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The coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, is an

acute respiratory disease that has been classified as a pandemic by the World Health

Organization (WHO). The sudden spike in the number of infections and high mortality

rates have put immense pressure on the public healthcare systems. Hence, it is

crucial to identify the key factors for mortality prediction to optimize patient treatment

strategy. Different routine blood test results are widely available compared to other

forms of data like X-rays, CT-scans, and ultrasounds for mortality prediction. This study

proposesmachine learning (ML) methods based on blood tests data to predict COVID-19

mortality risk. A powerful combination of five features: neutrophils, lymphocytes, lactate

dehydrogenase (LDH), high-sensitivity C-reactive protein (hs-CRP), and age helps to

predict mortality with 96% accuracy. Various ML models (neural networks, logistic

regression, XGBoost, random forests, SVM, and decision trees) have been trained and

performance compared to determine the model that achieves consistently high accuracy

across the days that span the disease. The best performing method using XGBoost

feature importance and neural network classification, predicts with an accuracy of 90%

as early as 16 days before the outcome. Robust testing with three cases based on

days to outcome confirms the strong predictive performance and practicality of the

proposed model. A detailed analysis and identification of trends was performed using

these key biomarkers to provide useful insights for intuitive application. This study provide

solutions that would help accelerate the decision-making process in healthcare systems

for focused medical treatments in an accurate, early, and reliable manner.

Keywords: coronavirus disease 2019, prognosis, mortality, biomarkers, machine learning

INTRODUCTION

The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China in December 2019.
Since then, it has rapidly spread around the world. As of April 24, 2021, WHO reported a total of
about 144 million confirmed cases and more than 3 million deaths worldwide. At this stage of the
pandemic, most estimates of fatality ratios have been based on cases detected through surveillance
and calculated using crude methods, giving rise to widely variable estimates of case fatality rate
by country. The sudden rise in cases has put immense pressure on the healthcare systems due
to limited resources. Identification of the key bio-markers of mortality is crucial because it helps

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.626697
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.626697&domain=pdf&date_stamp=2021-05-12
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vinod.pk@iiit.ac.in
mailto:deva@iiit.ac.in
https://doi.org/10.3389/fpubh.2021.626697
https://www.frontiersin.org/articles/10.3389/fpubh.2021.626697/full


Karthikeyan et al. Early COVID-19 Mortality Prediction

in understanding the relative risk of death among patients
and therefore guides policy decisions regarding scarce medical
resource allocation during the ongoing COVID-19 pandemic.

Symptoms of COVID-19 are very similar to the common
flu that include fever, cough and nasal congestion (1). As the
pandemic spread, other symptoms such as loss of taste and smell
(anosmia) have emerged (2, 3). Severe cases can lead to serious
respiratory disease and pneumonia. Those most at risk are the
elderly and people with underlying medical issues/comorbidities,
such as cardiovascular diseases and diabetes (4–6). As the disease
spreads around the world, more symptoms and features that
affect patient mortality are being realized. Having such a large
set of features that are affected by the disease makes it hard
to understand which ones have a greater impact on patient
mortality. Machine learning can aid by analyzing large sets of
data to find patterns quickly and providingmodels that assess risk
factors accurately.

Several studies have applied ML algorithms for detecting
and diagnosing COVID-19 infection in patients (3, 7–12).
These provide a scope for faster screening of patients during
pandemic and help in overcoming challenges in performing
Reverse Transcription Polymerase Chain Reaction (RT-PCR) at
the population-scale. Most ML-driven COVID-19 studies are
based on Chest X-rays or CT-scans (7). Such data is difficult
to obtain in a low resource setting (13, 14). Thus, there is
a need to develop model based on alternative data obtained
using easily accessible and inexpensive tests. The detection of
COVID-19 based on cough samples has shown promise (9).
However, a scalable solutions are required to predict severity of
COVID-19 infection. Routine blood tests have shown promise in
severity prediction.

Different ML models have been proposed to predict risk of
developing severe complications and mortality (15–27). This
is important since there are limited resources compared to
the increasing number of COVID-19 patients. The resource
allocation and distribution among patients depending on their
prognosis is an important issue. Wang et al. (28) proposed two
different models based on Clinical and Laboratory features to
predict mortality of COVID-19 patients. The Clinical model
developed with Age, history of hypertension and coronary
heart disease showed AUC of 0.83 (95% CI, 0.68–0.93) on the
validation cohort. The laboratory model developed with age,
high-sensitivity C-reactive protein (hs-CRP), peripheral capillary
oxygen saturation (SpO2), neutrophil and lymphocyte count,
D-dimer, aspartate aminotransferase (AST) and glomerular
filtration rate (GFR) had better discriminatory power with
AUC of 0.88 (95% CI, 0.75–0.96) on the validation cohort.
The Validation cohort consisted of 44 COVID-19 patients of
which 14 died and 30 survived. XGBoost and backward step-
down selection were used for feature selection followed by a
multivariate logistic regression for the classification. The clinical
model can prove to be useful given the ease of data collection
of all the three features. Shang et al. (29) established a scoring
system of COVID-19 (CSS) to split patients into low-risk and
high-risk groups. Here, high-risk group patients would have
significantly higher chances of death than those of the low-risk
group. Multivariable analysis and coefficients of lasso binary

logistic regression were used to do feature analysis and to
establish a prediction model. Eight different variables including
age and blood parameters were used to generate a model which
showed good discriminative power with an AUC of 0.938 (95%
Cl, 0.902–0.973) on the independent validation cohort. Xie
et al. (30) identified SpO2, Lymphocyte Count, Age, and Lactate
dehydrogenase (LDH) as a set of important features to generate
a mortality prediction model. They used multivariable logistic
regression for the classification task which gave an AUC of 0.98
on the independent validation set. Using this they established a
nomogram to generate probability of mortality. Jimenez-Solem
et al. (24) used COVID-19 data from Denmark and UK to
build mortality prediction models which performed with AUC
of 0.906 at diagnosis, 0.818 at hospital admission, and 0.721
at ICU admission. Common risk factors, included age, body
mass index, and hypertension. Bolourani et al. (22) developed
ML models to predict respiratory failure within 48 h of patient
admission for COVID-19. XGBoost model had the highest mean
accuracy of 0.919 and AUC of 0.77. The most influential variables
included the type of oxygen delivery used in the emergency
department, age, Emergency Severity Index level, respiratory rate,
serum lactate, and demographic characteristics. Most studies
have not presented the consistency of their results with different
days to outcome. This analysis is necessary to assess the model’s
performance and its reliable application in real scenarios where a
patient may be in any stage in the duration of the disease.

An interpretable mortality prediction model for COVID-
19 patients was proposed by Yan et al. (31) where they
analyzed blood samples of 485 patients fromWuhan, China, and
developed an XGBoost based solution. The proposed clinically
operable single tree XGBoost model used three crucial features-
LDH, lymphocytes, and hs-CRP. The decision rules with the
three features along with their threshold were devised recursively.
This provided a interpretable machine learning solution along
with an accuracy of atleast 90% for all days. Yan et al. analyzed
their model consistency and showed 94% accuracy at 7 days
before day of outcome. However, it’s possible that their results
are biased (32). The method used to determine consistency was
skewed toward the high number of samples near the day of
outcome. The F1-score starts from 0.97 on day 1 and drops
to 0.68 on day 17 from the outcome, showing inconsistency.
Moreover, the unbalanced test set brings unreliability into the
results. It is desirable to predict accurately during the initial days
of infection, which helps to devise treatment strategies early.

In this study, we propose a machine learning pipeline to
overcome these shortcomings in mortality prediction and to
improve the performance.We have analyzed the dataset provided
by Yan et al., which contains the biomarkers derived from blood
tests, for developing our models. We created a solution using
XGBoost feature importance and neural net (NN) classification.
We have performed feature selection to minimize the numbers of
features that can be used for developing risk stratificationmodels.
A large number of features for a small cohort may sometimes
lead to overfitting. A strong combination of five features was
selected as the key biomarkers for prediction. The neural net
provides a high predictive performance (96% accuracy), while
the XGBoost feature importance graph adds interpretability to
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the model. Analysis of the features’ graphs showing clear trends
in progression provide additional insights into the features as
well. Various algorithms and robust testing were implemented to
establish a strong confidence in the model. Our model proves to
be extremely accurate and consistent through the days spanning
a patient’s disease. This would help in faster diagnosis with fewer
number of features and higher confidence. Healthcare systems
can use the model to optimize treatment strategy by focused
utilization of resources.

METHODOLOGY

Dataset and Preprocessing
All data for feature analysis, training and testing were taken from
(31). This dataset includes 2,779 electronic records of validated or
suspected COVID-19 patients from Tongji Hospital in Wuhan,
China. The initial dataset comprised of the time series data of 375
COVID-19 patients with 74 biomarkers along with data sample
time, admission time, discharge time and outcome (survived
or dead). Yan et al. (31) used only data of the final samples
of each patient for training and testing. In our study, we have
considered the samples from all the days of each patient for
training and testing. For each patient, there were multiple rows
representing readings taken on different days. Some days also
had multiple readings taken at different times. All such rows
representing same day readings of a patient were combined
together to create a single data point for each unique day of
the patient. In cases where there existed features with multiple
recordings taken in a single day at different times, the readings
which was taken the earliest in that particular day is considered
for generating the combined single data point. This is because
we require the model to learn the features that predict mortality
at the earliest. Features which had missing values in more than
70% of the instances were dropped and were not used for further
analysis. A new column “Number of days till Outcome” is added
to signify how many days are left for a sample to reach the
day of outcome. This is calculated by subtracting the day of
reading from the day of discharge/death. After data generation
and processing, our dataset had 201 patients who survived and
169 patients who died. The features were analyzed with respect
to the two classes.

Missing values in the training set were imputed using K-
Nearest Neighbor algorithm. The value for imputation was
calculated by averaging out the values of 10 nearest neighbors
weighted with respect to inverse of Euclidean distance. For
normalizing the training data Min-Max scaling was used. Min-
Max scaling was used since most features don’t fit a normal
distribution and to ensure that the structure of the data-points
in each feature remained intact.

Data Splitting for Unique Patient
Segregation
The dataset after pre-processing consists of 1,766 datapoints
corresponding to 370 patients, out of whom 54.3% recovered
and 45.7% succumbed to COVID19. The number of datapoints
for each of the patients range from 1 to 12 that were collected
during different days before one of the two outcomes. To ensure

exclusivity of patients in the training and testing sets, 80% of the
patients were randomly chosen for the training set and remaining
20% of the patients were chosen for the testing set. Unique
patient segregation is important since including datapoints from
a single patient in the training and test sets may lead to bias.
Such a unique 80:20 split gave us a training set comprising of
1,418 data points and testing set comprising of 348 data points.
The class distribution across the days to outcome is shown in
Figure 1. The classes are spread across all the days in good
ratios and are comparable. Since our aim is to develop mortality
prediction model that is independent on the days to outcome, all
the readings of the patients are considered as unique data-points
for further examination.

In this study, results with and without K-Nearest Neighbor
(KNN) imputation are compared. KNN algorithm is useful for
matching a data-point with its closest k neighbors in a multi-
dimensional space. Imputed test set: Each data-point in the test

set was imputed using the values corresponding to the selected
five features from their ten nearest neighbors in the train set. The
resulting test set contained 213 samples belonging to 71 patients.
The dead/total patient ratio of 0.563 shows that there is a good
representation of both classes in the test set. This ensures that
the results are reliable for both classes. Non-imputed test set: To

assess the performance of the algorithms when the test set has no
synthesized values, we dropped the rows that had missing values
in any one of the five features. The resulting test set contained
115 samples belonging to 65 patients with a dead/total patient
ratio of 0.513.

Machine Learning Pipeline
Figure 2 depicts the overall pipeline used in this study for
performing the mortality prediction task. All the models have
been trained on samples from all days from this dataset
for mortality prediction irrespective of the number of days
to outcome. Following data preprocessing, XGBoost classifier
was used to obtain feature importance, and a neural network
was used for feature selection. The optimum combination of
features thus obtained was then used to train various supervised
machine learning classification models. The trained models were
then tested based on three different ways, with each having
its own strengths. Five-fold cross validation was utilized to
assess the predictive ability and statistical significance of the
models. Assessment of the developed models was done based
on different metrics whose mean and standard deviation are
reported below. Further detailed account of the step-by-step
procedure is presented below.

Evaluation Metrics
The predictive performance of the supervised models was
assessed using the following metrics. Here, TP, TN, FP, and FN
stand for true positive, true negative, false positive, and false
negative rates, respectively).
ROC-AUC: AUC stands for “Area under Receiver Operating
Characteristic curve” (ROC curve in short). It provides
an aggregate measure of performance across all possible
classification thresholds. The ROC curve plots two parameters:
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FIGURE 1 | Distribution of the two classes in the train and test sets after splitting.

FIGURE 2 | Flowchart depicting the model development pipeline used in this study.

• True Positive Rate

TPR =
TP

TP + FN

• False Positive Rate

FPR =
FP

FP + TN
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AUC measures the entire two-dimensional area under the ROC
curve starting from (0,0) and ending at (1,1).
Accuracy: Accuracy is an important metric for classification

models. In this study, the test dataset is not unbalanced,
hence this will give a good idea about the model’s
predictive performance.

Accuracy =
TP + TN

TP + TN + FP + FN

F1 Score: F1 score is the harmonic mean of precision and recall.

F1score =
2× Precision× Recall

Precision+ Recall

where,

Precision =
TP

TP + FP

and,

Recall =
TP

TP + FN

XGBoost Feature Importance
To evaluate the biomarkers that have the most influence on the
outcome, XGBoost was used to get the relative importances.
XGBoost is a powerful machine learning algorithm that estimates
features that are the most discriminative of model outcomes (33).
The final importance of a feature is calculated using the mean of
its importances across all the trees. The importance of a feature
over a tree is determined by the number of times the feature
is used to split the tree, which is weighted as the square of the
improvement made by the split in the model performance (34)
The average importances of the features were found through
100 iterations of randomly selecting 80% of the samples in the
training set. The parameter settings for XGBoost of maximum
depth was set to 3, learning rate was set to 0.2 and regularization
parameter α was set to 5 with logistic regression as the objective.
All the other parameters carry their default values.

NN Feature Selection
After determining the order of importance, neural network
was used to find the optimal number of features required for
mortality prediction. NNs can learn complex relations between
the features. The input layer had the same number of neurons
as the number of features to be analyzed. The architecture
included two hidden layers with ReLU activation. The first
hidden layer had double the number of neurons as the input
layer, and the second hidden layer had equal number of neurons
as the input layer. The Figure 3 shows the architecture of the
neural network. Binary Cross Entropy with Logits was the loss
function. Adam optimizer with learning rate 0.001 and Reduce
On Plateau scheduler with patience as 5 was utilized to update the
weights and learning rate. Theoretically, shallow NN is capable
of performing as good as or better than logistic regression, given
the NN is not overfitting on the training set (35). We used Early
Stopping and Learning Rate Decay to prevent overfitting. The

FIGURE 3 | Architecture of the neural network implemented for feature

selection, where n represents the number of features to be analyzed.

average AUC of each set during feature selection was calculated
using stratified 5-fold cross validation. The performance of each
set of features was then compared to select the optimum one.

Training
To compare the performances of various machine learning
algorithms, we tried six differentmodels as listed below. Themost
optimum feature set was used as inputs to these models. GridCV
with Stratified 5-fold cross validation was used for extensive
hyper-parameter tuning of Logistic Regression, Random Forests,
XGBoost, Support Vector Machine, and Decision Trees.

1. Neural Network: For training, a similar Neural Network as the
one used for feature selection was developed for predicting
mortality. The number of neurons in the input layer was equal
to the optimal number of features as determined through
feature selection. The first and second hidden layers thus
have double and equal number of neurons as the input layer,
respectively. The learning rate was set as 0.00001 and patience
of the scheduler was set as 50 to ensure good fitting on the
training data. The cutoff for classification which was evaluated
with respect to the validation set and F1-Score was used as the
metric for performance comparison. In case multiple cutoffs
gave the same F1-Score, the cutoff closest to 0.5 was chosen.

2. Logistic Regression: Logistic Regression is an interpretable

model that performs well on simple data that is linearly
separable (36, 37). It was trained with “liblinear” solver due
to small dataset size, L1 penalty, tolerance for stopping criteria
set as 0.0001, inverse of regularization strength C set as 10 and
intercept scaling set as 1.

3. Random Forests (RF): RF is a robust, tree based technique
useful for handlingmissing data and outliers (38). It maintains
its accuracy despite data having small size (39). It was trained
with gini criterion, maximum depth set as 9, minimum
number of samples at a leaf node set as 1, and number of trees
set as 90.
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4. XGBoost: XGBoost was trained with objective set as logistic
regression, gamma set as 0, learning rate set as 0.2, maximum
delta step set as 0, maximum depth set as 4, minimum sum
of instance weight needed in a child set as 0, L2 regularization
parameter lambda set as 7 and subsample set as 1.

5. Support Vector Machine (SVM): SVM is a machine learning
technique that has excellent generalization capacity and also
useful for small data size (40). On comparing four types
of kernels [i.e., linear, polynomial (“poly”), radial basis
function (RBF), and sigmoid], it was observed that the “poly”
kernel performed best. Hence, the SVM model was trained
with “poly” kernel, degree set as 3, gamma set as scale,
regularization parameter C as 5, and maximum iterations set
as 500,000.

6. Decision Trees: Decision Trees predict the dependent
variable’s values by learning simple decision rules inferred
from the data (41, 42). It was trained with criterion set as
“entropy,” maximum depth set as 9, minimum number of
samples required to be at a leaf node set as 9, minimum
number of samples required to split an internal node set as 2,
and splitter set as “random.”

Testing
Stratified five-fold cross validation was used to acquire five
models that were trained and validated on different folds
(43). Due to a small dataset size, five-fold cross validation
was chosen for sufficient variation such that the underlying
distribution is represented. These models were then tested on
the test set, and the results were averaged to determine model
predictive performance.
Test set processing: The test set was first normalized using Min-

Max scaling that was fit on the train set. Some of the rows had
missing values, so we processed them in two ways as follows:

1. Rows missing values for any four or more of the five selected
features were eliminated. The missing values of each sample
in the resulting test set were imputed with the average of
the values of its corresponding 10 nearest neighbors in the
train set using KNN, where nearest neighbors were found with
respect to the selected five features only. The nearest neighbors
were determined through the inverse of Euclidean distance
between the data-points.

2. All the rows missing any one of the five values were dropped.
This set has no imputation, and only includes the rows that
have had all the values. This produces a test set which can
simulate 100% real life testing scenario.

Testing on three cases: For realizing the true predictive

performance and its consistency, the models were tested
using three cases. Each of the following three cases have their
own significance:

1. Case ≤n: If only n or less days are left till outcome
Test samples that had the value of “Number of days till
Outcome” as greater than nth day were dropped. Then, testing
was done on the cumulation of the rest of the samples.

2. Case ≥n: For n or more days in advance
Test samples that had the value of “Number of days till

Outcome” as lesser than nth day were dropped. Then, testing
was done on the cumulation of the rest of the samples.

3. Case = n: On exactly n days before the outcome
Test samples that had the value of “Number of days till
Outcome” equal to nth day were chosen.

RESULTS

Identification of Key Biomarkers
Given, especially, the severity and rapid spike in
COVID-19 infections and resulting fatalities, a large
number of lab-tests is required to assess patients’
medical conditions. Feature selection by which the
most important and crucial biomarkers that aid in
risk assessment are identified, is an important exercise
because acquiring fewer lab tests means faster and efficient
decision-making processes.

XGBoost feature importance: The relative importance

of available features were determined using the gradient
boosting algorithm, XGBoost. It was observed that the top
four features are neutrophils (%), lymphocyte (%), LDH and
hs-CRP in the given order. Supplementary Figure 1 shows
the order of relative importance of all the features originally
considered. The list of features was sorted in the descending
order of importance. “Age” was then added to the top of
the feature importance list owing to its extreme ease of data
collection and studies (4–6) showing that its an important
factor in determining disease progression of COVID-19
patients. The distribution of the five selected features with
respect to both the classes- survived and dead is given in
Supplementary Figure 2.

NN feature selection: The AUC scores of each set of features

during forward selection using a neural network was plotted.
The aim of this exercise was to maximize AUC score
and minimize the number of features selected for model
development. It was observed that the mean AUC score
at five features was 0.95. Adding the sixth feature did not
increase the AUC significantly. Observed AUC with respect
to the number of features selected for modeling is given in
Supplementary Figure 3. It was also noticed that dropping “age”
feature hampered the performance of the model, whereas adding
“gender” did not improve the model performance. Hence, the
features selected for this study are age, neutrophils (%), hs-
CRP, lymphocyte (%), and LDH. These selected features are
also statistically significant (with p-value < 0.001) checked using
ANOVA F-test.

Predictive Ability of the Model
Six different algorithms, namely neural net, SVM, logistic
regression, random forests, XGBoost and decision trees, were
used to develop the classificationmodels. Initially, each algorithm
after stratified five-fold cross validation was tested on the
test set, which included samples from all days. Figure 4

shows the accuracy, F1 Score and AUC of all the developed
models using the six different methods. Our aim is to
choose the most accurate model that is highly capable of
distinguishing the two classes. It was observed that the best
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FIGURE 4 | Comparison of the performance of different machine learning algorithms assessed using different metrics. The vertical lines denote the standard

deviations. (A) Accuracy. (B) AUC and F1 score.

model is the neural net as it performed better than rest in
terms of accuracy (96.53 ± 0.64%) and F1 score (0.969 ±

0.006; Supplementary Table 1). Supplementary Figure 4 shows
its loss curve, depicting a good fit. It has a high AUC
score (0.989 ± 0.006), showing good distinguishing capacity
for the features of both classes. Hence, the results and
discussions presented in the rest of the manuscript will be
based on those obtained using the neural network unless
otherwise mentioned.

The robustness and applicability of the model at different
settings were further tested by considering three different cases
(Cases 1, 2, and 3). The first case investigates the performance
of the model when the test set consists of data only if n or less
number of days are left till the day of outcome (Figure 5A).
Testing was done with respect to different values of n. From
Figure 5B, it was observed that the accuracy is consistently
high for n up to 17 days if only n or less days are left till
the outcome. For the value of range of n between 0 and
17 days, the accuracy values were in a close range of 97.1–
99.0% indicating the high predictive nature of the model.
The number of samples after day 17 is relatively very few to
affect this accuracy at later days, hence all the analysis have
been done up to only 17 days. From Figure 5C, we observe
high and consistent AUC scores (best = 1 and worst = 0.99)
and F1 scores (best = 0.99 and worst = 0.97) across various
days. This shows that the model performs consistently with an
accuracy of at least 97% if any number of days are left till
the outcome.

The drawback of Case 1 is that it is possible for the samples
nearer to the outcome to dominate the results since there are
more samples nearer to the outcome. Case 2, which examines
the performance of the model for n or more number of days
in advance, was considered to address this drawback. One does
not know when the day of outcome is going to be; hence it

is important to analyze the model’s performance with respect
to any day before the day of outcome. This would also help
to assess the performance of the model over the span of the
disease. Since the number of samples decreases with respect
to the number of days before outcome, every cumulation
can only be dominated by the samples of the day closest to
the outcome (Figure 6A). Hence, this gives a more accurate
overview. Figure 6B agrees with our intuition, that it gets harder
to predict the outcome as we go farther from the day of outcome.
Nevertheless, the model starts with a high accuracy of 96.5%
at the day of outcome and stays quite consistent. The lowest
accuracy of 88% was observed when the model predicts 15 or
more days in advance. From Figure 6C, a similar consistency
was observed with the AUC and F1 scores. The AUC starts
with 0.99 at the day of outcome and reaches its lowest point
on day 15 with 0.96. F1 scores start with 0.97 and reach
its lowest point 0.84 on day 13. However the model predicts
with a high accuracy of 95.7% when n ≥ 1 week indicating
strong performance.

Next, for even more rigorous testing, we introduce Case
3 which assesses the performance of the model on exactly
the nth day before the day of outcome (Figure 7A). Here, no
sample from any other day can influence the results. Even
though the accuracy fluctuates through the days, Figure 7B

shows that the model predicts the outcome with an accuracy
of 98.9% on the day of outcome and reaches its lowest value
of 92.85% on day 5. The AUC and F1 scores follow a similar
trend by starting at 1 and 0.99, respectively on day of outcome
and reaching its lowest score on day 5 with 0.95 and 0.94,
respectively (Figure 7C). It’s possible that the 100% accuracy
for day 7–12 could be due to the less number of samples,
but its worth noting that both classes were present and the
model consistently predicted them all correctly for day 7–12 with
AUC and F1 scores at 1. Supplementary Figures 5–9 show the
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FIGURE 5 | The performance of neural net on the test data using case 1: Number of days to outcome less than or equal to n. (A) The class-wise distribution of the

cumulated data-points (≤ nth day) for all samples in the imputed test set. (B) Accuracy of the model evaluated for different days to outcome. (C) F1-score and AUC of

the model evaluated for different days to outcome.

FIGURE 6 | The performance of neural net on the test data using case 2: Number of days to outcome greater than or equal to n. (A) The class-wise distribution of the

cumulated data-points (≤ nth day) for all samples in the imputed test set. (B) Accuracy of the model evaluated for different days to outcome. (C) F1-score and AUC of

the model evaluated for different days to outcome.

performance of the other five algorithms after testing with the
three cases.

As mentioned above, the models and their performances
presented above were trained based on the test data that was
imputed using the training set.Models were also trained using the
six different algorithms using the test data without any synthetic
data (without imputation) by just simply dropping the data
points with missing data. From Supplementary Table 2, it can
be observed that again the neural network performed well on
the test set with an accuracy of 94.61 ± 0.85%, AUC as 0.98 ±

0.01 and F1 Score of 0.95 ± 0.01. Logistic Regression is the next
best performing algorithm with results close to neural network.
For robust testing, we again used the three cases (Cases 1, 2, and

3) as discussed above to determine the predictive performances.
Supplementary Figures 10–17 show the performance of all the
models after testing with the three cases.

DISCUSSION

The COVID-19 pandemic has put an immense pressure on the
healthcare systems around the globe due to the rapid rise in the
number of infections. In these times, it is extremely crucial to
assess risk such that critical resources can be mobilized to treat
patients progressing to severe stages. Focused medical treatments
can be administered only when there is a clear understanding
of the risk factors that influence the mortality the most. Due
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FIGURE 7 | The performance of neural net on the test data using case 3: Number of days to outcome equal to n. (A) The class-wise distribution of the cumulated

data-points (≤ nth day) for all samples in the imputed test set. (B) Accuracy of the model evaluated for different days to outcome. (C) F1-score and AUC of the model

evaluated for different days to outcome.

to the recent rise of the disease, new features that affect the
progression of the disease are continuously being inquired.
Machine learning methods are capable of discerning useful
patterns in large dimensional data. This study reports machine
learning model that is expected to aid in the decision-making
process of identifying patients who are at high risk with
high accuracy.

In this study, XGBoost feature importance and neural network
were utilized to find the right balance between high AUC score
and low number of features selected for developing the ML
models. In this process, five features were chosen to create
a powerful combination for mortality prediction. The selected
five features include neutrophils (%), hs-CRP, age, lymphocyte
(%), and LDH. Each of these features have been identified as
predictors of mortality associated with the COVID-19 disease
(18, 22, 24, 25, 28–31, 44–46). Age has been identified as an
important factor in COVID-19 disease progression and hence
it has been included in all the models here (4–6, 22, 24, 25).
Patients aged ≥60 years had a higher rate of respiratory failure
and needed more prolonged treatment than those aged <60
years (4), implying that the elderly showed poorer response
to treatments than the younger age group. Older patients (age
≥80 years) had a risk of 41.3% of having severe or critical
condition upon contracting COVID-19 while younger patients
(age <20 years) had a lower risk of only 4.1% (5). Older people
are also more susceptible to co-morbidities which has been
identified as another independent risk factor for COVID-19
disease prognosis (6).

hs-CRP is produced in the liver that responds to a wide
range of health conditions, leading to inflammation. Figure 8A
shows that people who died had higher levels of hs-CRP than
those who survived. Studies have found that higher hs-CRP
levels correlates with lower pulmonary functions (47, 48) and
patients with Chronic Obstructive Pulmonary Disease (COPD)

have been found to be with higher hs-CRP level compared to
normal population (49, 50). hs-CRP has also been identified as
an important factor to facilitate triage of COVID-19 patients
(51). Very high hs-CRP level show the development of severe
bacterial superinfection, which is expected to be a frequent
complication in critical patients with COVID-19, and potentially
a reason for increased mortality. Identifying patients at higher
risk of superinfections or other complications before observing
substantial increases in hs-CRP and LDH levels may help in
treating them more efficiently (52).

Neutrophils are a type of white blood cells and are the first
line of defense in the inflammatory response (53). Elevated levels
of neutrophils (neutrophilia) suggest that the body is infected.
Figure 8B shows that patients who died had significantly higher
levels of neutrophils (%) compared to patients who survived.
Lymphocyte consist of commonly known B cells, T cells, and
NK cells. Figure 8C shows that people who died had significantly
lower levels of lymphocyte (%) than those who survived.
Neutrophil to Lymphocyte Ratio (NLR) has been identified as
an independent risk factor for critical illness in COVID-19
patients (54).

Figure 8D shows that patients who died had higher LDH
levels than those who survived. High LDH levels are also
linked to co-infection and possibly predict prognosis in severe
bacterial infections (52). LDH has been identified as an important
indicator of lung damage or inflammation (55). Several studies
have identified LDH as an important factor to study COVID-
19 disease progression and have linked high levels of LDH
to higher risk or severity and fatality (56–58). While it is
helpful to provide cutoff values of the features identified here
for direct applicability (31), this can vary depending on the
type of methods used for measurement. For example, LDH
levels cut-off can vary depending on measurement techniques
(59). Yan et al. (31) clarified that Tongji Hospital used the
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FIGURE 8 | Box and whisker plot showing the variations of four selected features with respect to the days to outcome. (A) hs-CRP, (B) neutrophils (%),

(C) lymphocyte (%), (D) lactate dehydrogenase.
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conversion of lactate to pyruvate (L → P) with concomitant
reduction of NAD+ to NADH (60). According to the guidelines
of the kit used, the normal range is ≤250 U/l−1 in adults.
Also, blood samples with haemolysis were not added in the
dataset (60).

We compared several machine learning models for their
predictive performance with the selected five features. The test
set had a good representation of both the survived (43.66%)
and dead (56.34%) patients. To realize the actual predictive
performance of the models and understand how confident we
can be with the results, robust testing was carried out using three
cases. It was observed that the neural net consistently performed
better than the rest of the models. Neural network was able to
predict patients’ mortality with an accuracy of 96.53% and an F1-
Score of 0.969 on a test set of 213 samples spread across multiple
days during the span of the disease. The highly accurate and
consistent performance of the neural net basedmodel after robust
testing with the five chosen features gives a strong confidence on
the model.

Other machine learning models involving trees and regression
algorithms performed with an average accuracy of 94%. This
shows that the five selected features are extremely influential
on patient mortality. The selected features show a clear
difference in trend for the two classes though there is a
significant overlap between the two sets of data (Figure 8).
This explains the decent performance of simple algorithms
like Logistic Regression and SVM. Neural Networks move a
step ahead by distinguishing the features for the two classes
to a greater accuracy and greater consistency through the
days. Although the neural networks take time to train, once
trained they are able to produce results at speeds comparable to
simple algorithms.

We have tested using stratified five-fold cross validation and
ensured a good representation of both the classes in the test
set (32). Yan et al. (31) only tested their model using Case 1
whereas our model was tested using two more practical cases,
and performed more accurately and consistently on Case 1 as
well. Our method however has few limitations. The proposed
models have been developed based on the data from patients
exclusively from a single hospital from Wuhan forcing it to have
certain biases including patient management and viral strain
found in Wuhan. Mutations might have changed the disease
progression patterns in other populations (61–65). Nevertheless,
studies done on other cohorts have also identified these features
as key predictors (44–46). The dataset unfortunately did not
include information on comorbidities. Owing to its importance
as a determinant of COVID-19 outcome, we have collected
clinical data on Indian COVID19 patients including the details
of comorbidities and have developed ML models for both risk
stratification and mortality (66–69). After experimenting with
various algorithms, we observed that there is a trade-off between
accuracy and interpretability. The best performing model,
neural network, works like a black-box. However, XGBoost
importance graph adds interpretability to it. If themodel could be
improved using data from diverse sources, implementing either
of the types of models in the clinical setting is possible. The
currently proposed models are accurate enough to capture the

mortality rates and hence can help in targeted caring of high
risk patients.

Features other than the five used for developing the reported
models were further analyzed to identify the ones that show
different trends with respect to the outcome during the span
of the disease. Supplementary Figure 18 shows the progression
of nine other features that seem to show trends with respect
to number of days to outcome. Calcium and serum potassium
could be used to predict days until death for critical patients,
as it shows an increasing trend in value toward the day of
outcome. Platelet count can be used to analyze trends of features
in patients belonging to both the classes. The dataset used for this
work is insufficient to conduct such a study due to its size and
density. We believe that with a larger dataset it may be possible
to analyze these trends more meaningfully and possibly predict
the number of days to outcome. This can potentially scale up
the resource planning by many folds and could prove to be of
great significance.

SUMMARY

In summary, this study reports the identification of powerful
combination of five features [neutrophils (%), hs-CRP, age,
lymphocyte (%), and LDH] that helps in accurately predicting
the mortality of COVID-19 patients. Different machine learning
models have been developed to compare and predict mortality
most accurately. The neural network predicts the mortality with
96% accuracy for all days during the span of the disease and with
90% accuracy for more than 16 days in advance. XGBoost feature
importance provides interpretability to the model that may be
relevant in the clinical setting. The robustness of the proposed
model was thoroughly tested with three different scenarios. The
performance metrics obtained instill great confidence on the
proposed model. Other possible features that have predictive
capability are identified, however will need data from diverse
sources to further confirm their relevance and to possibly
improve the model.
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