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Purpose: We aimed to establish and validate a risk assessment system that combines

demographic and clinical variables to predict the 3-year risk of incident diabetes in

Chinese adults.

Methods: A 3-year cohort study was performed on 15,928 Chinese adults without

diabetes at baseline. All participants were randomly divided into a training set (n= 7,940)

and a validation set (n = 7,988). XGBoost method is an effective machine learning

technique used to select the most important variables from candidate variables. And we

further established a stepwise model based on the predictors chosen by the XGBoost

model. The area under the receiver operating characteristic curve (AUC), decision curve

and calibration analysis were used to assess discrimination, clinical use and calibration

of the model, respectively. The external validation was performed on a cohort of 11,113

Japanese participants.

Result: In the training and validation sets, 148 and 145 incident diabetes cases

occurred. XGBoost methods selected the 10most important variables from 15 candidate

variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top

3 important variables. And we further established a stepwise model and a prediction

nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and

validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between

the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training

set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use

of the stepwise model and there was a wide range of alternative threshold probability

spectrum. And there were almost no the interactions between these predictors (most

P-values for interaction >0.05). Furthermore, the AUC for the external validation set

was 0.830, and the Hosmer-Lemeshow test for the external validation set showed

no statistically significant difference between the predicted diabetes risk and observed

diabetes risk (P = 0.824).

Conclusion: We established and validated a risk assessment system for characterizing

the 3-year risk of incident diabetes.
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HIGHLIGHTS

- The eXtreme Gradient Boosting system was an effective
machine learning technique.

- We establish a risk assessment system for characterizing the
3-year risk of diabetes.

- The external validation showed that our findings were
well-generalized.

- Our findings are helpful for identifying individuals at high risk
for diabetes.

INTRODUCTION

The epidemic of diabetes has become a major public health
threat across the world. The International Diabetes Federation
(IDF) estimated that 451 million adults were suffering from
diabetes mellitus worldwide in 2017 and the figure was expected
to increase to 693 million by 2045 (1). The prevalence
of diabetes among Chinese adults increased from 9.7% in
2007 and to 11.2% in 2017 (2). Diabetes is a debilitating
chronic disease with potentially various microvascular and
macrovascular complications, such as diabetic kidney disease,
diabetic retinopathy, diabetic neuropathy, cardiovascular, and
cerebrovascular disease (3–7). Diabetes and its complications
have contributed tremendously to the burden of social, financial,
and health systems worldwide.

Although diabetes is an irreversible disease, it is largely
preventable. Early screening and diagnosis are at the
core of effectively preventing diabetes and delaying its
progression. Several studies revealed lifestyle modification
and pharmacological intervention could reduce the risk
of developing diabetes (8, 9). Moreover, for newly diagnosed
diabetic patients, intensive lifestyle intervention, early short-term
intensive insulin therapy and metabolic surgery can induce long-
term glycemic remission without further antidiabetic medication
(10–12). Therefore, it is essential to identify individuals at high
risk of developing diabetes for diabetes prevention programs.

Machine learning has increasingly been utilized to establish
risk prediction models in the field of medicine (13–15). Machine-
learning algorithms can be defined as searching through a large
number of candidate programs under the guidance of training
experience to find a program that optimizes the performance
metric (16). Compared with traditional statistical methods, it is
mainly applied to iteratively learn the non-linear interactions
from a mass of data through computer algorithms (17). Several
studies showed that machine learning methods could describe an
individual’s characteristics and identify individuals at high risk of

Abbreviations: BMI, Body mass index; SBP, Systolic blood pressure; DBP,

Diastolic blood pressure; FPG; Fasting plasma glucose; TC, Total cholesterol;

TG, Triglyceride; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-

density lipid cholesterol; ALT, Alanine aminotransferase; BUN, Serum urea

nitrogen; Scr, Serum creatinine; Family history, Family history of diabetes;

XGBoost, EXtreme Gradient Boosting; SHAP, Shapley Additive exPlanations; SD,

Standardized difference; RR, Relative risk; CI, Confidence intervals; PPV, Positive

predictive value; NPV, Negative predictive value; PLR, Positive likelihood ratio;

NLR, Negative likelihood ratio; DOR, Diagnostic odds ratio; ROC, Receiver

operating characteristic; AUC, Area under curve.

diabetes (18–21). A gradient tree boosting method implemented
in the eXtreme Gradient Boosting (XGBoost) system is an
effective machine learning method that can assemble weak
prediction models to establish a more reliable prediction model
(22–26). So far, there is no research using the XGBoost method
to build diabetes risk prediction models. Therefore, we sought to
use the XGBoost method to select the most important variables
from candidate variables and further establish and validate a
risk assessment system that combines demographic and clinical
variables using real-world data from a large cohort of Chinese
adults across 32 sites and 11 cities between 2010 and 2016 to
predict the 3-year risk of incident diabetes in Chinese adults.

MATERIALS AND METHODS

Study Design and Participants
The data was downloaded from the “DATADRYAD” database
(www.Datadryad.org), a non-profit computerized database
established in China by the Rich Healthcare Group. Its data
is available publicly for use. The raw data was provided by
Chen et al. (27). The original study recruited a total of 685,277
participants ≥20 years old with at least two visits from 2010 to
2016 across 32 sites and 11 cities in China.

Baseline demographic and clinical variables were included
as follows: age, gender, smoking and drinking status, family
history of diabetes, body mass index (BMI), systolic blood
pressure (SBP), diastolic blood pressure (DBP), fasting plasma
glucose (FPG), total cholesterol (TC), triglyceride (TG), low
density lipoprotein cholesterol (LDL-C), high density lipoprotein
cholesterol (HDL-C), serum urea nitrogen (BUN), serum
creatinine (Scr), alanine aminotransferase (ALT). The clinical
outcome was incident diabetes during a 3-years follow-up.
Baseline excluding criteria in the original study included as
follows:(1) no available information on weight, height and
gender; (2) extreme BMI values (<15 or >55 kg/m2); (3) visit
intervals < 2 years; (4) no available fasting plasma glucose value;
(5) participants diagnosed with diabetes at baseline (participants
diagnosed by self-report or diagnosed by a fasting plasma glucose
≥7.0 mmol/L) and participants with undefined diabetes status at
follow-up. A total of 211,833 participants remained after applying
exclusion criteria in the original study. In our study, we further
excluded participants with incomplete records. To predicting the
3-year risk of incident diabetes, we also excluded participants
who lost to follow-up during 3-years follow up and the censored
data is excluded (28). Figure 1 depicted the participants’ selection
process. Finally, a total of 15,928 subjects (10,313 male and 5,615
female) were included in the present study.

The authors of the original study have waived all copyright
and related ownership of the raw data. Therefore, we could
use these data for secondary analysis without infringing on the
authors’ rights. Furthermore, the original study was approved by
the Rich Healthcare Group Review Board, and the information
was retrieved retrospectively. And the original study was
conducted in accordance with the Declaration of Helsinki, so
did this secondary research. The data are anonymous, and
the requirement for informed consent was waived by the Rich
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FIGURE 1 | Flowchart of study participants.

Healthcare Group Review Board due to the observational nature
of the study, as reported elsewhere (29).

Variable Measurement
In each visit to the health check center, participants were
required to do a personal questionnaire on demographics,

lifestyle, medical history, and family history of chronic disease.
And trained staff performed the baseline examination. Weight
was measured in light clothing without shoes to the nearest
0.1 kg. The height was accurate to 0.1 cm. BMI was equal
to the weight divided by the square of height, which was
accurate to 0.1 kg/m2. And the staff measured their blood
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pressure by a standard mercury sphygmomanometer. Fasting
venous blood samples were taken after fasting for at least 10 h
each visit. Plasma glucose levels were measured by the glucose
oxidase method. The clinical measurements of FPG, TC, TG,
LDL-C, HDL-C, BUN, Scr, and ALT were conducted by an
autoanalyzer (Beckman 5800).

Definitions
The definitions of diabetes were fasting blood glucose ≥7.00
mmol/L and/or self-reported diabetes during follow-up. Patients
were censored either at the time of the diagnosis or at the last
visit, whichever comes first.

Statistical Analysis
All eligible participants were randomly assigned to the training
set and the validation set. There were 15 candidate baseline
variables involving demographic and clinical characteristics.
First, we exclude some variables with relatively significant
interference based on collinearity screening. Baseline
characteristics were described as means ± standard deviations
(normal distribution) or medians (quartiles) (skewed
distribution) for continuous variables and as percentages or
frequency for categorical variables. We used two-sample t-tests
to analyze differences between the training set and validation set
for normally distributed continuous variables, Wilcoxon rank-
sum tests for non-normally distributed continuous variables, and
chi-square tests for categorical variables.

XGBoost is a scalable tree boosting system that can assemble
weak prediction models to establish a more reliable prediction
model (30). During the training process, it can generate a new
decision tree through gradient boosting on the basis of the
existing decision trees to better predict the results. Therefore,
a risk prediction system consisting of a series of decision
trees is formed after training. In the application process, the
predicted risk output is the cumulative score of each decision tree,
representing the probability of the predicted outcome. XGBoost
provides the importance score of each variable, indicating the
relative number of times the variable is used to distribute
data in all trees. We ranked these variables according to the
prediction contribution of each variable. Given the Shapley
Additive exPlanations (SHAP) approach can transform the
original non-linear XGBoost model to the summation effects
of all variable attributions while approximating the output
risk for each participant (31). Thus, the SHAP method was
used to interpret the results of the XGBoost model. We used
Shapley values to construct dependency graphs to capture the
actual relationship between diabetes risk and the three variables
with the most significant prediction contribution. Additionally,
we summarized the specificity, sensitivity, accuracy, negative
predictive value (NPV), positive predictive value (PPV), positive
likelihood ratio (PLR), and negative likelihood ratio (NLR) of the
XGBoost model at different predicted probability.

We further established three prediction models based on
the predictors chosen by the XGBoost model. First, we applied
all risk factors selected by the XGBoost method to build a
full model. Second, according to the multivariable fractional
polynomials (MFP) algorithm, we used the iterative fashion

to determine the significant variables and functional form
by backward elimination to establish the MFP model to
eliminate the influence of non-linearity and interaction. Third,
we conducted a backward step-down selection process based on
the Akaike information criterion (AIC) to establish a stepwise
model (32). While confirming the statistical significance of the
predictor factors, the stepwise logistic regression can achieve
local optimal goodness of fit. To assess the discrimination of
these risk prediction models, we plotted the receiver operating
characteristic (ROC) curve and calculated the area under the
ROC curve (AUC) with 95% confidence intervals (CI) for the two
sets. Given nomogram is an intuitive graphical prediction model
which provides personalized risk predictions for individuals, we
further construct the nomogram of the stepwise model. The
nomogram is built according to the proportional conversion
of each regression coefficient to a 0- to 100-point scale in
multiple logistic regression (33). The effect of the variable with
the highest β coefficient (absolute value) is assigned 100 points.
The point of each variable is added to obtain the total points,
which can be converted into the predicted probability of incident
diabetes. And we used the Hosmer–Lemeshow test to compare
the predicted risk and observed a 3-year incidence of deciles of
predicted diabetes risk and we plotted the calibration bar graph
of the nomogram for the probability of incident diabetes (34).
Besides, we performed decision curve analysis to evaluate the
clinical use of the prediction model by quantifying the net benefit
at different threshold probabilities: subtracting the proportion
of participants with false-positive results from the proportion
of participants with true-positive results and then weighing
the relative hazards of false positive and false negative results
to achieve a net benefit from decision-making (35). And we
examined the modifications and interactions between each
predictor selected by the stepwise model. In addition, we used
a cohort of 11,113 Japanese participants from the NAGALA
(NAfd in the Gifu Area, Longitudinal Analysis) database for
external validation. The data were also downloaded from
the “DATADRYAD” database (www.Datadryad.org), shared by
Okamura et al. (36) from: Ectopic fat obesity presents the greatest
risk for incident type 2 diabetes: a population-based longitudinal
study. Dryad Digital Repository. https://doi.org/10.1038/s41366-
018-0076-3. All results are reported in adherence to the TRIPOD
statement (37).

All statistical analyses were performed by the statistical
software package R (http://www.R-project.org, The R
Foundation) and Empower-Stats (http://www.empowerstats.
com, X&Y Solutions, Inc., Boston, MA). The tests were 2-tailed,
and P < 0.05 was taken as statistically significant.

RESULTS

Baseline Characteristics of the Study
Population
A total of 15,928 eligible participants were included in this study.
The mean age of all participants was 43.33 ± 12.31 years old.
The male/female ratio was 1.84:1. The mean BMI was 23.53 ±

3.30 Kg/m2. The mean FPG was 4.85 ± 0.66 mmol/L. The mean
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TABLE 1 | Baseline characteristics of the training and validation sets.

Characteristic Training set Validation set P-value

Participants 7,940 7,988

Incident diabetes 0.901

No 7,795 (98.17%) 7,840 (98.15%)

Yes 145 (1.83%) 148 (1.85%)

Age (year) 43.43 ± 12.45 43.24 ± 12.17 0.339

Gender 0.595

Male 5,157 (64.95%) 5,156 (64.55%)

Female 2,783 (35.05%) 2,832 (35.45%)

BMI (kg/m2 ) 23.51 ± 3.28 23.54 ± 3.32 0.552

SBP (mmHg) 119.90 ± 16.00 119.62 ± 15.77 0.266

DBP (mmHg) 75.12 ± 10.46 75.04 ± 10.38 0.633

FPG (mmol/L) 4.86 ± 0.66 4.84 ± 0.66 0.247

TG (mmol/L) 1.17 (0.80–1.77) 1.16 (0.80–1.75) 0.287

HDL-C (mmol/L) 1.30 ± 0.31 1.30 ± 0.33 0.198

LDL-C (mmol/L) 2.75 ± 0.69 2.75 ± 0.69 0.913

ALT (U/L) 20.00 (14.00–30.00) 20.00 (14.00–30.30) 0.566

BUN (mmol/L) 4.66 ± 1.17 4.67 ± 1.16 0.880

Scr (µmol/L) 72.04 ± 15.07 72.11 ± 15.25 0.767

Smoking status 0.443

Ever/current 1972 (24.84%) 2026 (25.36%)

Never 5968 (75.16%) 5962 (74.64%)

Drinking status 0.624

Ever/current 1,544 (19.45%) 1,578 (19.75%)

Never 6,396 (80.55%) 6,410 (80.25%)

Family history 0.157

No 7,400 (93.20%) 7489 (93.75%)

Yes 540 (6.80%) 499 (6.25%)

Values are n (%) or mean ± SD.

BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; FPG;

Fasting plasma glucose; TG, Triglyceride; HDL-C, High density lipoprotein cholesterol;

LDL-C, Low density lipid cholesterol; ALT, Alanine aminotransferase; BUN, Blood urea

nitrogen; Scr, Serum creatinine; Family history, Family history of diabetes.

HDL-C and LDL-C were 1.30 ± 0.32 and 2.75 ± 0.69 mmol/L,
respectively. TC was excluded based on collinearity screening.

Table 1 compared the baseline characteristics of the training
set (n = 7,940) and the validation set (n = 7,988). After
a 3-year follow-up, 148 and 145 incident diabetes cases
occurred in the training and validation set, respectively. There
were no statistically significant differences in all baseline
characteristics and the number of diabetic patients between the
two sets (all P > 0.05).

Development of XGBoost Model
Supplementary Table 1 presented the variables selected by the
XGBoost model and the corresponding prediction contributions.
The XGBoost model incorporated FPG, BMI, age, HDL-C,
ALT, BUN, SBP, LDL-C, Scr, TG, DBP, current smoking, and
drinking. The importance score of FPG was 0.5125 and its
relative importance was 1.0000, which was the most important
variable. The importance score of BMI was 0.0708 and its
relative importance was 0.1382, and its prediction contribution

FIGURE 2 | Shapley values-based interpretation of the model. Contributing

feature importance of the variables selected by the XGBoost model.

was only lower than that of FPG. And the importance score
of age is 0.0658, ranking third in the prediction contributions.
Figure 2 showed the ranking of the variables based on
contributing features. Supplementary Figure 1 demonstrated
the discriminatory ability of the XGBoost model. The AUCs
of the XGBoost model in the training set and validation set
were 0.977 and 0.920, respectively. Given FPG, BMI and age
shared the top 3 contributing features, and we further used
the SHAP method to explore the actual relationship between
diabetes risk and them (Supplementary Figure 2). When FPG
< 4.6 mmol/L, the risk of incident diabetes was at a low level.
However, when FPG> 4.6 mmol/L, with the increase of FPG, the
risk of developing diabetes increased rapidly. And as BMI and age
increased, the risk of diabetes gradually increased.

Supplementary Figure 3 presented the result of the decision
curve analysis for the XGBoost model. The results showed that if
the personal threshold probability of a participant is 50% (i.e., the
participant would opt for diabetes screening if the probability of
incident diabetes was <50%), then the net benefit is 0.453 when
using the model to decide whether to perform diabetes screening
(i.e., oral glucose tolerance test), with added benefit compared to
the diabetes screening for all or none participants.

And Supplementary Table 2 summarized the sensitivity and
specificity for predicting incident diabetes at different cutoff
values in the XGBoost model. The result showed that although
higher cutoff values lead to higher specificity, the sensitivity
rapidly dropped to a relatively low level.

Construction of the Stepwise Model
We further established three prediction models based on the
predictors chosen by the XGBoost model, including the MFP
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model, full model and stepwise model. In the training set,
AUCs of the MFP model, full model and stepwise model
were 0.937, 0.934 and 0.933, respectively. In the validation set,
the corresponding AUCs of those models were 0.908, 0.909
and 0.910, respectively (Figure 3, Supplementary Table 3). The
AUCs of the three models were relatively close. Given that
the stepwise model incorporated fewer risk factors and it was
simpler than MFP and full models. Besides, the stepwise model
could predict the 3-year diabetes risk relatively well. Therefore,
we chose the stepwise model as the optimal risk prediction
model for incident diabetes. Table 2 showed the 6 variables were
selected by stepwise model, including FPG, BMI, age, HDL-C,
ALT, and LDL-C. The results showed FPG, BMI, age, HDL-
C and ALT were positively associated with incident diabetes.
And participants with relatively high FPG were more likely to
develop diabetes [relative risk (RR):11.2812; 95% CI: 8.0798–
16.4983]. In contrast, participants with relatively high LDL-
C were less likely to develop diabetes (RR, 0.7238; 95% CI:
0.5438–0.9229). We further draw a corresponding nomogram
to provide a quantitative and simple tool in predicting the
risk of diabetes by using age, BMI, FPG, HDL-C, LDL-C, and
ALT (Figure 4). Each variable in the nomogram was assigned
a specific point, and the points from each variable value are
summed to obtain the total points, which was used to obtain
the probability for predicting diabetes. And the algorithm of
diabetes risk in stepwise model was logit (risk of incident
diabetes) = −24.07232 +0.04191∗age (year) + 0.15291∗BMI
(kg/m2)+ 2.45073∗FPG (mmol/L)+ 1.14025∗HDL-C (mmol/L)
- 0.32400∗LDL-C (mmol/L)+ 0.00852∗ALT (U/L).

Performance of the Stepwise Model
The AUCs of the stepwise model were 0.933 and 0.910 in
the training and validation sets, respectively (Figure 5). And
the result of bootstrap resampling validation (times = 500)
confirmed that the prediction performance of the stepwise
model in the training cohort was stable (AUC = 0.927)
(Supplementary Figure 4). The calibration bar graph of the
nomogram for the probability of incident diabetes demonstrated
good agreement between observation and prediction both in the
training and validation sets (Figure 6). The Hosmer-Lemeshow
test indicated that the model was non-significant (p = 0.068 for
the training set, p = 0.165 for the validation set), suggesting a
perfect fit between the predicted diabetes risk and the observed
diabetes risk.

Figure 7 presented the result of decision curve analysis for
the stepwise model. The decision curve demonstrated if the
threshold probability of a patient was >1%, using the XGBoost
model to predict incident diabetes was more beneficial than
diabetes screening for all or none of the participants. There was a
wide range of alternative threshold probability spectrum, which
indicated that the stepwise model had significant clinical use.

Modifications and Interactions Between
Each Predictor in the Nomogram
We examined the modifications and interactions between each
predictor selected by the stepwise model, including age, BMI,
FPG, HDL-C, LDL-C, and ALT. Table 3 showed that almost no

FIGURE 3 | The ROC curves of the MFP model, full model and stepwise

model in the training set (A) and validation set (B).

interactions were observed based on our prior specification (most
P-values for interaction >0.05), except that BMI and FPG had
significant interactions (P-values for interaction= 0.017).

External Validation
The external validation was performed on a cohort of 11,113
Japanese participants. The AUC for the external validation set
was 0.830, which showed good discrimination (Figure 8). And
the Hosmer-Lemeshow test for the external validation set showed
no statistically significant difference between the predicted
diabetes risk and observed diabetes risk, which revealed a perfect
fit between the predicted diabetes risk and the observed diabetes
risk (P = 0.824) (Figure 9). In short, the external validation
indicated that the stepwise model was well-generalized.
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TABLE 2 | Variables selected using stepwise logistic regression.

Beta Standard error z-value RR (95%CI) P-value

(Intercept) −24.07232 1.34753 −17.86405 – –

FPG (mmol/L) 2.45073 0.15763 15.54774 11.2812 (8.0798–16.4983) 0.0000

HDL-C (mmol/L) 1.14025 0.29593 3.85313 3.1101 (1.7651–5.8612) 0.0000

BMI (kg/m2 ) 0.15291 0.03016 5.07010 1.1647 (1.0911–1.2413) 0.0000

Age (year) 0.04191 0.00765 5.47752 1.0427 (1.0276–1.0578) 0.0000

ALT (U/L) 0.00852 0.00335 2.53939 1.0085 (1.0022–1.0146) 0.0060

LDL-C (mmol/L) −0.32400 0.14526 −2.23050 0.7238 (0.5438–0.9229) 0.0030

FPG; Fasting plasma glucose; HDL-C, High density lipoprotein cholesterol; BMI, Body mass index; LDL-C, Low density lipid cholesterol; ALT, Alanine aminotransferase; RR, Relative

risk; CI, Confidence interval.

FIGURE 4 | The nomogram of the stepwise model to predict the 3-year risk of incident diabetes. When predicting an individual’s 3-year risk of diabetes, locate his/her

value on each variable axis. Draw a vertical line from that value to the top Points scale to determine how many points are assigned by that variable value. Then, the

points from each variable value are summed. Locate the sum on the Total Points scale and vertically project it onto the bottom axis, thus obtaining a personalized

3-year risk of diabetes.

DISCUSSION

In the present study, we established and validated a risk

assessment system for characterizing the 3-year risk of incident

diabetes. The XGBoost model incorporated FPG, BMI, Age,

HDL-C, ALT, BUN, SBP, LDL-C, Scr, TG, DBP, current smoking,
and drinking, of which FPG, BMI and age shared the top three

prediction contribution. And we further established a stepwise
model and a corresponding prediction nomogram based on
the predictors chosen by the XGBoost model. The AUCs of

the stepwise model were 0.933 and 0.910 in the training and
validation sets, respectively. The Hosmer-Lemeshow test showed
a perfect fit between the predicted diabetes risk and the observed
diabetes risk (p = 0.068 for the training set, p = 0.165 for the
validation set). Decision curve analysis presented the clinical use
of the stepwise model and there was a wide range of alternative
threshold probability spectrum. Furthermore, the AUC for the
external validation set was 0.830, and the Hosmer-Lemeshow test
for the external validation set showed no statistically significant
difference between the predicted diabetes risk and observed
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FIGURE 5 | The ROC curves of the stepwise model in the training set and

validation set.

diabetes risk (P = 0.824). Therefore, the external validation
indicated that the stepwise model was well-generalized.

Machine learning is a collection of data analysis techniques,
which aims to establish prediction models that improve with
experience and it is becoming an important part of modern
medical research (13). It holds promise to enable computers to
assist humans to analyze large and complex data sets (14). So
far, researchers have developed a variety of machine learning
algorithms, including decision trees, kernel machines, neural
networks, support vector machines, logistic regression, Bayesian
classifiers, ensemble learning, multilayer perceptron, and so on
(38–45). Machine learning has unique advantages, including
scalability and flexibility, making it applicable to various tasks,
such as classification, risk stratification, diagnosis and survival
predictions (46). Besides, it handles large multidimensional
sets of time-to-event data without the need for assumptions
of normality of distributions, linearity of risk prediction, and
overfitting of models (47). As yet, machine learning techniques
have been applied to a broad range of areas within diabetes, some
of which are used to build risk prediction models for incident
diabetes (20, 21, 48–52). As a novel machine learning method,
XGBoost has become well-established in the machine learning
community and gained a positive reputation through numerous
machine learning challenges (53). The XGBoost algorithm can
automatically handle missing data by adding a default direction
for the missing values in each tree node (54). XGBoost has higher
calculating speed and accuracy based on the principle of gradient
boosting (30). Evidence showed that XGBoost’s performance
was significantly better than traditional statistical methods (24,
55, 56). To our knowledge, the XGBoost method has not been
applied to develop a diabetes risk prediction model. In addition,
in those studies using machine learning techniques to predict
the risk of diabetes, researchers mainly focused on comparing

FIGURE 6 | Comparison between predicted and observed 3-year incidence of

deciles of the predicted diabetes risk score in the nomogram for the training

set (A) and validation set (B).

various machine learning methods but did not extend the results
of machine learning to clinical applications. And AUCs of those
models were between 0.580 and 0.925 (20, 21, 48–52). However,
this was the first study that used XGBoost method to evaluate
the importance of variables and characterize the 3-year risk of
incident diabetes among Chinese adults. Notably, we ranked
the variables according to the prediction contribution of each
selected variable. Furthermore, we used the SHAP method to
capture the actual relationship between diabetes risk and the
three variables with the largest predicted contribution. Moreover,
we developed a simple stepwise model and constructing a
corresponding nomogram based on the XGBoost model. And we
performed the Hosmer-Lemeshow test to explore the difference
between the predicted diabetes risk and the observed diabetes
risk. And we did the decision curve analysis to explore the
clinical use of the stepwise model, and there was a wide
range of alternative threshold probability spectrum. Moreover,
we examined the modifications and interactions between each
predictor selected by the stepwise model. Furthermore, we
used a cohort of 11,113 Japanese participants as the external
validation set to explore the reliability and generalizability of the
stepwise model.
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FIGURE 7 | The decision curve for the stepwise model predicts the risk of

incident diabetes in the training set (A) and validation set (B). Net benefit is

shown on the y-axis. The red line represents the model; the thin gray line

represents the assumption that all participants develop diabetes; the thin black

line represents the assumption that none participants develop diabetes. The

decision curve demonstrated that if the threshold probability of a patient is

>1%, using the model to predict incident diabetes adds more benefit than

diabetes screenings (i.e., oral glucose tolerance test) for all or none of

the participants.

TABLE 3 | Modifications and interactions between each predictor selected by the

stepwise model.

Predictor Modifier HR (95%CI) P for interaction

Age BMI 0.997 (0.994, 1.001) 0.186

Age FPG 0.980 (0.958, 1.002) 0.077

Age ALT 1.000 (0.999, 1.000) 0.824

Age HDL-C 1.015 (0.969, 1.064) 0.524

Age LDL-C 0.996 (0.974, 1.018) 0.699

ALT FPG 1.001 (0.991, 1.011) 0.902

ALT BMI 1.000 (0.999, 1.002) 0.627

ALT HDL-C 0.999 (0.979, 1.019) 0.896

ALT LDL-C 0.994 (0.986, 1.002) 0.148

BMI FPG 0.904 (0.832, 0.982) 0.017

BMI HDL-C 0.978 (0.840, 1.139) 0.776

BMI LDL-C 1.001 (0.923, 1.086) 0.979

FPG HDL-C 1.903 (0.692, 5.233) 0.213

FPG LDL-C 1.034 (0.643, 1.665) 0.889

HDL-C LDL-C 1.268 (0.560, 2.872) 0.569

FPG; Fasting plasma glucose; HDL-C, High density lipoprotein cholesterol; BMI, Body

mass index; LDL-C, Low density lipid cholesterol; ALT, Alanine aminotransferase; HR,

Hazard Ratio; CI, Confidence interval.

FIGURE 8 | The ROC curves of the external validation.

Diabetes can cause various complications, bring severe
physical and psychological distress to patients, and bring a huge
burden to the healthcare system. And it tends to be undiagnosed
due to the lack of specific symptoms. However, screening for
diabetes through oral glucose tolerance testmay increase the yield
and economic efficiency of screening (57). Our results made up
for this deficiency, which helps identify individuals with a high
risk of developing diabetes and avoiding the costs and efforts of
prevention and treatment in low-risk groups.
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FIGURE 9 | Comparison between predicted and observed 3-year incidence of

deciles of a predicted diabetes risk score for the external validation set.

Identifying key factors has great clinical significance in the
risk assessment of incident diabetes. FPG was the most important
risk predictor in our study. Impaired fasting plasma glucose is
one of the diagnostic criteria for diabetes. Researchers found
compared with those with impaired fasting blood glucose,
people with normal fasting blood glucose have a significantly
lower risk of developing diabetes (4.0 vs. 11.3%) (58). BMI
had the second-largest predicted contribution. The original
research showed for every 1 kg/m2 increase in BMI among
Chinese adults, the risk of diabetes increases by 23% (27).
Multiple studies have demonstrated overweight or obesity was
related to the risk of diabetes (59, 60). Evidence showed
obesity, dyslipidemia, abnormal hepatocellular function, and
diabetes usually coexist in the same subject and have common
pathological mediators (inflammation, metabolic disorders,
insulin resistance and intestinal flora imbalance, etc.) (61–63).
The prevalence of diabetes markedly increases with age (64).
The aging of pancreatic β cells can lead to decreased glucose
sensitivity and insulin secretion defects (65). Therefore, the
application of these risk predictors in ourmodels is well-founded.

There are some strengths of our study, as follows: (1) As a
large-scale multicenter study, our models can be well-applied to
the Chinese population. (2) This was the first study that used
the XGBoost method to characterize the 3-year risk of incident
diabetes. (3) We presented the predicted contribution of each
variable selected by the XGBoost model and sorted them in the
form of a bar chart. (4) We developed a simple stepwise model
based on the XGBoost model and constructed a corresponding
nomogram to provide a personalized risk assessment tool. (5)
We examined the modifications and interactions between each
predictor selected by the stepwise model. (6) We used a cohort
of Japanese participants as the external validation set to explore
the reliability and generalizability of the stepwise model. (7) Since
this was a retrospective cohort study, it could decrease the risk of
selection bias and observation bias.

However, there are still some potential limitations. First,
the variables we extracted were limited and lacked information
about other diabetes risk factors, such as glycated glycosylated
hemoglobin, serum insulin andC-peptide concentration. Second,
due to the original study design, we cannot distinguish the

types of diabetes mellitus. Considering type 2 diabetes mellitus
is the most common kind of diabetes, accounting for over 90%
of diabetes cases (66), our findings represent type 2 diabetes
mellitus. Third, the researchers did not perform a 2-h oral
glucose tolerance test. Thus, our diagnostic criteria for diabetes
mellitus may have missed some diabetic patients. However, it
is not feasible to perform an oral glucose tolerance test on all
participants in such a large-scale cohort study. Fourth, there are
too many missing values of variables in the original data, and
multiple imputations to replace missing values were not feasible.
Therefore, we excluded participants with incomplete records for
a complete case study.

CONCLUSION

We established and validated a risk assessment system for
characterizing the 3-year risk of incident diabetes, which showed
outstanding performance. And FPG, BMI and age shared the top
three prediction contributions. We also constructed a prediction
nomogram to provide a personalized risk assessment tool for
developing diabetes.
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