation of this cohort comprising 8,268 individuals,
whose venous blood samples were available for DNA extraction
and T2DM SNPs selection, was included. The baseline survey
was performed in 2015 and a follow-up survey was performed in
2018. The standardized questionnaire and physical examination
were carried out during both baseline and follow-up surveys by
specially trained staff.

For this study, we focused on participants who were available
for the known outcome, complete predictors, and genotype data.
This resulted in 5,712 individuals after the exclusion of prevalent
T2DM cases at baseline (n = 764), unknown incident T2DM
(n = 686), and incomplete epidemiology and genotype data
(n = 1,106). With the 3-years follow-up time, a total of 5,712
participants was randomly split into the training (70%, n =

3,998) and test datasets (30%, n= 1,714) to establish models and
evaluate prediction performance, respectively.

This study was approved by the Zhengzhou University Life
Science Ethics Committee [Code: [2015] MEC (S128)]. Written
informed consent was obtained from all participants.

Variables and Outcome Collection
During the baseline survey, information including demographic
characteristics, lifestyle, personal history of diseases, and parental
history of diabetes was collected by face to face interviews.
Venous blood samples were obtained after 8-h overnight fasting
and sent with cold-chain transportation for lipid profile, fasting
plasma glucose (FPG) measurements, and DNA extraction.
The SNP genotype was performed using a custom-by-design
SNPscanTM Kit (Genesky Biotechnologies Inc., Shanghai, China).
Anthropometric measurements including height, weight, waist
circumference (WC), and resting blood pressure were conducted
at least twice using calibrated instruments. Hypertension was
considered as systolic blood pressure (SBP) > 140 mmHg,
and/or diastolic blood pressure (DBP) > 90 mmHg, or the
current use of antihypertensive medication. Dyslipidemia was
identified as having one or more of the following conditions: total
cholesterol (TC) ≥6.2 mmol/L (240 mg/dL); triglycerides (TG)
≥ 2.3 mmol/L (200 mg/dL); high-density lipoprotein cholesterol
(HDL-C) ≤ 1.0 mmol/L (40 mg/dL); low-density lipoprotein
cholesterol (LDL-C) ≥4.1 mmol/L (160 mg/dL) or use of lipid-
lower drugs in recent days. Physical activity was defined in
previous literature (24). Participants whose mother or father had
diabetes were considered as having a parental history of diabetes.

New-onset type 2 diabetes was the primary outcome in this
study, defined as self-reported new physician diagnosis of T2DM
with current use of oral hypoglycemic medications or insulin, or
FPG ≥ 7.0 mmol/L during the follow-up period.

SNPs Selection and GRS
In this study, a total of 17 SNPs identified in GWAS and
replicated within our cohort individuals were used to construct
a weighted genetic risk score, which involved of rs10811661,
rs10886471, rs1359790, rs1436955, rs17584499, rs2237892,
rs2299620, rs2383208, rs4712523, rs5945326, rs6467136,
rs7041847, rs7403531, rs7754840, rs7756992, rs831571, and
rs9470794. The detailed filters were applied using the following
procedure: first, we replicated 17 T2DM-associated SNPs
reported by previous GWAS in a pilot case-control study among
our population. Secondly, a natural population derived from the
Henan Rural Cohort Study was the target group (as mentioned
before) to explore the association of 17 SNPs with incident
T2DM risk during 3-years follow-up.

The cumulative effects of 17 SNPs were accessed by calculating
a GRS. In this study, a weighted GRS was developed using the
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risk effect from the Cox proportional hazards (CPH) regression
model. Considering the assumption that the effect size is not
equal across risk alleles, the time of T2DM onset was used
to estimate time-specific risks of T2DM for each participant.
Derived from the survival analysis model, the weighted GRS was
therefore designed to predict the time-related risk of disease (25).
The score was calculated as below: Firstly, each SNP was coded
as 0/1/2 according to the number of the risk alleles. Secondly,
the weights of the SNPs derived from the CPH regression
[the Ln of hazard ratios [HRs]] for T2DM were obtained.
Then GRS was calculated using the following formula: GRS =
∑k

i=1 Ln(HRi)SNPi, where kmeans the number of SNPs included
in this study; Ln(HRi)means the Ln of the hazard ratio of the i-th
SNP; SNPi means the risk allele dosages (0/1/2) of the i-th SNP.
A list of the information of SNPs in this study was provided in
Supplementary Table 1.

Prediction Model Construction
Non-genetic T2DM candidate predictors, consisting of age,
gender (1 = man; 0 = woman), FPG, BMI, HDL-C, TG,
hypertension (1=with hypertension; 0=without hypertension),
parental history of diabetes (1 = with history; 0 = without
history), physical activity (1 = high level; 0 = low level), WC,
history of dyslipidemia (1 = with history; 0 = without history),
DBP, and SBP, are identified in previous studies (4, 5), while GRS
was considered as the additional genetic predictor. The training
dataset was used to select the candidate predictors. Given the
time window between the measurement of predictor levels and
the occurrence of the developed T2DM, the CPH regression
could be suitable for the development of the basic models (26).
Thus, CPH was chosen as the general statistical model to select
the predictors and predict T2DM during 3-years follow-up.
Predictors were selected by CPH as following: (1) a univariate
CPH regression was used to analyze the T2DM risk of all
candidate-conventional-factors in training dataset; (2) we fitted
the significant variables (P ≤ 0.05) from univariate analysis into
multivariate CPH regression models using stepwise selection,
with P ≤ 0.05 for inclusion and P > 0.10 for exclusion. For each
iteration, the significant variable (P ≤ 0.05) with the lowest P-
value was included. After adding a variable, the insignificant (P
> 0.10) variable was excluded until all variables were significant.

After selected the predictors, we used the training data to
determine the optimal parameters of each prediction model. We
then examined performance in the test dataset using CPH, and
machine learning methods. In the training procedure, the 10-
fold cross-validation was conducted and the Grid search was
applied to select the hyper-parameters. To ensure the stability of
the parameter, we repeated the process 100 times. We used the
area under the receiver operating characteristic curve (AUC) as
an indicator to evaluate the model performance. The parameter
leading to the highest AUC of the model was considered to
be the optimal parameter. Finally, the models with hyper-
parameters were used to evaluate the performances in the test
dataset. The work flow of the model construction was shown in
Supplementary Figure 1.

For CPH model construction, the conventional prediction
model was derived using the selected risk factors above. The

effects of all predictors were from the fitted CPH regression in
the training dataset. Then prediction models were developed
in the test dataset to predict onset T2DM risks for each
participant. The conventional + GRS model was constructed
using a similar procedure. The predictor-related coefficients in
CPH models are shown in Supplementary Table 4.

Here, machine learning methods named ANN, RF, and GBM
were used to construct and test prediction models. Published
studies have demonstrated the ANN (27), RF (28), and GBM
(29) have considerable performances with medical data in disease
prediction. Our previous study indicated that the predictive
abilities for these three classifiers were the top three (30). Using
the Grid searchmethod, the optimal parameters were determined
to build models Optimization details and the final parameters are
shown in Supplementary Table 5.

ANN is one of the non-linear regression models designed
to simulate the structure and function of the human brain
to manipulate information using the characteristics of self-
adaption, self-organization, and self-learning. Multiple neurons
are contained in the input, hidden, and output layers of ANN.
Directed arcs with adjustable coefficients connect the layers.
ANN trains the input information to change the coefficients in
the transfer function, and then get one output, which can cognize
the relationships patterns of data imitating the neural frame
of human.

RF is one of the ensemble learning methods with randomly
produced independent decision trees. Each decision tree bases
on a randomly selected subset and selects the optimal attribute
for partitioning. The randomly selected subset using bagging
introduces amounts of random trees to get an ensemble of
classification. Then the average classification is selected by
choosing the majority of votes. Using the bagging theory, RF
seems to be an accurate and robust tool without overfitting.

GBM is an additive algorithm and boosting technique is
applied to construct weaker classifiers into multiple iterations
to get an improved and stronger model. In each iteration,
the same training set data is used to fit various classifiers
(weak classifiers), and repeated progress is conducted to get an
enhanced model that overcomes the shortcomings of previous
weaker classifiers based on the residual. The progress of
model-optimized iteration provides new base-learners with
more accuracy.

Statistical Analysis
Data for numerical variables were expressed as mean± standard
deviation and compared by Student’s t-test, while categorical
variables were expressed in frequency and percentage (n, %) and
compared by chi-squared test. CPH regressionmodel was used to
estimate the associations of GRS. The dose-response relationship
between GRS and T2DM was explored.

For the performance of the prediction model, AUC was
used to assess model discrimination, while the Brier Score
(BS, mean square of the deviation between predicted and
observed risks) was listed to evaluate the calibration. Higher
AUC and lower BS indicate better discrimination and calibration,
respectively. The incremental predictive value of GRS for an
additional predictor to the conventional risk prediction model
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TABLE 1 | Baseline characteristics of subjects in the cohort study.

Parameters T2DM

(n = 324)

NON-T2DM

(n = 5,388)

P-value

Mean ± SD

Age (year) 53.25 ± 10.46 51.04 ± 12.12 0.018

FPG (mmol/L) 5.94 ± 0.61 5.31 ± 0.53 <0.001

WC (cm) 89.63 ± 10.9 82.57 ± 9.93 <0.001

BMI (kg/m2 ) 26.60 ± 3.82 24.51 ± 3.50 <0.001

HDL-C (mmol/L) 1.11 ± 0.23 1.18 ± 0.26 <0.001

LDL-C (mmol/L) 2.63 ± 0.80 2.60 ± 0.74 0.122

TG (mmol/L) 1.95 ± 0.97 1.49 ± 0.77 <0.001

TC (mmol/L) 4.64 ± 0.97 4.45 ± 0.89 <0.001

SBP (mmHg) 135.45 ± 23.5 125.34 ± 20.04 <0.001

DBP (mmHg) 83.68 ± 12.12 78.42 ± 11.51 <0.001

Frequency (%)

Man 108 (33.33) 1,966 (36.49) 0.251

Physical activity 190 (58.64) 2,818 (52.30) 0.026

Dyslipidemia 192 (59.30) 2,266 (42.06) <0.001

Hypertension 186 (57.41) 1,648 (30.59) <0.001

Parental history of diabetes 36 (11.11) 274 (5.09) <0.001

SD, standard deviation; T2DM, type 2 diabetes mellitus; FPG, fasting plasma glucose; WC, waist circumference; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol;

LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.

was evaluated by the change of AUC and risk reclassification
analysis. DeLong’s method was used to compare the difference
of AUCs between prediction models (31). The continuous
net reclassification improvement (NRI) was calculated to
detect model improvement after adding genetic markers (32).
NRI equals the sum of the percentage of patients who
were correctly reclassified and the percentage of disease-
free individuals who are correctly reclassified. Bootstrapping
was used to estimate the 95% confidence intervals (CIs)
of NRI with 1000 replications. Higher NRI indicates better
reclassification. For the clinical impact of GRS, decision
curve analysis was applied to calculate the net benefit
by comparing the conventional and conventional + GRS
models (33).

Statistical analysis was implemented by Python
(version 3.7.3) and R software (version 3.6.1). All tests
were two-sided (P < 0.05).

RESULTS

Baseline Characteristics
The baseline characteristics of the subjects in the total dataset
are outlined in Table 1. A total of 324 individuals developed
T2DM (incidence, 5.67%) among 5,712 subjects. Compared with
participants without developed T2DM, the developed T2DM
patients were older and heavier, and a larger proportion had
a history of hypertension and dyslipidemia with not optimistic
blood pressure and lipid profiles (higher SBP, DBP, TG, lower
HDL-C), as well as higher FPG (all P < 0.05). However,
the individual distributions were different in training and test
datasets (Supplementary Table 2).

Analysis of the Relationship Between GRS
and T2DM
The associations between GRS and incident of T2DM are
displayed in Figure 1. Accounting for covariates of age, gender,
FPG, WC, TG, parental history of diabetes, and hypertension
(adjusted model 2, detailed hazard function was expressed in
Figure 1), the HR (95% confidence interval, CI) of continuous
GRS was 1.81 (1.37–2.39). Compared with the lowest quintile
of the GRS, the HR (95% CI) of those with the highest quintile
of GRS in adjusted model 2 was 2.06 (1.40–3.03). The dose-
response relationship between GRS and developed T2DM was
also observed with and without adjusted (P trend < 0.05).

Conventional Risk Factors Selection
During univariate CPH regression in the training dataset,
age, FPG, BMI, HDL-C, TG, hypertension, parental history
of diabetes, physical activity, WC, history of dyslipidemia,
DBP, and SBP were significantly associated with T2DM
(Supplementary Table 3). Then, during the stepwise selection,
FPG, TG, WC, hypertension, and parental history of diabetes
were the T2DM risk factors (Supplementary Table 3), and a
conventional-risk-prediction model was constructed using the
predictors above.

Comparison of Models With and Without
GRS
We tested the model discriminations and calibrations of 4
classifiers in the test dataset to evaluate the performance
of models (Table 2 and Figure 2). For conventional risk
prediction models, the AUCs (95% CI) were 0.815 (0.795–0.833),
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FIGURE 1 | Associations between the genetic risk score and the risk of incident type 2 diabetes. The hazard function of adjusted model 1 was

h(t)adjusted−model−1=h0(t)exp(βGRS*GRS+βage*age+βgender*gender+βFPG*FPG+βPHOD*PHOD), and the hazard ratios of the GRS were calculated accounting for the

covariates of age, gender, fasting plasma glucose (FPG), and parental history of diabetes (PHOD). The hazard function of adjusted model 2 was

h(t)adjusted−model−2=h0(t)exp(βGRS*GRS+βage*age+βgender*gender+βFPG*FPG+βPHOD*PHOD+βWC*WC+βTG*TG+βhypertension*hypertension), and the hazard ratios of

the GRS were calculated accounting for the covariates in adjusted model 1 and waist circumference (WC), triglycerides (TG), and hypertension as well. h0(t) indicates

the baseline hazard function. GRS, genetic risk score; FPG, fasting plasma glucose; PHOD, parental history of diabetes; WC, waist circumference; TG, triglycerides;

CI, confidence interval.

0.816 (0.797–0.834), 0.843 (0.825–0.860), and 0.851 (0.834–
0.868) using CPH, ANN, RF, and GBM methods, respectively.
Calibrations were considerable and the BSs of CPH, ANN, RF,
and GBM were 0.053, 0.044, 0.041, and 0.033, respectively.

The prediction performances of the conventional + GRS
models are displayed in Table 2 and Figure 2. For the CPH
classifier, the AUC of the prediction model with GRS was not
significantly increased (the change of AUC: 0.001, 95% CI:
−0.009 to 0.010) and the BS value was also not better. However,
reclassification was improved after accounting for the GRS in the
prediction model (NRI: 41.2%, 95% CI: 27.8–54.1%).

Machine learning methods showed excellent performance of
the prediction models with the addition of GRSs (Table 2 and

Figure 2), especially for GBM (Supplementary Table 6). When
adding the GRS to the basic model, the changes of AUCs
went up to 0.002, 0.018, and 0.033 based on ANN, RF, and
GBM, respectively. Notably, using RF and GBM, significant
improvements of AUC were observed (P = 0.023 for RF, P =

0.041 for GBM) and the combined models presented better BSs.
For reclassification analysis, the NRIs (95%CI) were 41.0% (25.1–
52.7%), 46.4% (35.2–57.6%), and 45.1% (18.0–57.7%) for ANN,
RF, and GBM (all P < 0.05).

Clinical Impact of GRS
Decision curves were plotted for the conventional and
conventional + GRS models using test data (Figure 3). For

Frontiers in Public Health | www.frontiersin.org 5 February 2021 | Volume 9 | Article 606711

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Genetic Prediction for T2DM

TABLE 2 | Performance of type 2 diabetes risk models via various classifiers.

Classifier Prediction modela Discrimination BS NRI (95% CI)c %

AUC (95% CI) 1AUC (95% CI)b

CPH Conventional model 0.815 (0.795 to 0.833) - 0.053 -

Conventional + GRS model 0.815 (0.796 to 0.833) 0.001 (−0.009 to 0.010) 0.133 41.2 (27.8 to 54.1)

ANN Conventional model 0.816 (0.797 to 0.834) - 0.044

Conventional + GRS model 0.818 (0.799 to 0.836) 0.002 (−0.015 to 0.019) 0.045 41.0 (25.1 to 52.7)

RF Conventional model 0.843 (0.825 to 0.860) - 0.041 -

Conventional + GRS model 0.861 (0.844 to 0.877) 0.018 (0.002 to 0.034) 0.040 46.4 (35.2 to 57.6)

GBM Conventional model 0.851 (0.834 to 0.868) - 0.033 -

Conventional + GRS model 0.885 (0.869 to 0.899) 0.033 (0.001 to 0.065) 0.033 45.1 (18.0 to 57.7)

Bold values represent P < 0.05. CPH, Cox proportional hazards regression model; ANN, artificial neural network; RF, random forest; GBM, gradient boosting machine; GRS, genetic

risk score; AUC, the area under receiver operating characteristic curve; BS, brier score; NRI, net reclassification improvement; CI, confidence interval.
aConventional model included FPG, WC, TG, parental history of diabetes, and hypertension.
b1AUCs were the differences of AUCs among conventional-genetic-combined models and conventional model.
cNRI showed the reclassification of the prediction models with genetic risk scores compared to conventional model.

CPH, ANN, and RF classifiers, the decision curves crossed
repeatedly for models with and without GRS. Conversely, within
almost all ranges of the threshold probability, the net benefit
of the model combined GRS was higher than that of the basic
conventional model for the GBM classifier.

DISCUSSION

The present large-scale cohort study among a Chinese rural
population calculated a GRS, assembling the information of
17 identified susceptible SNPs for T2DM, and evaluated their
additional prediction performances by applying CPH and
machine learning methods. In this study, a basic prediction
model consisting of common conventional T2DM risk factors
was established and showed impressive and robust performance
using machine learning methods. With the addition of genetic
information to the basic model, significant improvement was
observed, which means more accurate classification for the
patients and non-T2DM individuals. These results indicate
that the use of genetic information might help promote the
practical prevention of T2DM. Therefore, using a prediction
tool with genetic information in diabetes screening could help
select high-risk populations and enable interventions to prevent
the disease.

Our analysis of the prediction model selected five predictors
(FPG, TG, WC, hypertension, and parental history of diabetes),
had robust and considerable discrimination (AUC ≥0.815
for all classifiers) and the AUC combined GRS came up
to 0.851 based GBM. Compared with the established T2DM
risk assessment tools (3–6), similar factors in the prediction
model were found. One widely adopted incident T2DM
risk engine was established by Wilson et al. based on the
American population from Framingham Offspring Study (5).
Applying FPG, TG, HDL-C, BMI, hypertension, and parental
history of diabetes in prediction, the AUC of the model
reached 0.85. Julia et al. updated the QDiabetes-2018 risk

prediction algorithm and the AUC of the model was 0.878
for women and 0.855 for men (3). However, there were
more than 10 predictors in this sophisticated risk prediction
algorithm. For Chinese rural individuals, our prediction
model using common conventional risk factors might be
an effective and durable tool to distinguish T2DM patients
and non-patients.

As an aggregation to interpret genetic predisposition, the
additional predictive value of GRS upon the basic model
with only conventional factors was significantly considerable,
especially using machine learning. Our results demonstrated that
adding the genetic risk score of GRS caused an impressive and
significant increase of AUC from 0.851 to 0.885, based on GBM.
Notably, GRS accounted for the improved reclassification and
the considerable NRIs were 41.2%, 41.0%, 46.4%, and 45.1%
for CPH, ANN, RF, and GBM, respectively, which suggested
that GRS helped correct risk stratification to screen adults
at high risk for T2DM. Previous work also demonstrated
the potential of GRS among people from Asia (13), the UK
(17), and Finland (34). Genetic information offers subtler
and more unique characters for each individual in T2DM
prediction compared with common epidemiological data.
The predicted value of the GRS and the clinical use of
genetic markers warrants further larger-scale internationally-
cooperative investigations.

Machine learning classifiers in this analysis presented a
higher performance compared with the classical CPH model,
especially via GBM. Data mining methods, which interpret
the nonlinear associations and high dimensional of a large
number of variables without model assumption, might be
appropriate as a useful and robust tool in T2DM risk
prediction. Several studies have demonstrated that machine
learning methods showed higher predictive performance in
risk prediction (7, 8, 35). Accurate and robust prediction
of genome data, which have complex traits and multivariate
correlation, was also conducted using data mining methods in
this analysis. Previous research indicates that this technology
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FIGURE 2 | Receiver operating characteristic (ROC) curves of prediction models via four classifiers. The prediction models constructed using conventional (blue solid

line) and conventional + GRS (red dashed line) predictors were compared via CPH, ANN, RF, and GBM as shown in (A–D), respectively. GRS, genetic risk score;

CPH, Cox proportional hazards regression model; ANN, artificial neural network; RF, random forest; GBM, gradient boosting machine.

is effective in exploring the potential of genetic markers (7–
9, 18). The decision curve showed the higher net benefit of
the model with GRS via GBM, which demonstrated the clinical
utility of genetic information to promote decision-making
for clinicians. In particular, ANN had a minor improvement
in discrimination compared with CPH (differences < 0.005).
However, higher AUCs were observed for RF and GBM models,
which demonstrated the reproducible high performance of
ensemble learning.

The strengths of this study included our analysis in which the
predictive value of GRSs was evaluated among 3-years follow-up
Chinese rural adults. This approach might offer supplementary
evidence of the clinical utility of hereditary information in Asia
and resource-limited areas. Machine learning methods were
also applied to derive predictive tools of T2DM and showed
considerable and robust prediction performance to explore the
potential of GRS compared with the classical statistical methods.
Limitations included first, the fact that there were only 17
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FIGURE 3 | Decision curve analysis for prediction models via four classifiers. The net benefits of the prediction models using CPH, ANN, RF, and GBM were plotted in

(A–D), respectively. The blue solid line performed the prediction model constructed using conventional predictors. The red dashed line performed the prediction model

constructed using conventional + GRS predictors. The gray solid line performed the assumption that all individuals were in the presence of intervention. The black

solid line performed the assumption that all individuals were in the absence of intervention. GRS, genetic risk score; CPH, Cox proportional hazards regression model;

ANN, artificial neural network; RF, random forest; GBM, gradient boosting machine.

genetic loci of T2DM for GRS construction. Nevertheless, four
classifiers were employed to explore the utility of GRS and the
results were consistent. Second, there was no external cohort
to validate the prediction model. In our analysis, however, a
total of 30% of individuals were randomly selected to test the
performance of the risk prediction models (test datasets). Finally,
the participants in this study were from Chinese rural areas and
future studies should expand into the population with different
inherited-background and economic circumstances.

CONCLUSION

The present study has demonstrated that the additional

predictive value of genetic risk scores for incident T2DM was
significantly improved among 3-years follow-up in Chinese
rural adults, especially using machine learning. With further
development of data mining methods, hereditary information
might offer finer and more unique risk prediction for
individuals and help to classify T2DM patients and non-patients.
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From the perspective of prevention, the conventional factors
of T2DM might be enough for general T2DM screening
but with further improvement and the use of machine
learning, genome information might enable more accurate
and intensive predictions for precision medicine to promote
clinical practice.
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