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In recent decades, computer vision has proven remarkably effective in addressing diverse

issues in public health, from determining the diagnosis, prognosis, and treatment of

diseases in humans to predicting infectious disease outbreaks. Here, we investigate

whether convolutional neural networks (CNNs) can also demonstrate effectiveness in

classifying the environmental stages of parasites of public health importance and their

invertebrate hosts. We used schistosomiasis as a reference model. Schistosomiasis is

a debilitating parasitic disease transmitted to humans via snail intermediate hosts. The

parasite affects more than 200 million people in tropical and subtropical regions. We

trained our CNN, a feed-forward neural network, on a limited dataset of 5,500 images of

snails and 5,100 images of cercariae obtained from schistosomiasis transmission sites

in the Senegal River Basin, a region in western Africa that is hyper-endemic for the

disease. The image set included both images of two snail genera that are relevant to

schistosomiasis transmission – that is, Bulinus spp. and Biomphalaria pfeifferi – as well

as snail images that are non-component hosts for human schistosomiasis. Cercariae

shed from Bi. pfeifferi and Bulinus spp. snails were classified into 11 categories, of

which only two, S. haematobium and S. mansoni, are major etiological agents of human

schistosomiasis. The algorithms, trained on 80% of the snail and parasite dataset,

achieved 99% and 91% accuracy for snail and parasite classification, respectively,

when used on the hold-out validation dataset – a performance comparable to that

of experienced parasitologists. The promising results of this proof-of-concept study

suggests that this CNN model, and potentially similar replicable models, have the

potential to support the classification of snails and parasite of medical importance.
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In remote field settings where machine learning algorithms can be deployed on

cost-effective and widely used mobile devices, such as smartphones, these models

can be a valuable complement to laboratory identification by trained technicians. Future

efforts must be dedicated to increasing dataset sizes for model training and validation,

as well as testing these algorithms in diverse transmission settings and geographies.

Keywords: computer vision & image processing, schistosomiais, neglected tropical disease, deep learning -

artificial neural network, image classification

INTRODUCTION

Parasitic diseases of poverty, including schistosomiasis,
onchocerciasis, lymphatic filariasis, and malaria, afflict billions
of people worldwide (1). Many diseases of poverty have complex
life cycles, whereby, trematodes require more than one host
to complete their life cycles. Diseases of poverty include
vectorborne diseases (i.e., malaria or arboviruses) and food-,
soil-, or waterborne diseases involving intermediate hosts
(e.g., schistosomiasis, food-borne trematodiasis). People living
poverty settings often engage in physically-demanding work,
such as subsistence agriculture or traveling long distances to
fetch fresh water, exposing them to cercariae and pathogens

FIGURE 1 | The life cycle of Schistosoma spp. The adult worms live and reproduce sexually within the human host and their eggs are released in the feces. In the

environment, eggs must reach the water, and under appropriate conditions miracidia hatch and seek an intermediate freshwater snail host in the surroundings. The

larval stages of the worms develop via asexual reproduction. Cercariae are the free-swimming larvae that are released from the snails and seek human hosts,

completing the lifecycle.

embedded in the environment (2). Due to a lack of vaccines
for many diseases of poverty, and inconsistent access to the
few existing vaccines, the control of most diseases of poverty
largely depends upon the ability to detect the distribution
and abundance of cercariae of medical importance in the
environment, as well as detection and mapping of the
distribution, abundance, and infection status of their non-
human hosts. Schistosomiasis, a parasitic disease of poverty
afflicting more than 200 million people worldwide (1, 3) –
with the vast majority in sub-Saharan Africa – is a disease
of poverty with a complex life cycle (4) involving specific
freshwater snail species as intermediate hosts (Figure 1). The
two most important species causing human schistosomiasis in
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sub-Saharan Africa, Schistosoma haematobium and S. mansoni,
are transmitted by snails belonging to two different genera of
snails: Bulinus spp. and Biomphalaria spp., respectively. Several
other snail species often co-occur in transmission sites where
schistosomiasis is endemic. Snails that are intermediate hosts
of schistosoma can be hosts for a wide range of trematodes,
of which only few are of medical importance (5). In resource-
limited settings, control strategies – which largely rely on mass
drug administration – can be more effective when accompanied
by environmental interventions, like targeted snail control
(6). Therefore, reliable and rapid detection of schistosome
cercariae and their intermediate host snails in water bodies is an
urgent public health priority to identify where environmental
interventions should be focused. This is especially crucial as
environmental change – including climate change and the
expansion of dams and irrigation schemes – is expected to
alter the geographic distribution of schistosomes and their snail
hosts (1).

Current protocols to sidentify snails and cercariae of medical
importance requires molecular analysis of parasite or snail
tissue (which is often inaccessible or prohibitively expensive
in low-income settings), or visual identification of cercariae
and snails by experienced parasitologists. This is a labor-
intensive task that requires a great deal of expertise to tease
apart multiple snail species that share the same freshwater
habitat where schistosomiasis transmission occurs, and multiple
parasite species that can infect the same snail hosts. Indeed,
wide variety of livestock and wildlife cercariae, some of which
are morphologically similar to (and in some cases, even
indistinguishable from) human schistosome larvae (7), use
schistosome intermediate host snail species to complete their
cycles. Consequently, misidentification of snail infections as
human schistosomes, when, in fact, they are cryptic species that
do not harm people, may interfere with efficiently targeting
environmental control activities to areas of high transmission.

Here we explore whether computer vision, specifically
machine learning (ML) algorithms, can support the rapid
identification of snails and cercariae of medical importance. ML
is rapidly being developed for use in medicine and public health,
where it has been already applied to tasks as diverse as early
detection of brain tumors (5) and cancer and studies of health
equity (8). Convolutional neural networks (CNN), a special class
of ML algorithms, have proven to be particularly efficient in
reading x-rays and identifying possible pathologies to a high level
of accuracy (9). This progress has been possible because of the
availability of large sets of digitized images labeled by experienced
radiologists and physicians and often validated through clinical
studies (10). Such resources are not yet available for the cercariae
and hosts causing neglected tropical diseases, or schistosomiasis
specifically: images cannot be scraped from the web and digital
imagery repositories of snails and cercariae are generally not
available. Even when they exist (11), they are usually limited to
a few thousand images at most – just a fraction of the labeled
x-rays available in the medical system.

The goal of this work is to assess how effectively CNNs
can classify Schistosoma cercariae and their intermediate host
snails when trained on a small and unbalanced imagery dataset.

Specifically, we used 5,500 images of snails and 5,100 images of
genetically identified cercariae from a sample of more 9,000 snails
gathered in the lower basin of the Senegal River between 2015
and 2019 (11) to train a CNN algorithm and assess its accuracy.
The set included images of host and non-host species for human
schistosomiasis. More than 20 parasitic species were identified
through shedding and dissection in the competent species of
Bulinus and Biomphalaria snails from the study sites (11).

The paper is structured as follows: we first provide a detailed
description of the training dataset, then present the CNN
algorithm, and assess its accuracy when applied to the validation
dataset. We then contrast this accuracy with the accuracy of a
trained parasitologists’ ability to classify the snails and cercariae.
Additionally, we present an open-access web application where
any individual can deploy the trained algorithm. Finally, we
discuss future development and possible use-cases we anticipate
as significant expansions of the training dataset in the future.

MATERIALS AND METHODS

Datasets
During the environmental monitoring of snails and cercariae in
the Senegal River Basin between 2015 to 2019, we collected 5,543
images of snails of medical importance categorized as follows
– (1) Bulinus globosus and Bulinus truncatus, (2) Biomphalaria
pfeiffer, (3) Radix natalensis, and (4) Melanoides spp. A total
of 5,140 images of cercariae belonging to 11 morphotypes were
obtained from the intermediate hosts of human schistosomiasis,
Biomphalaria pfeifferi and Bulinus spp. These species were
encountered and dissected. More specifically, there are 4 species
of Bulinus (Bu. globosus, Bu. truncatus, Bu. senegalensis and
Bu. forskalii), Biomphalaria pfeiffer, Radix natalensis (formerly
known as Lymnaea natalensis) (12), andMelanoides spp. We had
such rare occurrences of Bu. senegalensis and Bu. forskalii at these
sites that they were not used in the training set. Nonetheless,
Bu. senegalensis and Bu. forskalii are distinguishable by shell
morphology down to species level.

Table 1 summarizes the numbers of images in each category
and Figure 2 shows examples for each snail and parasite category
in our dataset. Snail photographs were taken by mobile phone
devices and cameras with similar resolution (of at least 1,024
× 768 pixels) and taken from similar angles, backgrounds, and
lighting through the ocular lens of a dissecting microscope at
10–40× magnification. Parasite images were taken from the
same variety of camera sensors through compound microscopes,
and included images at 40×, 100×, and 400× magnification,
with the same uniformity in background setting and ambient
lighting. Some images were obtained from an intraocular camera,
while some were from a digital single-lens reflex camera, a
camera superior to cell phone cameras and more commonly
used to image cercariae. The variety of high-quality cameras
enabled the team to capture the necessary imagery, which
worked well in training our model. In addition, all parasite
images were processed to grayscale. The removal of color was
performed to further decrease confounding results such as
lighting and time-of-day artifacts that could affect computer
vision results. The detailed protocols for image collection and
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TABLE 1 | Summary of numbers of images for each snail genus and parasite morphotype; numbers of images for the split of training/test (80%) and hold-out validation

set (20%).

Snail category Biomphalaria Bulinus Radix natalensis Melanoides spp. TOT

Number of images 466 4,215 725 137 5,543

Training/test 374 3,372 580 109 4,435

Hold-out validation 92 843 145 28 1,108

Parasite category HS NHS1 NHS2 AM BO EC GY ME PP PT XI TOT

Number of images 1,008 638 107 442 224 332 152 196 806 231 1,004 5,140

Training/test 806 510 86 354 179 266 121 156 645 185 803 4,111

Hold-out validation 202 128 21 88 45 66 31 40 161 46 201 1,029

Abbreviations of cercariae categorization as follow, HS, Human-schisto; NHS1, Nonhuman- schisto forktail type I; NHS2, Nonhuman- schisto forktail type II; AM, Amphistome cercariae;

BO, Schistosoma bovis; EC, Echinostome cercariae; GY, Gymnocephalus cercariae; ME, Metacercaria; PP, Parapleurolophocercous cercariae; PT, Parthenitae; XI, Xiphidiocercariae.

FIGURE 2 | Image examples for snail and parasite categories. For snail

categories, (A-1,A-2): Biomphalaria. (B-1,B-2): Bulinus. (C-1,C-2): Radix

natalensis. (D-1,D-2): Melanoides spp. For parasite categories, HS,

Human-schisto; NHS1, Nonhuman-schisto forktail type I; NHS2,

Nonhuman-schisto forktail type II; AM, Amphistome cercariae; BO,

Schistosoma bovis; EC, Echinostome cercariae; GY, Gymnocephalus

cercariae; ME, Metacercaria; PP, Parapleurolophocercous cercariae; PT,

Parthenitae; XI, Xiphidiocercariae.

quality control are provided in the supplemental materials (see
Supplementary Appendix 1). Initial identification of snails and
cercariae was performed by three trained parasitologists in
the field. Our team only used images of cercariae that were
genetically fingerprinted (which included only the furcocercous
cercariae) or that were unequivocal in classification (11). If there
was uncertainty among technicians in specifying a morphotype,
genetic fingerprinting (11) results were obtained and analyzed.
The protocol for image collection is provided in the supplemental
materials (see Supplementary Appendix 1).

Accuracy of field identifications were verified by a molecular
barcoding technique: at the time of shedding or dissection,
all fork-tailed cercariae liberated from snails were placed

individually on Whatman FTA© cards and sequenced to
distinguish human-infective strains, including Schistosoma
haematobium and S. haematobium–bovis hybrids, from cattle-
or bird-infecting strains including S. bovis and other non-
human furcocercous (fork-tailed) trematode species (13). The
identification of the cercariae was based on multi-locus analyses
with one mitochondrial (cox1) and two nuclear (ITS1 + 2 and
18S) genes, as described (11). Cercariae on FTA cards were
accessioned into the Schistosomiasis Collection at the Natural
History Museum (SCAN) (14).

All Biomphaslaria and Bulinus spp. snails were also identified
to species by both trained parasitologists and genetic barcoding in
a previous study (11). For the purposes of this work, Bu. globosus
and Bu. truncatus were grouped in a single category, the Bulinus
species complex that hosts human schistosomes in this region,
and all the rest of the snails were visually classified to species
using morphological keys. The total genomic DNA was isolated
from a small amount of snail tissue using the DNeasy Blood
and Tissue kit (Qiagen, UK) according to the manufacturer’s
instructions. Amplification of a partial cytochrome oxidase
1 (cox1) sequence was carried out on snail tissue stored in
ethanol (15). PCR and sequencing conditions were chosen
as previously published (16). Sequencing was performed on
an Applied Biosystems 3730XL analyser (Life Technologies,
UK) (11). The field ID guidelines for morphologies of snails
and cercariae are provided in the supplemental materials (see
Supplementary Appendix 2).

For imagery of snails and cercariae, we strategically avoided
extensive processing of images, given that our goal was to create
a CNN that was capable of classifying images of variable quality
and resolution. We anticipate that for a future deployment, many
technicians will be taking pictures directly from mobile devices
in the field, hence, we decided to work with imagery that reflects
true fieldwork conditions. Therefore, in the preparation of our
training data, images that were severely blurry were removed
from the test and validation sets but were still used in training.
For each category of snails and cercariae, we divided the dataset
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into a training/test set and hold-out validation set, containing a
split of 80 and 20% of the total images, respectively (Table 1).
There was no overlap between the training set and the validation
set. Both the training and the test sets were randomly divided into
the standard 80–20% split in each training epoch and were used
to perform 10-fold cross-validation on multiple train-test splits
to ensure the consistency of model performance.

Training Algorithm
Deep learning algorithms with recent advances in computation
and large datasets have been shown to be comparable with,
and even exceed, human performance in various object
recognition and computer vision tasks, including applications
to diagnose human disease [e.g., ImageNet challenge (17),
breast cancer histology images (18), and skin cancer images
(19). Convolutional neural networks (CNNs) learn key features
directly from the training images by the optimization of the
classification loss function (20, 21) and therefore have minimal
need for a priori knowledge to design a classification system.
Thus, the performance is less biased by the assumptions of the
researchers (17, 21).

Since, our dataset was considered relatively small in the field
of deep learning, we utilized transfer learning in this study
(22). Transfer learning is the process of exporting knowledge
from previously learned sources to a target task (23). In this
study, we tested seven state-of-the-art pre-trained models in
computer vision as a starting point and applied them to classify
the images of freshwater snails and cercariae. The pre-trained
models we tested for this study were (1) VGG16 and VGG19
(24), (2) Inception V3 (25) and Xception (26), (3) ResNet50 and
ResNet101 (27) and (4) InceptionResNet V2 (28). These pre-
trained models were all trained on approximately 1.28 million
images with 1,000 categories, a computer vision benchmark
dataset, called ImageNet.

VGG16 and VGG19 pre-trained models (24) are 16-layer and
19-layer weight CNNs using an architecture with very small (3×
3) convolution filters. VGG16 and VGG19 were developed by the
VGG team (Visual Geometry Group at the University of Oxford)
in the ImageNet Large Scale Visual Recognition Challenge.
Inception V3 (25) and Xception (26) pre-trained models were
mainly developed by Google Inc. Inception V3 implements
factorized convolutions and aggressive regularization, while
Xception improves Inception modules by replacing it with
depth-wise separable convolutions, which slightly outperforms
Inception V3 on the ImageNet dataset. ResNet50 and ResNet101
(27) are pre-trained models with residual functions reformulated
in the CNN layers, with 50 and 101 residual net layers,
respectively. InceptionResNet V2 (28) is a hybrid CNN network,
combining the Inception architecture with residual connections.
The details of the pre-trained model architecture and design can
be found in the individual cited publication.

We tested and trained seven selected computer vision
algorithms, via transfer learning, with ImageNet pre-trained
weights on our snail and parasite images (22, 23). The network
architecture established here has convolutional-pooling layer
pairs (max-pooling), followed by a fully connected network
(29). The CNN is trained end-to-end directly from image

labels and raw pixels, with a selected group of networks for
photographic images of snails and another separated network for
the microscopic images of cercariae.

We experimented several input image sizes and adopted the
training patches as 128× 128 pixels for input layers; the patch size
was sufficient to cover the relevant structures and morphologies
of snail and cercariae. In each experiment, we first initialized
the weights with the pre-trained network on ImageNet dataset,
then froze the bottom of the network, and proceeded to train
the “top” of the selected convolutional networks. The top layer
of the selected convolutional networks correlates to the “head”
of the network. The weights of the top layer are most directly
influenced by the labels. This is the layer that effectively produces
the probabilities that the model is seeking to determine as output.
The fully connected layers were composed of Rectified Linear
Units (i.e., the ReLU activation function), to avoid vanishing
gradients and to improve the training speed (30). The output
layer was composed of four neurons for snail classification,
corresponding to each of the four categories that are normalized
with a softmax activation function. For the parasite classification
task, 11 neurons were set up in the same manner. The model
was trained with 80% of the training/test set, and validated on
the 20% remaining images (i.e., hold-out validation set) that
were not used for training (Table 1). It should be noted here
that the test set is randomly selected for each epoch (that is,
the measure of the number of times all of the training images
are used once to update the network weights) (29). The network
weights were initialized randomly, and an adaptive learning rate
gradient-descent back-propagation algorithm (30) was used for
weight update. Here we selected categorical cross-entropy as a
loss function in the model. In these two classification tasks, the
CNN outputs a probability distribution over four categories of
snails and 11 categories of cercariae.

Given our comparably small dataset in light of more recent
studies using CNNs for image recognition tasks (17), we applied
the techniques of dropout, regularization, and data augmentation
(details in the following section) to overcome the overfitting
of training data (29). We implemented the CNN model with
seven selected networks in a Python environment with the Keras
application package (31), and Google’s deep learning framework,
TensorFlow (32).

Data Augmentation
Data augmentation is an effective way to reduce overfitting. We
applied a data augmentation approach using rotation and shifting
(33) to generate more images for the snail and parasite datasets.
Mirroring was not used for Bulinus and R. natalensis due to the
diagnostic value of their coil orientation (i.e., Bulinus is sinistral
and Radix is dextral). We also applied Gaussian noise to the
background of the parasite training images (34) to ensure that the
model did not learn background artifacts, but focused only on
learning the morphologies of the parasite objects. In this study,
we implemented a Keras-defined generator for automating data
augmentation (31) on the fly; every item of every batch was
randomly altered according to the following settings: (1) rotation
range = 20, (2) width shift range = 0.2, (3) height shift range =
0.2, and (4) shear range= 0.15. In practice, rotations and shifting
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TABLE 2 | Results of the identification of snails and cercaria by the best CNN model.

TP TN FP FN Sensitivity (%) Specificity (%) F1 score

Snail category

Biomphalaria 92 1,020 0 0 100.00 100.00 1.00

Bulinus 843 265 4 0 100.00 98.51 0.99

Radix natalensis 145 963 0 4 97.31 100.00 0.99

Melanoides spp. 28 1,084 0 0 100.00 100.00 1.00

Parasite category

Schisto 170 801 14 30 85.00 98.28 88.54

Non-human forktail 173 807 19 16 91.53 97.69 90.81

Other trematodes 619 369 20 7 98.81 94.86 97.88

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

allowed us to increase the size of the dataset without deteriorating
its quality. The data augmentation used here further improved
the datasets and the CNN’s prediction performance.

Model Optimization
In our training process, we tested seven selected CNN models
subsequently (refer to Training Algorithm section for pre-trained
model types) and experimented a set of hyperparameters for the
learning algorithms, which included image input size, training
epoch, batch size, dropout rate, and learning rate. We utilized
these parameters to obtain a final accuracy after every run. We
conducted a grid search hyperparameter tuning to obtain the
optimal set of parameters whose values are used to control the
learning process. The specified subset of each hyperparameter
is summarized in Table 2. We recorded all the experiments
performed and reported the best performing model along with
the optimal hyperparameter set in the Results section. As shown
in the Supplementary Material, we tested parameters in the
following order: epoch values, analyzing accuracy results with
epochs between 5 and 150. We found that models that run on
a higher number of epochs were producing consistent increases
in accuracy percentages and that epoch accuracy stabilized at 150.
We tested image input sizes between values of 64 and 256, finding
that the accuracy of the model when these two parameters were
manipulated, capped at around 89.70%. Note that between image
input size values of 128–256, we noticed the overall accuracy
percentages of the models remain nearly the same. Hence, we
took 128 as our standard value for image input size (to carry
forward further model-testing).

Batch size accuracy stabilized at around 32, while dropout
rate accuracy stabilized at around 0.45. Learning rate value tests
ranged from 0.00001 to 0.1; results demonstrated the highest
accuracy percentages at 0.001, with our model accuracy at up to a
rough 90.50%with the current variable inputs. Some of themodel
parameters were co-dependent or dependent on one another; for
instance, if the learning rate was too low, the number of epochs
could affect the final accuracy percentages; so, all co-dependent
variables and relationships were examined and tested for.

The last step was to take all the best models in each of the
grouped subtests described above. We listed 20 out of the 161
model accuracy values (with each accuracy value being derived

from the best of 5 runs) and then re-ran those top 20 models
(5 times each) to produce the highest accuracy values of the
model optimization process. We discovered a final best pre-
trained model of InceptionResNetV2 with an image input size of
128, at 150 epochs, a batch size of 32, a dropout rate of 0.45, and
a learning rate of 0.001, to produce a final accuracy of 91.21%.
We tested and verified all models, and the weight and confusion
matrix files are all in our Supplementary Material.

Model Deployment
After building and training the CNN model, we then deployed
the best performing model and network weights to establish a
web application for inference using TensorFlow.js (35), a library
used for executing ML algorithms in JavaScript. TensorFlow.js
is compatible with the Python-based TensorFlow and Keras
APIs, allowing our Keras model to be converted to a JavaScript
format that can be run in a web browser. This makes our web
application accessible on any device with a modern browser,
including on both smartphones and common laptop computers.
Using browser storage and caching APIs, the web application can
even be used in areas with no internet connectivity.

Ethics Statement
Freshwater snails were collected in collaboration with the Centre
de Recherche Biomédicale Espoir pour la Santé in Senegal, who
obtained the permission to conduct the field snail collection from
The Direction de l’Environement et des Etablissements Classés
with the identification number “N◦002302MEDD/DEEC/yn.” In
this study, we used photos of snails for the machine learning
model training and validation, and relied on those photos and
snail and parasite molecular identities that were acquired in the
course of a previous field study described in (11).

RESULTS

We evaluated our CNN model’s performance with metrics of
accuracy, sensitivity, specificity, and F1 score on the validation
set. With the optimized CNN architecture and hyperparameters,
we obtained 99.60% accuracy with VGG16 (proportion of correct
classifications, either true positive or true negative) for the 4
snail genera and 91.21% accuracy with InceptionResNet V2
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FIGURE 3 | Confusion matrix of classification on test set. (A) results of snail image set, labels: 0-Biomphalaria spp., 1: Bulinus spp., 2: Radix natalensis, 3:

Melanoides spp. (B) results of parasite image set, labels: 0: Amphistome cercariae, 1: Schistosoma bovis, 2: Echinostome cercariae, 3: Gymnocephalus cercariae, 4:

Human-schisto, 5: Metacercaria, 6: Parapleurolophocercous cercariae, 7: Parthenitae, 8: Non-human- schisto forktail type I, 9: Non-human- schisto forktail type II,

10: Xiphidiocercariae. (C) Combining other trematodes as one category, labels: 0: Schisto, 1: Non-human forktail type I, type II, and bovis, 2: Other trematodes.

for the 11 parasite morphotypes. The optimized dropout rates
for the convolutional layer (21) for the snail dataset was 0.6
and for parasite dataset, 0.45. For the parasite set, we ran a
second analysis with only three categories of cercariae relevant
to map risk for schistosomiasis transmission, namely: human
schistosomes, non-human forktail cercariae, and other trematode
morphotypes. The overall accuracy for the three parasite
categories increased to 94.78%. The sensitivity of distinguishing
human schistosomes from non-human cercaria was 85.00%.
Figure 3 shows the confusion matrix of our method over the four
snail genera and 11 parasite morphotypes, along with details of
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) outcomes.

Sensitivity, specificity, recall, precision, and F1 score for each
categories were calculated as follows:

sensitivity = recall = TP/(TP+ FN) (1)

specificity = TN/(TN+ FP) (2)

precision = TP/(TP+ FP) (3)

F1 score =

(

recall−1
+ precision−1

2

)− 1

(4)

Sensitivity measures the proportion of positives that are correctly
identified; in our case, we focused on the percentage of
human schistosomes correctly identified. Specificity measures
the proportion of negatives that are correctly identified; we
focused on the percentage of non-human fork-tailed cercariae
(some of which can potentially be visually similar and hard
to distinguish from human schistosomes) that were correctly
identified as non-human schistosomes. Precision is a measure of
a classifier’s exactness, while recall is a measure of a classifier’s
completeness. Low precision indicates many false positives, while
low recall indicates a large number of false negatives. The F1 score
conveys the balance between precision and recall, defined as the
harmonic mean of precision and sensitivity. Our results showed
that the CNN produced high sensitivity and high specificity, as

well as an acceptable F1 score in all categories (Table 2). The
metrics to measure classification performances are shown in
Table 2 and demonstrate the robustness of the CNN training
algorithm for the tasks of image recognition for both snails and
cercaria, despite the low sample size. The details of all the training
experiments with seven selected pre-trained models, as well as
the confusion matrix, are provided in the supplemental materials
(see Supplementary Appendix 3); only the best model statistics
andmetrics (VGG16 for snail dataset and InceptionResNetV2 for
parasite dataset) are reported in the result section.

Comparison With Human Parasitologist
Performance
To validate our deep learning approach, we compared the direct
performance of the CNN to eight trematode parasitology experts.
For each image, the parasitologists were asked to identify the
category of the snails and cercaria from single images. We
prepared 30 snail images from among the four categories and
120 parasite images from among the 11 morphotypes in the
CNN’s hold-out validation sets. For each test, previously unseen,
molecularly-verified images of trematode cercariae and snails
were displayed, and parasitologists were asked to identify them
from among the same categories of snails and cercaria on
which the computer vision algorithm trained. The parasitologists
were provided a standardized identification guideline, and key,
along with the quiz. A sample quiz is included in supplement
materials (see Supplementary Appendix 4). The metrics used
to measure human parasitologists’ performances and compare
with the CNN’s, such as sensitivity, specificity, rand F1 score
are shown in Table 3 and Figure 4. The CNN generated a
malignancy probability P per image. We then fixed a threshold
probability t such that the prediction ŷ for any image is ŷ if
P ≥ t, and the Receiver Operating Characteristic (ROC) curve
(blue line in Figure 4) is drawn by sweeping t in the interval
0 to 1 (36). The area under the curve (AUC) is the CNN’s
measure of performance, with a maximum value of 1. The AUC
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TABLE 3 | Results of the identification of snails and cercaria by eight parasitologists.

TP TN FP FN sensitivity(%) specificity(%) F1 score

Snail category

Biomphalaria 2 8 0 0 100.00 100.00 1.00

Bulinus 3 7 0 0 100.00 100.00 1.00

Radix natalensis 3 7 0 0 100.00 100.00 1.00

Melanoides spp. 2 8 0 0 100.00 100.00 1.00

Parasite category

Schisto 15 99 5 1 93.75 95.19 0.83

Non-human forktail 19 95 3 5 79.17 96.94 0.83

Other trematodes 78 40 0 2 97.50 100.00 0.98

TP, true positive; TN, true negative; FP, false positive; FN, false negative.

FIGURE 4 | Comparison of classification performance with CNN and parasitologist. CNN’s performance represented by the ROC curve (in blue) exceeds that of

trained parasitologists when their sensitivity and specificity points (in red) fall below the ROC curve. The green points represent the average of the parasitologists

(average sensitivity and specificity of all red points), with error bars denoting one standard deviation. We simplify the 11 categories of parasite to only three categories

of interest for schistosomiasis environmental risk mapping: (A) human schistosomes, (B) non-human forktail cercariae, and (C) other trematode morphotypes. The

area under the curve (AUC) for each case is over 95%.

for human schistosomes, non-human fork-tailed cercariae, and
other trematodes were 0.96, 0.95, 0.98, respectively. The CNN’s
classification performance matched, or was slightly superior to,
that of trained parasitologists in the case of schistosome/fork-
tail parasites, whereas, it was slightly inferior in the case of
non-fork-tail parasites.

DISCUSSION

Here we presented a machine learning model that was
capable of accurately classifying images of larval human
schistosome cercariae and their intermediate host snails. Our
CNN classification performed significantly better for snail
recognition (average accuracy: 99.33%) than for parasite
recognition (average accuracy: 91.78%). This is because snail
morphologies are generally more distinct, and it is easier to take
high quality pictures of snails using a wide variety of cameras
(including cellular phones) than that for cercariae, which require

photography through an optical microscope. Better imagery
and very distinct morphological features between competent
Bulinus and Biomphalaria snails and non-competent snail species
decreased erroneous misclassification of snails, as reflected by
the small number of false positives and false negatives in our
model evaluation. Cercariae, on the other hand, have complex
morphologies, with many more categories defined in our dataset,
and are usually moving at the time of the image capture, which all
makes discrimination of trematode cercariae more challenging,
as reflected by the larger number of false negative and false
positive classifications.

Despite these limitations, our analysis showed that our CNN
can be trained with rather limited image datasets using data
augmentation approaches. Given the small size of our dataset
for morphologically similar forked-tail human and non-human
schistosome cercariae, we used rotation and shifting methods to
effectively increase the number of images used in training (but
we avoided mirror image augmentation to preserve the ability
of the algorithm to distinguish sinistral vs. dextral coiling in
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different snail genera). In addition to thousands of still images,
we had the advantage of access to some limited video footage of
living, mobile cercariae, which allowed us to generate additional
still-images of cercariae and to increase samples for training.
Although, we only used video to augment still-images to our
training data, video could be explored in the future as an input
to a new classification algorithm, one which also considers
swimming patterns that may help in distinguishing cercariae to
species (37).

In addition to building a deep learning model, we also
developed a workflow for image collection and quality control
as a guideline for other researchers interested in using this
tool. This would allow anyone to quickly build an image
database that can facilitate the identification of medically
important snails and their cercariae with the click of a cell
phone and a pre-trained computer vision model. A protocol for
image collection is provided in the supplemental materials (see
Supplementary Appendix 2). We hope that as this protocol is
adopted, user photos can be aggregated into a global database
of medically important snail and parasite images, including snail
and parasite species that are not relevant to human health but
will be useful to improve model training. When collecting the
samples in the field, we also suggest that GPS locations be
recorded, which can facilitate precision-mapping of medically
important snail and parasite distributions, over space and time,
and across broad and variable geographies and contexts. For
all of these activities, we take inspiration from online platforms
that encourage citizen science and crowdsourced data, including
iNaturalist (38), NaturNet (39), and MycoMap iNaturalist (40),
for example, has the image classification capacity to immediately
suggest an object name right after a user has uploaded an image
to the platform.

The CNN algorithm was trained and evaluated on snails
from the lower basin of the Senegal river, a fairly limited
geographical area encompassing only a small fraction of a
wider mollusk and trematode biodiversity. In the near future,
the goal is to expand the analysis to other geographical
areas in Africa and Latin America where schistosomiasis and
other gastropod-borne helminthiasis (41) are endemic, as well
as to a wider range of habitats, from natural to human
dominated environments, where snails of medical importance
thrive. At present, only the database from the lower basin
of the Senegal river had the number of digitized snails and
parasites images and the level of classification accuracy required
to train a convolutional neural network, and, as such, our
study represents a proof-of-concept. However, we envision that
imagery of snail internal organs could supplement shell photos
in our future work with machine learning, whenever internal
morphological differences might aid in species identification.
We expect that increasing the training dataset and gathering
imagery from more locations will support the improvement
of our CNN model accuracy and its potential use in broader
geographical areas. In addition, Biomphalaria species in the
Americas have much greater diversity than in Africa, and
snails that can host parasites of medical importance can be
more challenging to identify morphologically through shell
morphology alone (2) which limits the ability of CNNs based

on shell photographs to identify snails lower than at the level of
genus on that continent.

To encourage the development of our specific platform, and
for translating it for use on other medically relevant cercariae,
vectors, and non-human hosts found in the environment, our
code, image sets, and neural network weights are provided in
a public repository. This includes detailed documentation to
assist researchers in following our workflow to (1) reproduce
the results, and (2) build new models using their own image
datasets. We have also deployed our classification model to a web
application that allows researchers to select their own images of
snails and cercariae to obtain the classification prediction, which
is the probability of an object belonging to a specific category.
Despite the requirement of considerable computing power to
properly train a CNN image classification model, once trained
and deployed, a CNN can provide a result – in a fraction of
a second – on a smartphone and a common laptop computer
and can also express clear indicators of uncertainty along with
the classification, which can also be useful to scientists, citizens,
and decision-makers.

This proof-of-concept study was intended to show that CNN
can classify snails and cercariae with a reasonable accuracy
even on datasets of limited size. Its accuracy has great potential
to improve in the future, with more high-quality imagery of
snails and their respective cercariae being made available by the
scientific and citizen-science communities.

However, our work does not dismiss the continued relevance
of classic parasitology training. Our model is not designed to be
a substitute for experienced parasitologists in pertinent scientific
field studies, but as a tool to assist researchers in resource-limited
settings where trained parasitologists may not be available to
perform regular schistosomiasis risk assessments. In the spirit
of other citizen science applications, we hope that our CNN
web application will also foster interest in exploring parasite
biodiversity, as well as increase awareness of schistosomiasis
transmission caused by the presence of snails of medical
importance. For example, we envision our CNN application
could be used in K-12 and college education, to inspire a
new generation of scientists to leverage new and affordable
technologies to support the crucial work of global infectious
disease environmental diagnostics and sustainable control.

CONCLUSION

This study demonstrates the effectiveness of deep learning in
image recognition tasks for classification of medically relevant
snails and their parasite counterparts from the Senegal River
in West Africa. We apply a computer vision model, using a
single convolutional neural network trained on a few thousand
images, facilitated by transfer learning and pre-trained models.
We present a proof-of-concept model for this technology to be
further honed and someday applied in resource-poor settings
where schistosomiasis is endemic and where the identification
of hotspots of transmission is desperately needed to target
interventions. The performance of our model was comparable
to that of eight highly trained human parasitologists who were
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all familiar with snail and parasite diversity in the study region,
but within a controlled test setting and with a specific and
highly curated set of snail and parasite species. In light of our
promising results, we have deployed our product as a publicly
accessible web application as an exploratory and educational
use case. In the future, this method could be deployed on
mobile devices with minimal cost and holds the potential
for substantial improvement for monitoring and identifying
snail and schistosomiasis hotspots (42). Deep learning is a
powerful tool that can help fill the gap that currently limits our
understanding of the environmental components of transmission
for a variety of neglected tropical diseases.
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