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In this study, we estimate the health benefits of more stringent alternative energy goals

and the costs of reducing coal-fired power plant pollution in China projected in 2030.

One of our two overarching alternative energy goals was to estimate the health benefits

of complete elimination of coal energy, supplemented by natural gas and renewables.

The second was a policy scenario similar to the U.S. 2013 Climate Action Plan (CAP),

which played a pivotal role leading up to the 2015 Paris Climate Agreement. We used

the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model created

by the International Institute for Applied Systems Analysis for our model simulations. We

found that 17,137–24,220 premature deaths can be avoided if coal energy is completely

replaced by alternative energy, and 8,693–9,281 premature deaths can be avoided if

coal energy is replaced by alternatives in a CAP-like scenario. A CAP-like scenario using

emission-controls in coal plants costs $11–18 per person. Reducing coal energy in China

under a CAP-like scenario would free up $9.4 billion in the annual energy budget to

spend on alternatives, whereas eliminating the cost of coal energy frees up $32 billion.

This study’s estimates show that more stringent alternative energy targets in China are

worth the investment in terms of health.
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INTRODUCTION

Climate change affects the health of populations across the globe as temperatures and sea levels
rise, and weather becomes more extreme (1, 2). Because energy production remains the primary
driver of greenhouse gas emissions (2), addressing the energy-use roots of global climate change
ultimately affects human health. The most carbon-intensive energy source is coal. Burning coal
emits about twice as much carbon dioxide (CO2) per unit of energy compared to the combustion
of natural gas (3). In addition, burning coal generates emissions of fine particulate matter (PM2.5)
or particles measuring <2.5 micrometers. PM2.5 travels deep into human airways causing cell
damage to the lungs, which can lead to inflammation, cytotoxicity, cell death, as well as increases in
cardiovascular disease, respiratory disease, lung cancer, asthma, and death (4, 5). PM2.5 also impacts
brain functioning and mental health (6). A considerable number of published scientific literature
shows a causal relationship between mortality and exposure to PM2.5 (5).

Therefore, reducing coal-fired power plant emissions to mitigate climate change can
simultaneously decrease hazardous PM2.5. This represents a side benefit, or health “co-benefit,”
of climate change policy measures (7). However, society is still reliant on fossil fuel energy. Three
thousand two hundred and seventy-two coal-fired power plants exist worldwide with 1,199 more
proposed (8). Of these 1,199 new coal-fired power plants, over 1/3rd of the capacity will come
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from China (8). Moreover, China accounts for 46% of coal
consumption worldwide, followed by the United States (13%)
and India (9%) (8). China also accounts for 20% of the global
population (9) and has experienced a recent rise in its air
pollution index (10). Thus, the large and rapidly growing
Chinese population is exposed to an increasingly large amount
of coal pollution with 13% of Chinese cities severely polluted,
particularly during winter months when many places in China
rely on coal as the main source for heating (10).

In this study, we estimate the health benefits and costs of
reducing coal-fired power plant pollution to see whether more
stringent alternative energy goals are worth the investment
in China. This is important because it may not take much
investment (or less investment than originally thought by
policymakers) to reduce coal usage more aggressively in China in
the coming years. For example, supplementing coal energy usage
with alternatives and better controlling coal in the U.S. under
the 2013 Climate Action Plan (CAP) would have prevented up
to 6,000 annual deaths, 3,000 heart attacks, and 150,000 asthma
attacks annually in the United States (11). The U.S. Climate
Action Plan was issued in 2013 under President Obama and
played a pivotal role in the international Paris Agreement on
Climate Change in 2015, even though President Trump signed
an executive order to rescind it in March, 2017. It was pivotal, in
part, because the U.S. has never signed on to any international
environmental agreement (such as the Paris Climate Agreement
or the Montreal Protocol on Substances that Deplete the Ozone
Layer), without first having domestic regulation on the pollutant
or environmental hazard. CAP would have been the U.S.’s first
domestic regulation on climate change, and was a signal to the
rest of the world, particularly China and India, of the U.S.’s
serious energy concerns and intentions.

In order to examine whether a more aggressive alternative
energy transition currently planned in China might be worth
the investment, we developed two overarching alternative energy
goals: one scenario inspired by CAP wherein coal-fired power
plant pollution is reduced by 32%, and elimination of coal energy
and its pollution entirely. Elimination of coal energy involves
completely replacing this energy source with alternative energy.
Alternative energy consists of natural gas and renewables (solar
thermal, solar photovoltaic, wind, nuclear, and geothermal). A
CAP-like policy replaces coal energy with alternatives in China by
about a third in the year 2030. In the U.S., CAP would have given
states the flexibility to switch to alternative energy and/or increase
existing pollution controls in modern coal plants by 2030, as long
as a 32% reduction of coal pollution was achieved, and forced
states to phase out the oldest and dirties plants (11, 12). Thus,
we created variations of the CAP-like policy wherein alternative
energy replaces coal and pollution controls are increased in
modern coal plants to achieve a 32% reduction.

MATERIALS AND METHODS

Our study uses the Greenhouse Gas and Air Pollution
Interactions and Synergies (GAINS) model created by the
International Institute for Applied Systems Analysis (IIASA) to

estimate the health benefits and emission-control costs of our
energy scenario goals across all 32 regions of China. GAINS
estimates the dispersion of pollutants in the atmosphere from
energy sources, the concentrations of such pollutants as they mix
with other pollutants in the atmosphere, the impacts of these
pollutants on human health, and the future costs of emission-
control technologies within energy sources (13). The five energy
scenarios we developed are as follows:

Scenario 1: 100% reduction of coal-fired power plant
emissions wherein coal energy is completely replaced by
renewable energy;
Scenario 2: 100% reduction of coal-fired power plant
emissions wherein coal energy is completely replaced by
natural gas;
Scenario 3: 32% reduction of coal-fired power plant emissions
wherein 32% of coal energy is replaced by renewable energy
Scenario 4: 32% reduction of coal-fired power plant emissions
wherein 32% of coal energy is replaced by natural gas
Scenario 5: 32% reduction of coal-fired power plant emissions
using emission-control technologies within coal plants

To calculate the health benefits and emission-control costs of
our alternative energy targets we change the petajoules (PJ) of
energy produced by individual energy plants across all 32 regions
in China within the model. The first step in changing the PJ
of energy produced by renewable and natural gas plants is to
calculate the kiloton change of PM2.5 pollution from coal plants.
Knowing the kiloton change of PM2.5 from coal plants allows
us to calculate the amount of coal required across China. Once
the kiloton change of PM2.5 is calculated, the second step is to
input each plant’s decreased coal-derived PJ value. Step three
is to compare the PJ values of the renewable or natural gas
energy needed to replace the decreased coal power. When coal
energy is replaced and primary PM2.5 is reduced, the GAINS
model reduces NOX and SO2, as well as the greenhouse gases
(GHG) CO2 and CH4 in order to correspond with the changed
energy supply.

A detailed explanation of these steps are provided in the
GAINS User Guide (available upon registering at the Model
Interface) (14), which describes how to create a scenario using
the model from multiple pollutant sources. This guide explains
how a user can download the energy activity data, manipulate the
activities, and upload the new activity data through the GAINS
interface. The basic math for the model is: Emissions=Activities
∗ Emission Factors. The main interaction with the model is done
by the Excel Files upon upload.

GAINS uses the Unified EuropeanMonitoring and Evaluation
Programme (EMEP), a Eulerian model, to calculate emission
changes in the atmosphere involving more than 100 chemical
reactions of 70 chemical pollutants produced (15, 16). After
the outcomes are ascertained by EMEP, GAINS then estimates
the premature mortality due to a pollutant change compared to
baseline.

GAINS uses findings from the World Health Organization
(WHO) review on the health impacts of air pollution (17, 18)
and the results of the American Cancer Society cohort study (19)
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and its subsequent analysis (20) to quantify premature mortality
attributable to long-term PM2.5 exposure (13).The relative risk
function from Pope et al. is based on premature mortality due to
cardiopulmonary disease and lung cancer from PM pollution in
cohorts 30 years old and above. GAINS uses cohort- and country-
specific mortality data obtained from life table statistics (13).
For all cohorts in a country l the change in life years Ll is then
calculated in GAINS as the sum of the change in life years for the
cohorts living in the grid cells j of country l:

1Ll =

Wl∑
c=W0

1Lc,i = β
∑
jǫl

PMj
Popj

Popl

Wl∑
c=w0

Popc,l

∫ Wl

c
lc (t) log lc (t) dt (1)

where

→ Delta L c,l –Change in life years lived for cohort c in country l.
→ Popc,l– Population in cohort c in country l.
→ Popj– Total population in grid cell j (at least of age wo = 30)
→ Popl– Total population in country l (at least of age wo = 30)

The GAINS energy activity data comes from the International
Energy Agency statistical energy and process data, specifically
the World Energy Outlook 2020 report (21), for projections until
2030. Every 5 years, China submits a new legislative plan. GAINS
draws on the 13th Five Year Plan legislation, drafted between
2016 and 2020 for its Baseline Current Legislation scenario
dataset. The baseline dataset is roughly compatible with CO2

emissions for a 6◦C warming by 2,100.

Costs
The first step in the cost estimate is to calculate how much
pollution each coal plant’s emission-control technology is able
to remove in 2030. Then we alter the percentage at which each
emission-control is “on” to achieve the same pollutant reduction
as the alternative energy CAP-like targets. Since it is impossible
to control emissions from coal plants using control technologies
by the same amount as switching to 100% alternative energy
(Scenarios 1 and 2), we were only able to measure the emission
control costs of a CAP-like target.

Coal power plant emission-control technologies include
dedusters, electrostatic precipitators and fabric filters. Their costs
are technology based and account for the structural differences
of plants, their fuel use patterns, the amount and quality of the
coal burned, and the control measures already applied (13). To
estimate the costs for applying a technology in a given country,
GAINS considers international pricing data for technologies and
adjusts them to country-specific conditions, taking into account
local labor costs, energy prices, and costs of by-products (22). All
costs are in Euro 2005 (14).

GAINS estimates the costs of each emission control
technology considering annualized investments (Ian), fixed
(OMfix), and variable (OMvar) operating costs, and how they
depend on technology m, country i and activity type k (23–
30). GAINS assumes technological progress in the performance
and cost data, based on literature estimates (13). A Unit cost of

abatement (ca) of coal-fired air pollution, related to one unit of
activity (A), add up to:

cai,k,m =

Ian
i,k,m

+ OM
fix

i,k,m

Ai, k
+ OMvar

i,k,m (2)

RESULTS

Health Benefits
Each of our five scenarios and their health results are found
in Table 1. Under Scenario 1 wherein coal-fired power plant
pollution is eliminated and replaced by renewables, 24,220
premature deaths are avoided. Under Scenario 3 wherein coal-
fired power plant pollution is reduced by 32% and renewables
replace coal to meet energy demand, 9,281 premature deaths
are avoided. Under Scenario 5 wherein coal-fired power plant
pollution is reduced by 32% using control technologies, 4,906
premature deaths are avoided. These are low estimates, since they
exclude Chinese people <30, which is projected to be 37% of
the population in China in 2030 (31), and younger populations
such as infants and young children experience some of the worst
health impacts from air pollution (32–36). The largest changes in
coal-fired power plant air pollution are seen throughout Eastern
China, as shown in Figure 1.

Pollutant and Greenhouse Gas Emissions
In Scenarios 1–4, reductions in PM2.5, NOX, and SO2 correspond
with a reduction in GHGs. However, reducing PM2.5, NOX, and
SO2 using control technologies alone does not reduce GHG
emissions, as demonstrated in Scenario 5. This difference is
noteworthy when factoring in the health co-benefits of mitigating
climate change. It is important to note that in Scenario 4, where
coal is replaced by natural gas, methane emissions are reduced
by 32% at the coal plant, but methane leakage from hydraulic
fracturing procedures is not considered because the GAINS
model does not include the full life cycle of fossil fuels.

Costs
As shown in Table 2, implementing more restrictive emission-
controls within coal power plants for 365 days in 2030 saves 4,906
premature deaths in China under a CAP-like target and costs 13.5
billion Euros. In a population of 889 million people over the age
of 30 in China, this translates to 15.85 Euros or $17.74 per person.
In a total population of 1.4 billion people projected in 2030, this
translates to 9.64 Euros or $11.33 per person.

While these costs are specific to emission-control technologies
that control NOX, SO2, and PM2.5 and not to the price of
alternative energy, when less coal is burned and less emission-
control technologies are implemented. Under the alternative
energy targets, wherein 8,693–9,281 premature deaths are
avoided by replacing coal with renewables or natural gas under
a CAP-like policy, eight million Euros are saved on operating
costs. Similarly, when 17,137–24,220 premature deaths are saved
by completely replacing coal with alternatives, 27 billion Euros
are saved on what would have been spent on coal-fired power
plant emission-control technologies and their upkeep. This frees
up 8–27 billion Euros ($9.4–32 billion) in the 2030 annual energy
budget to spend on alternative fuels.
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TABLE 1 | Energy scenarios’ reductions of PM2.5, NOx, and SO2, their corresponding health results compared to Business-as-usual, and greenhouse gas reductions.

Description Premature deaths avoided GHG reductions from coal

Scenario 1 100% reduction, replaced by

Renewables

24,220 100% reduction

Scenario 2 100% reduction, replaced by

Natural Gas

17,137 100% reduction

Scenario 3 32% reduction, replaced by

Renewables

9,281 32% reduction

Scenario 4 32% reduction, replaced by

Natural Gas

8,693 32% reduction

Scenario 5 32% reduction using

emission-control technologies in

coal plants

4,906 0% reduction

Uncertainties
There are two major sources of uncertainty using the GAINS
model. The first is the use of EMEP, the Eulerian model. In using
EMEP, the atmospheric dispersion and therefore PM2.5, NOx,
and SO2 emissions may be underestimated in GAINS because the
methods used only measure the changes in precursor emissions
and do not include the rather unknown role of secondary organic
aerosols and natural sources (13).

Second, the relative risk of particulate matter from Pope et al.
is based on premature mortality due to cardiopulmonary disease
and lung cancer from PM pollution. However, it does not include
premature mortality due ischemic heart disease, stroke, cerebral
vascular disease, and lower respiratory infections in children
which other studies have used in their disease-specific mortality
and morbidity estimates due to air pollution (37–48). While,
cause-specific death rates may incur lower errors compared to
all-cause mortality studies on air pollution (49), not including
more of the disease-specific mortality for PM may lead to an
underestimate in the premature deaths due to coal-fired power
plant pollution.

DISCUSSION

The greatest health co-benefits in our study are evidenced in
scenarios wherein coal energy is eliminated in 2030 and replaced
by renewables. The greatest health benefits are in Eastern regions
of China where coal is heavily used for energy and many people
reside. From a policy perspective, it is important to take into
consideration the values of people in regards to their health
and physiological needs for cleaner air, as air pollution not only
impacts cardiovascular health and respiratory health and even
diabetes, but has been shown to impact mental health such
as depression, anxiety and dementia as PM leads to oxidative
stress to lower parts of the brain that effect brain functionality
and mood.

Several studies have estimated the percentage of people in
various regions of China willing to pay for cleaner air, as well
as the amount they would be willing to contribute. Chu et al.
found that 73% of people in Wuhan, China were willing to
pay for air quality improvement (50). A study of 975 people in
Shanghai found that 52% of the community and 70.2% of hospital
populations were willing to pay between $68.50 and $80.70 to

improve air quality, respectively (51). Sun et al. found that 90% of
respondents in China are willing to pay for reducing air pollution,
and that among those polled the average amount each individual
was willing to pay was $56.18 (52). Lastly, Zhang et al. found
that 78.5% of citizens in Nanchang, China expressed willingness
to contribute money to improve air quality (53). This literature
suggests that people have a relatively high willingness to pay for
cleaner air in China. At $11–18 per person for a 32% reduction
of air pollution that avoids 4,906 premature deaths, it seems
reasonable from a policy perspective for China to transition to
cleaner energy more aggressively.

There are major health costs with natural gas as an alternative
to coal or as a bridge fuel to renewables that are not included
in our health estimates. Some have referred to natural gas
as a “bridge to nowhere” (54). For example, new evidence
suggests hydraulic fracturing for natural gas impacts the birth
weight of babies near fracking sites (55). Moreover, switching
to natural gas reduces 588–7,083 less premature mortalities
compared to renewables in Scenarios 1–4. However, natural gas
consumption and production is projected to rise in China as
it aggressively looks at ways to increase its volumes and has
very ambitious shale gas targets (56, 57). China’s technically
recoverable shale gas reserves are almost 50% higher than those
of the United States (58).

Natural gas production leaks methane which is 100-times
more potent than CO2. Furthermore, standard bottom-up
approaches to measure methane leakages can lead to gross
underestimates (59, 60). Specifically, the U.S. Environmental
Protection Agency’s bottom-up approach of sampling methane
emissions at selected utility company natural gas sites has
estimated methane leakages at a 1.2% rate (61), whereas satellite
data, tower samples, aircraft measurements, and other top-
down studies have estimated leakages at much higher rates
(62–64). For example, satellite data over Bakken and Eagle
Ford formations in the U.S. have estimated methane leakages
at a 6.2–10.2% rate. For there to be a net climate benefit of
switching from coal-fired to gas-fired power plants, the methane
leakage rate needs to be <3.2% (65). Thus, if leakages over
3.2% occur in China, natural gas is not a viable climate-friendly
alternative energy.

It would be useful in a future analysis to obtain an estimate
for the cost of renewable alternative energy. Estimates could
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FIGURE 1 | Concentrations of PM2.5 projected in China in 2030 under three energy scenarios. The top map shows the business-as-usual scenario (0%

reduction of coal-fired power plant emissions). The middle map shows Scenario 1 wherein coal-fired power plant emissions are eliminated and renewable energy

replaces coal. The bottom map shows Scenario 3 wherein coal-fired power plant emissions are reduced by 32% and renewable energy replaces coal.

be obtained by using International Energy Agency data and
projections, interpreting China’s 5-year legislation plans from
2016–2020, 2021–2025, and 2026–2030, and assessing future
energy markets. Furthermore, it would be useful to measure
the climate change health-related costs and benefits of our
targets in a future analysis. For example, in 2030 the social
cost of avoiding one ton of CO2 is estimated to be $50
(66). A 32% reduction of CO2 by switching to renewables

avoids 2,079,250 Kt of CO2, which has a social cost of $104
million. West et al. found that the cost of cleaner energy
worldwide is <$30/t CO2, whereas the benefit of cleaner energy
is $200/t CO2, with two thirds of these benefits coming from
China (67).

In conclusion, this study’s estimates show that increasing
alternative energy more aggressively than is currently planned
in China is worth the investment in terms of health.

Frontiers in Public Health | www.frontiersin.org 5 April 2021 | Volume 9 | Article 613517

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Scott et al. Improving Human Health in China

TABLE 2 | Energy scenarios’ emissions reductions, premature deaths avoided, and costs compared to Business-as-usual (BAU).

Scenario BAU 1 2 3 4 5

Coal-fired power

plant emissions

reductions in 2030

0% 100%,

replaced by

renewables

100%,

replaced by

natural gas

32%,

replaced by

renewables

32%,

replaced by

natural gas

32% using

emission

control

technology

Premature deaths

avoided

0 24,220 17,137 9,281 8,693 4,906

Emission control

costs compared to

BAU (Million

Euros/Year)

−27,688 −27,688 −8,860 −8,860 13,541

Policymakers should consider getting off coal sooner and
more aggressively, with considerable attention to a more rapid
transition to renewables.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://gains.iiasa.ac.at/gains/ASN/index.login?
logout=1&amp;switch_version=v0.

AUTHOR CONTRIBUTIONS

MS performed data manipulation before input into the model
and is the primary author of the text and tables. RS performed
model data manipulation and output of Figure 1. GN and JP
reviewed the paper. JP made contributions to the health results
sections and health literature in introduction and discussion. GN
gave input on the GAINS model, energy content, and framing
of the health results for health and policy audiences. All authors
contributed to the article and approved the submitted version.

REFERENCES

1. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact

of regional climate change on human health. Nature. (2005)

438:310–7. doi: 10.1038/nature04188

2. Stocker TF, Qin D, Plattner K, Tignor M, Allen SK, Boschnung J, et al. The

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change. Cambridge and

New York, NY: IPCC (2013). p. 1535.

3. U.S Energy Information Administration. How Much Carbon Dioxide Is

Produced When Different Fuels Are Burned? (2020). Available online

at: https://www.eia.gov/tools/faqs/faq.php?id=73&t=11 (accessed August 25,

2020).

4. WHO. World Health Statistics 2020: Monitoring Health for the Sustainable

Development GOals. (2020). Available online at: https://apps.who.int/iris/

handle/10665/332070 (accessed March 29, 2021).

5. U.S. Environmental Protection Agency. Integrated Science Assessment (ISA)

For Particulate Matter. Report No.: 600/R-08/139F. Washington, DC (2009).

6. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental

and health impacts of air pollution: a review. Front Public Health. (2020)

8:14. doi: 10.3389/fpubh.2020.00014

7. Edenhofer O, Pichs-Madruga Y, Sokona E, Farahani S, Kadner K, Seyboth A,

et al. Mitigation of Climate Change. Contribution of Working Group III to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Cambridge and New York, NY: IPCC (2014).

8. Yang A, Cui Y. Global Coal Risk Assessment: Data Analysis and Market

Research. World Resources Institute (2012). Available online at: https://files.

wri.org/s3fs-public/pdf/global_coal_risk_assessment.pdf (accessed March 29,

2021).

9. United Nations Department of Economic and Social Affairs. World

Population Prospects: The 2017 Revision. United Nations Department of

Economic and Social Affairs (2017). Available online at: https://www.un.

org/development/desa/publications/world-population-prospects-the-2017-

revision.html (accessed March 29, 2021).

10. Liu L, Yang X, Liu H, Wang M, Welles S, Márquez S, et al. Spatial–

temporal analysis of air pollution, climate change, and total mortality

in 120 cities of China, 2012–2013. Front Public Health. (2016)

4:143. doi: 10.3389/fpubh.2016.00143

11. The White House. Climate Action Plan. President Obama’s Climate Action

Plan Progress Report: Cutting Carbon Pollution, Protecting American

Communities, and Leading Internationally. (2014). Available online at: https://

obamawhitehouse.archives.gov/sites/default/files/docs/cap_progress_report_

update_062514_final.pdf (accessed March 29, 2021).

12. The White House. The White House Clean Power Plan: Climate

Change and President Obama’s Action Plan. (2015). Available online

at: https://obamawhitehouse.archives.gov/sites/default/files/image/

president27sclimateactionplan.pdf (accessed March 29, 2021).

13. Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson

L, et al. Cost-effective control of air quality and greenhouse gases in Europe:

modeling and policy applications. Environ Model Softw. (2011) 26:1489–

501. doi: 10.1016/j.envsoft.2011.07.012

14. International Institute of Applied Systems Analysis. GAINS Advanced

Mode Costs Interface. Laxenburg: International Institute of Applied Systems

Analysis (2017). Available online at: http://gains.iiasa.ac.at/models/index.html

(accessed May 1, 2020).

15. SimpsonD, Fagerli H, Johnson J, Tsyro S,Wind P, Tuovinen T. Transboundary

Acidification, Eutrophication and Ground-Level Ozone in Europe. Part

1. Unified EMEP Model Description. Report No.: 0806–4520. Norwegian

Meteorological Institute (2003). Available online at: https://www.emep.

int/publ/reports/2003/emep_report_1_part1_2003.pdf (accessed March 29,

2021).

16. Fagerli H, Aas W. Trends of nitrogen in air and precipitation:

model results and observations at EMEP sites in Europe, 1980–

2003. Environ Pollution. (2008) 154:448–61. doi: 10.1016/j.envpol.2008.

01.024

17. World Health Organization. Health Aspects of Air Pollution with Particulate

Matter, Ozone and Nitrogen Dioxide. World Health Organization (2003).

Available online at: http://www.euro.who.int/__data/assets/pdf_file/0005/

112199/E79097.pdf (accessed August 25, 2020).

18. World Health Organization. Health Relevance of Particulate Matter

from Various Sources. Report No.: EU/07/5067587. Regional Office for

Europe, Copenhagen: World Health Organization (2007). Available online

Frontiers in Public Health | www.frontiersin.org 6 April 2021 | Volume 9 | Article 613517

https://gains.iiasa.ac.at/gains/ASN/index.login?logout=1&amp
https://gains.iiasa.ac.at/gains/ASN/index.login?logout=1&amp
https://doi.org/10.1038/nature04188
https://www.eia.gov/tools/faqs/faq.php?id=73&t=11
https://apps.who.int/iris/handle/10665/332070
https://apps.who.int/iris/handle/10665/332070
https://doi.org/10.3389/fpubh.2020.00014
https://files.wri.org/s3fs-public/pdf/global_coal_risk_assessment.pdf
https://files.wri.org/s3fs-public/pdf/global_coal_risk_assessment.pdf
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
https://doi.org/10.3389/fpubh.2016.00143
https://obamawhitehouse.archives.gov/sites/default/files/docs/cap_progress_report_update_062514_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/docs/cap_progress_report_update_062514_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/docs/cap_progress_report_update_062514_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/image/president27sclimateactionplan.pdf
https://obamawhitehouse.archives.gov/sites/default/files/image/president27sclimateactionplan.pdf
https://doi.org/10.1016/j.envsoft.2011.07.012
http://gains.iiasa.ac.at/models/index.html
https://www.emep.int/publ/reports/2003/emep_report_1_part1_2003.pdf
https://www.emep.int/publ/reports/2003/emep_report_1_part1_2003.pdf
https://doi.org/10.1016/j.envpol.2008.01.024
http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf
http://www.euro.who.int/__data/assets/pdf_file/0005/112199/E79097.pdf
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Scott et al. Improving Human Health in China

at: https://www.euro.who.int/__data/assets/pdf_file/0007/78658/E90672.pdf

(accessed March 29, 2021).

19. Pope III CA. Lung cancer, cardiopulmonary mortality, and long-

term exposure to fine particulate air pollution. JAMA. (2002)

287:1132. doi: 10.1001/jama.287.9.1132

20. Pope C, Ezzati M, Bertok I, Chambers A, Cofala J, Dentener

F. Fine-particulate air pollution and life expectancy in the

United States. N Engl J Med. (2009) 11:805646. doi: 10.1056/NEJMsa08

05646

21. International Energy Agency.World Energy Outlook. (2020). Available online

at: https://www.iea.org/reports/world-energy-outlook-2020 (accessed March

29, 2021).

22. Wagner F, AmannM, Bertok I, Chambers A, Cofala J, Dentener F. Final Report

on Policy Analysis With the GAINS-Asia Model. Laxenburg: International

Institute of Applied Systems Analysis (2008).

23. Cofala J, Syri S. Nitrogen Oxides Emissions, Abatement Technologies and

Related Costs for Europe in the RAINS Model Database. IR-98-88/October:68.

Laxenburg: International Institute for Applied Systems Analysis (1998).

24. Cofala J, Syri S. Sulfur Emissions, Abatement Technologies and Related Costs

for Europe in the RAINS Model Database. IR-98-035/June:55. Laxenburg:

International Institute for Applied Systems Analysis (1998).

25. Cofala, Janusz, Purohit P, Rafaj P, Klimont Z. GHGMitigation Potentials From

Energy Use and Industrial Sources in Annex I Countries. Report No.: IR-09-040.

International Institute of Applied Systems Analysis (2009). Available online at:

http://pure.iiasa.ac.at/id/eprint/9113/1/IR-09-040.pdf (accessed September

28, 2020).

26. Borken-Kleefeld J, Cofala J, Rafaj P.GHGMitigation Potentials and Costs in the

Transport Sector of Annex I Countries Methodology. Laxenburg: International

Institute for Applied Systems Analysis (2009). p. 40.

27. Klimont Z, Amann M, Cofala J. Estimating Costs for Controlling Emissions

of Volatile Organic Compounds (VOC) from Stationary Sources in Europe.

International Institute for Applied Systems Analysis (2000) IR-00-51:80.

28. Klimont Z, Brink C. Modelling of Emissions of Air Pollutants and Greenhouse

Gases from Agricultural Sources in Europe. International Institute for Applied

Systems Analysis (2004) IR-04-048:75.

29. Klimont Z, Cofala J, Bertok I, Amann M, Heyes C, Gyarfas F. Modelling

Particulate Emissions in Europe A Framework to Estimate Reduction Potential

and Control Costs. Report No.: IR-02-076. Laxenburg: International Institute

for Applied Systems Analysis. Available online at: https://pure.iiasa.ac.at/id/

eprint/6712/1/IR-02-076.pdf (accessed March 29, 2021).

30. Hoeglund-Isaksson L, Winiwarter W, Tohka A. Potentials and Costs for

Mitigation of non-CO2 Greenhouse Gases in Annex I Countries. Report No.:

IR-09-044. Laxenburg: International Institute for Applied Systems Analysis.

Available online at: https://pure.iiasa.ac.at/id/eprint/9111/1/IR-09-044.pdf

(accessed March 29, 2021).

31. World Bank. Population Estimates and Projections Data. World Bank (2020).

Available online at: https://data.worldbank.org/data-catalog/population-

projection-tables (accessed March 29, 2021).

32. WHO. Air Pollution and Child Health: Prescribing Clean Air. Report No.:

WHO/CED/PHE/18.01. Geneva:WorldHealthOrganization (2018). Available

online at: https://www.who.int/ceh/publications/air-pollution-child-health/

en/ (accessed March 29, 2021).

33. Epstein PR, Buonocore JJ, Eckerle K, Hendryx M, Stout III

BM, Heinberg R, et al. Full cost accounting for the life cycle

of coal: full cost accounting for the life cycle of coal. Ann N

Y Acad Sci. (2011) 1219:73–98. doi: 10.1111/j.1749-6632.2010.

05890.x

34. Yang M, Bhatta RA, Chou S-Y, Hsieh C-I. The impact of prenatal exposure

to power plant emissions on birth weight: evidence from a Pennsylvania

power plant located upwind of New Jersey: the impact of prenatal exposure

to power plant emissions on birth weight. J Pol Anal Manage. (2017) 36:557–

83. doi: 10.1002/pam.21989

35. Ronchetti R, Zuurbier M, Jesenak M, Koppe J, Farah Ahmed U, Ceccatelli

S, et al. Children’s health and mercury exposure. Acta Paediatrica. (2006)

95:36–44. doi: 10.1080/08035250600886157

36. Li R,WuH, Ding J, FuW, Gan L, Li Y. Mercury pollution in vegetables, grains

and soils from areas surrounding coal-fired power plants. Sci Rep. (2017)

7:46545. doi: 10.1038/srep46545

37. Hu J, Huang L, Chen M, Liao H, Zhang H, Wang S, et al. Premature

mortality attributable to particulate matter in China: source contributions

and responses to reductions. Environ Sci Technol. (2017) 51:9950–

9. doi: 10.1021/acs.est.7b03193

38. Gao M, Beig G, Song S, Zhang H, Hu J, Ying Q, et al. The impact of power

generation emissions on ambient PM2.5 pollution and human health in

China and India. Environ Int. (2018) 121:250–9. doi: 10.1016/j.envint.2018.

09.015

39. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of

outdoor air pollution sources to premature mortality on a global scale.Nature.

(2015) 525:367–71. doi: 10.1038/nature15371

40. Zhao X, Yu X, Wang Y, Fan C. Economic evaluation of health losses from

air pollution in Beijing, China. Environ Sci Pollut Res. (2016) 23:11716–

28. doi: 10.1007/s11356-016-6270-8

41. Venners SA, Wang B, Xu Z, Schlatter Y, Wang L, Xu X. Particulate matter,

sulfur dioxide, and daily mortality in Chongqing, China. Environ Health

Perspect. (2003) 111:562–7. doi: 10.1289/ehp.5664

42. Sun D, Fang J, Sun J. Health-related benefits of air quality improvement from

coal control in China: evidence from the Jing-Jin-Ji region. Resourc Conservat

Recycl. (2018) 129:416–23. doi: 10.1016/j.resconrec.2016.09.021

43. Chen S, Li Y, Yao Q. The health costs of the industrial leap forward in China:

evidence from the sulfur dioxide emissions of coal-fired power stations. China

Econ Rev. (2018) 49:68–83. doi: 10.1016/j.chieco.2018.01.004

44. Maji KJ, Dikshit AK, Arora M, Deshpande A. Estimating premature

mortality attributable to PM2.5 exposure and benefit of air pollution

control policies in China for 2020. Sci Total Environ. (2018) 612:683–

93. doi: 10.1016/j.scitotenv.2017.08.254

45. Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated

risk function for estimating the global burden of disease attributable to

ambient fine particulate matter exposure. Environ Health Perspect. (2014)

122:397–403. doi: 10.1289/ehp.122-A235

46. Li N, Chen W, Rafaj P, Kiesewetter G, Schöpp W, Wang H, et al. Air

quality improvement co-benefits of low-carbon pathways toward well below

the 2◦C climate target in China. Environ Sci Technol. (2019) 53:5576–

84. doi: 10.1021/acs.est.8b06948

47. Wang X, Mauzerall DL. Evaluating impacts of air pollution in China on

public health: implications for future air pollution and energy policies. Atmos

Environ. (2006) 40:1706–21. doi: 10.1016/j.atmosenv.2005.10.066

48. Zhang H, Zhang B, Bi J. More efforts, more benefits: air pollutant

control of coal-fired power plants in China. Energy. (2015) 80:1–

9. doi: 10.1016/j.energy.2014.11.029

49. Fang Y, Mauzerall DL, Liu J, Fiore AM, Horowitz LW. Impacts of 21st century

climate change on global air pollution-related premature mortality. Climatic

Change. (2013) 121:239–53. doi: 10.1007/s10584-013-0847-8

50. Chu Y, Liu Y, Lu Y, Yu L, Lu H, Guo Y, et al. Propensity to

migrate and willingness to pay related to air pollution among different

populations in Wuhan, China. Aerosol Air Qual Res. (2017) 17:752–

60. doi: 10.4209/aaqr.2016.05.0178

51. Wang K, Wu J, Wang R, Yang Y, Chen R, Maddock JE, et al. Analysis of

residents’ willingness to pay to reduce air pollution to improve children’s

health in community and hospital settings in Shanghai, China. Sci Total

Environ. (2015) 533:283–9. doi: 10.1016/j.scitotenv.2015.06.140

52. Sun C, Yuan X, Yao X. Social acceptance towards the air pollution in China:

evidence from public’s willingness to pay for smog mitigation. Energy Policy.

(2016) 92:313–24. doi: 10.1016/j.enpol.2016.02.025

53. Zhang L, Yuan Z, Maddock JE, Zhang P, Jiang Z, Lee T, et al. Air quality and

environmental protection concerns among residents in Nanchang, China. Air

Qual Atmos Health. (2014) 7:441–8. doi: 10.1007/s11869-014-0255-x

54. Howarth RW. A bridge to nowhere: methane emissions and the

greenhouse gas footprint of natural gas. Energy Sci Eng. (2014)

2:47–60. doi: 10.1002/ese3.35

55. Currie J, Greenstone M, Meckel K. Hydraulic fracturing and

infant health: new evidence from Pennsylvania. Sci Adv. (2017)

3:e1603021. doi: 10.1126/sciadv.1603021

56. International Energy Agency. Gas 2017: Analysis and Forecasts to 2022

Executive Summary. International Energy Agency (2017). Available online

at: https://webstore.iea.org/download/summary/183?fileName=English-Gas-

2017-ES.pdf (accessed March 29, 2021).

Frontiers in Public Health | www.frontiersin.org 7 April 2021 | Volume 9 | Article 613517

https://www.euro.who.int/__data/assets/pdf_file/0007/78658/E90672.pdf
https://doi.org/10.1001/jama.287.9.1132
https://doi.org/10.1056/NEJMsa0805646
https://www.iea.org/reports/world-energy-outlook-2020
http://pure.iiasa.ac.at/id/eprint/9113/1/IR-09-040.pdf
https://pure.iiasa.ac.at/id/eprint/6712/1/IR-02-076.pdf
https://pure.iiasa.ac.at/id/eprint/6712/1/IR-02-076.pdf
https://pure.iiasa.ac.at/id/eprint/9111/1/IR-09-044.pdf
https://data.worldbank.org/data-catalog/population-projection-tables
https://data.worldbank.org/data-catalog/population-projection-tables
https://www.who.int/ceh/publications/air-pollution-child-health/en/
https://www.who.int/ceh/publications/air-pollution-child-health/en/
https://doi.org/10.1111/j.1749-6632.2010.05890.x
https://doi.org/10.1002/pam.21989
https://doi.org/10.1080/08035250600886157
https://doi.org/10.1038/srep46545
https://doi.org/10.1021/acs.est.7b03193
https://doi.org/10.1016/j.envint.2018.09.015
https://doi.org/10.1038/nature15371
https://doi.org/10.1007/s11356-016-6270-8
https://doi.org/10.1289/ehp.5664
https://doi.org/10.1016/j.resconrec.2016.09.021
https://doi.org/10.1016/j.chieco.2018.01.004
https://doi.org/10.1016/j.scitotenv.2017.08.254
https://doi.org/10.1289/ehp.122-A235
https://doi.org/10.1021/acs.est.8b06948
https://doi.org/10.1016/j.atmosenv.2005.10.066
https://doi.org/10.1016/j.energy.2014.11.029
https://doi.org/10.1007/s10584-013-0847-8
https://doi.org/10.4209/aaqr.2016.05.0178
https://doi.org/10.1016/j.scitotenv.2015.06.140
https://doi.org/10.1016/j.enpol.2016.02.025
https://doi.org/10.1007/s11869-014-0255-x
https://doi.org/10.1002/ese3.35
https://doi.org/10.1126/sciadv.1603021
https://webstore.iea.org/download/summary/183?fileName=English-Gas-2017-ES.pdf
https://webstore.iea.org/download/summary/183?fileName=English-Gas-2017-ES.pdf
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Scott et al. Improving Human Health in China

57. International Energy Agency. World Energy Outlook 2017 Excerpt: Outlook

for Natural Gas. Report No.: 9789264282308. International Energy Agency

(2017). Available online at: https://webstore.iea.org/world-energy-outlook-

2017-excerpt-outlook-for-natural-gas (accessed March 29, 2021).

58. U.S. Energy Information Administration. Technically Recoverable Shale Oil

and Gas Resources: an Assessment of 137 Shale Formations in 41 Countries

Outside the United States. U.S. Energy Information Administration (2013).

Available online at: https://www.eia.gov/analysis/studies/worldshalegas/pdf/

overview.pdf (accessed March 29, 2021).

59. SchneisingO, Burrows JP, Dickerson RR, BuchwitzM, ReuterM, Bovensmann

H. Remote sensing of fugitive methane emissions from oil and gas production

in North American tight geologic formations: remote sensing of fugitive

methane emissions from oil and gas production. Earth’s Future. (2014) 2:548–

58. doi: 10.1002/2014EF000265

60. Howarth R. Methane emissions and climatic warming risk from hydraulic

fracturing and shale gas development: implications for policy. EECT. (2015)

45:S61539. doi: 10.2147/EECT.S61539

61. U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse

Gas Emissions and Sinks: 1990–2012. Report No.: 430-R-14–003. U.S.

Environmental Protection Agency (2014). Available online at: https://

19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/

us-ghg-inventory-2014-main-text.pdf (accessed March 29, 2021).

62. Brandt AR, Heath GA, Kort EA, O’Sullivan F, Petron G, Jordaan SM, et al.

Methane leaks from North American Natural Gas Systems. Science. (2014)

343:733–5. doi: 10.1126/science.1247045

63. Karion A, Sweeney C, Pétron G, Frost G, Michael Hardesty R, Kofler J, et al.

Methane emissions estimate from airborne measurements over a western

United States natural gas field: CH4 emissions over a natural gas field.Geophys

Res Lett. (2013) 40:4393–7. doi: 10.1002/grl.50811

64. Pétron G, Frost G, Miller BR, Hirsch AI, Montzka SA, Karion

A, et al. Hydrocarbon emissions characterization in the Colorado

Front Range: a pilot study: colorado front range emissions

study. J Geophys Res. (2012) 117:2011JD016360. doi: 10.1029/

2011JD016360

65. Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP.

Greater focus needed on methane leakage from natural gas infrastructure.

Proc Natl Acad Sci USA. (2012) 109:6435–40. doi: 10.1073/pnas.12024

07109

66. U.S. Environmental Protection Agency. Social Cost of Carbon.

U.S. Environmental Protection Agency (2016). Available online at:

https://19january2017snapshot.epa.gov/sites/production/files/2016-

12/documents/social_cost_of_carbon_fact_sheet.pdf (accessed June

1, 2020).

67. West JJ, Smith SJ, Silva RA, Naik V, Zhang Y, Adelman Z, et al. Co-benefits of

mitigating global greenhouse gas emissions for future air quality and human

health. Nat Clim Change. (2013) 3:885–9. doi: 10.1038/nclimate2009

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Scott, Sander, Nemet and Patz. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 8 April 2021 | Volume 9 | Article 613517

https://webstore.iea.org/world-energy-outlook-2017-excerpt-outlook-for-natural-gas
https://webstore.iea.org/world-energy-outlook-2017-excerpt-outlook-for-natural-gas
https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf
https://www.eia.gov/analysis/studies/worldshalegas/pdf/overview.pdf
https://doi.org/10.1002/2014EF000265
https://doi.org/10.2147/EECT.S61539
https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/us-ghg-inventory-2014-main-text.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/us-ghg-inventory-2014-main-text.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/us-ghg-inventory-2014-main-text.pdf
https://doi.org/10.1126/science.1247045
https://doi.org/10.1002/grl.50811
https://doi.org/10.1029/2011JD016360
https://doi.org/10.1073/pnas.1202407109
https://19january2017snapshot.epa.gov/sites/production/files/2016-12/documents/social_cost_of_carbon_fact_sheet.pdf
https://19january2017snapshot.epa.gov/sites/production/files/2016-12/documents/social_cost_of_carbon_fact_sheet.pdf
https://doi.org/10.1038/nclimate2009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Improving Human Health in China Through Alternative Energy
	Introduction
	Materials and Methods
	Costs

	Results
	Health Benefits
	Pollutant and Greenhouse Gas Emissions
	Costs
	Uncertainties

	Discussion
	Data Availability Statement
	Author Contributions
	References


