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Patellofemoral pain syndrome (PFPS) is a common disease of the knee. Despite its

high incidence rate, its specific cause remains unclear. The artificial neural network

model can be used for computer-aided diagnosis. Traditional diagnostic methods

usually only consider a single factor. However, PFPS involves different biomechanical

characteristics of the lower limbs. Thus, multiple biomechanical characteristics must

be considered in the neural network model. The data distribution between different

characteristic dimensions is different. Thus, preprocessing is necessary to make the

different characteristic dimensions comparable. However, a general rule to follow in

the selection of biomechanical data preprocessing methods is lacking, and different

preprocessing methods have their own advantages and disadvantages. Therefore, this

paper proposes a multi-input convolutional neural network (MI-CNN) method that uses

two input channels to mine the information of lower limb biomechanical data from

two mainstream data preprocessing methods (standardization and normalization) to

diagnose PFPS. Data were augmented by horizontally flipping the multi-dimensional

time-series signal to prevent network overfitting and improve model accuracy. The

proposed method was tested on the walking and running datasets of 41 subjects

(26 patients with PFPS and 15 pain-free controls). Three joint angles of the lower limbs

and surface electromyography signals of seven muscles around the knee joint were used

as input. MI-CNN was used to automatically extract features to classify patients with

PFPS and pain-free controls. Compared with the traditional single-input convolutional

neural network (SI-CNN) model and previous methods, the proposed MI-CNN method

achieved a higher detection sensitivity of 97.6%, a specificity of 76.0%, and an accuracy

of 89.0% on the running dataset. The accuracy of SI-CNN in the running dataset was

about 82.5%. The results prove that combining the appropriate neural network model

and biomechanical analysis can establish an accurate, convenient, and real-time auxiliary

diagnosis system for PFPS to prevent misdiagnosis.

Keywords: patellofemoral pain syndrome, convolutional neural network, data preprocessing, data augmentation,

biomechanical analysis
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INTRODUCTION

Patellofemoral pain syndrome (PFPS), also known as
patellofemoral pain and chondromalacia patellae, often presents
as a gradual onset of knee pain behind or around the patella
(1–3). PFPS is a common chronic knee disease, especially among
women and athletes (4, 5). It can cause pain in patients climbing
up and down the stairs or squatting, thereby affecting their
activities of daily living (6). According to the survey, PFPS may
eventually evolve into patellofemoral osteoarthritis (7–9). If not
treated in time, it can cause joint deformities and disability. Thus,
the early and accurate diagnosis of PFPS is highly important.

Despite the high prevalence of PFPS, the etiology and
gender differences of this disease remain unclear (10, 11). Two
main difficulties are encountered in its diagnosis. One is the
multifactorial etiology of PFPS (12, 13). It may be due to excessive
extension of the knee joint, quadriceps weakness, valgus or
varus of the knee joint, medial femoral muscle weakness, or
gastrocnemius muscle tension. The other is the similarity of PFPS
to many knee joint disease symptoms, such as bursitis, patellar
tendinitis, and rheumatoid arthritis, causing misdiagnosis. The
previous diagnosis of PFPS generally depends on the subjective
judgment of doctors; thus, doctors should have very rich
experience in patellar tracking, patellar apprehension, Waldron
test, and squatting test (14, 15). However, the diagnosis results
for the same patient may be inconsistent because of the different
diagnostic criteria (14, 16).

The objective auxiliary diagnosis methods of PFPS include
X-ray, magnetic resonance imaging, computed tomography,
and arthroscopy (17–19). Among them, arthroscopy has the
highest accuracy in diagnosing PFPS. However, arthroscopy is
an invasive operation and requires a professional arthroscopy
doctor (19). Magnetic resonance imaging has high diagnostic
accuracy and non-invasiveness (20). However, its detection time
is long, and some patients have claustrophobia, preventing them
from actively cooperating with the examination. These imaging
auxiliary diagnostic techniques require expensive equipment and
professional doctors who are familiar with patellar abnormalities
to correctly diagnose PFPS. Inexperienced personnel are prone
to misdiagnosis, missed diagnosis, and other medical accidents.
Subjective factors, such as the psychology and physiology of
experts, can greatly reduce the diagnosis and medical effect, thus
affecting the stability of the diagnosis.

In recent years, biomechanical research has been a hot spot in
disease diagnosis, and PFPS is no exception (21, 22). Besier et al.
used the lower limb joint angle and surface electromyography
(sEMG) signals of 10 muscles around the knee joint as the
input of the musculoskeletal model to explore the changes
in muscle forces in patients with PFPS (23). Ferrari et al.
discussed the diagnostic value of sEMG signals of the vastus
medialis (VM) and the vastus lateralis (VL) for PFPS by an
independent t-test (15). Briani et al. used linear regressionmodels
to diagnose PFPS through the time-domain and frequency-
domain variables of sEMG and compared the results (24).
However, the results of these traditional analysis methods are
inaccurate, and experienced doctors are needed to select the
classification features.

With the development of machine learning, the combination
of machine learning and biomechanical analysis has become
increasingly popular (25, 26). In recent years, machine learning
algorithms have been improved and applied in various fields
(27–29). Many studies have shown that it is also suitable for
disease diagnosis (30, 31). The artificial neural network model is
widely used in machine learning because of its good non-linear
adaptive information processing ability. Wang et al. trained a
deep neural network using electroencephalography to diagnose
neonatal encephalopathy (32). Cho et al. used an artificial neural
network model with a single hidden layer to distinguish normal
and abnormal knee joints, thereby assisting in the treatment
of unstable patella and anterior knee pain (33). These neural
network models have shown good results in the diagnosis of
various diseases. However, the selection of a suitable neural
network model is a problem worth considering, and the result
of the network model is often related to the method of data
processing. A general rule for the selection of the preprocessing
method for biomechanical data is currently lacking.

To solve the above problems, we propose an improved
multi-input convolution neural network (MI-CNN) model to
diagnose PFPS. Compared with the single-input convolutional
neural network (SI-CNN), MI-CNN simultaneously extracts
data information from two mainstream data preprocessing
perspectives of normalization and standardization. Given that
biomechanical time-series data are different from image data,
MI-CNN adopts the 1D convolution kernel, that is, it only
slides on the time axis. The model was tested on the walking
and running datasets of 41 subjects (26 patients with PFPS
and 15 pain-free controls). Meanwhile, data augmentation was
performed in the training set to prevent model overfitting.
Compared with SI-CNN and previous methods, MI-CNN
achieved higher accuracy (89.0%) on the running dataset. This
method can be used as a computer-aided diagnosis method to
prevent doctors from misdiagnosing.

METHODS

Dataset
All experimental data in this paper were obtained from the
database published by the website https://www.sciencedirect.
com/science/article/pii/S0021929009000396?via%3Dihub. The
database collected 10 types of the biomechanical characteristic
of 41 subjects (26 patients with PFPS and 15 pain-free controls)
during walking and running, including three joint angles and
seven sEMG signals: hip flexion angle (HF), knee flexion angle
(KF), ankle dorsiflexion angle (ADF), semimembranosus (SEB),
rectus femoris (REF), VL, VM, biceps femoris (BIF), medial
gastrocnemius (MG), and lateral gastrocnemius (LG). The
sampling frequency of angle data was 60Hz, and the sampling
frequency of the sEMG signal was 2400Hz. These conditions
were set because the effective sEMG signal spectrum distribution
is between 10 and 500 hz. Thus, the sampling frequency of the
sEMG signal should be large enough to ensure the quality of the
sampling signal. Each biomechanical characteristic contains 100
time-series values. The detailed gathering process of the whole
dataset can be seen in the reference (23).
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FIGURE 1 | Overall algorithm flow chart.

The overall algorithm flow is shown in Figure 1.

Data Augmentation
At present, a large number of experiments have proven that data
size directly affects the performance of neural networks. PFPS
involves many types of physiological signals of the lower limbs,
but the number of samples in the dataset is relatively small, which
easily leads to model overfitting. Data augmentation can prevent
overfitting to some extent. Many methods of data augmentation
for image data are available, such as rotation, horizontal flipping,
vertical flipping, and random scaling. However, biomechanical
data are different from image data. They are interrelated in the
time dimension. Thus, many data augmentation methods are
not applicable. We used the data of each subject to form a 100
× 10 2D matrix, with 100 rows representing time series values
and 10 columns representing biomechanical characteristics. It
has the same format as the image data to facilitate data
augmentation. Hence, we can flip it horizontally because no
strong correlation exists between these characteristics, thus
doubling the training set.

Data Preprocessing
Before data input into the neural network, data preprocessing
is an important link because it can accelerate the convergence
speed of the neural network and improve the accuracy of the
model. PFPS involves a variety of lower limb biological signals,
and the ways to select these signals are different. Evaluating
PFPS only based on a single index is usually insufficient.
The problem from multiple indexes should be considered
comprehensively. However, given their different nature, various
evaluation indicators usually have different data scales. The level
of each index differs greatly if the original data is directly used for
analysis, highlighting the role of the index with a high numerical
value in the comprehensive analysis and relatively weakening
the role of the index with a low numerical level. Therefore, the
original data must be preprocessed to ensure the reliability of
the results. Different preprocessingmethods have different effects
on the evaluation results of the system. Unfortunately, a general
rule to follow in the selection of data preprocessing methods is
lacking. To improve data preprocessing, we need to view the
distribution of data. Thus, we plotted the data distribution for one
of the subjects, as shown in Figure 2, which from top to bottom

are three joint angle values and seven sEMG signals: HF, KF, ADF,
SEB, REF, VL, VM, BIF, MG, and LG.

Figure 2 shows that the range and distribution of the three
joint angle values largely differ from those of the seven sEMG
signals. Feeding such data into the neural network leads to
poor results, and preprocessing is needed. The two most used
pretreatment methods are standardization and normalization,
which have their advantages and disadvantages.

Standardization can scale the data distribution of different
characteristic dimensions to near 0, with the mean value of 0 and
the variance of 1, which is comparable. The formula is as follows:

Xi=
Xi−X

Xstd
, (1)

where X is the mean value of each column characteristic in
the original data X, and Xstd is the variance of each column
characteristic in the original data X.

Normalization can limit the range of values of different
characteristic dimensions within (0, 1), but it changes the
distribution of the original data. The formula is as follows:

Xi=
Xi−Xmin

Xmax−Xmin
, (2)

where Xmin is the minimum value of each column characteristic
in the original data X, and Xmax is the maximum value of each
column characteristic in the original data X.

These two preprocessing methods can improve the
convergence speed of the neural network but also have
some shortcomings. The standardized results are related to
each data point, and a specific scope limit is absent, causing the
data to lack mean and variance information. The normalized
result is mainly related to the maximum and minimum values
but not much to the intermediate value. Moreover, the scaling
range of normalization is mandatory and cannot be exceeded,
causing the loss of some abnormal value information. Therefore,
standardization and normalization were used for the data, and
data features were extracted from these two aspects to maximize
mining of data information.

In the process of data preprocessing, we preprocessed the
training set and test set separately. More specifically, each column
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FIGURE 2 | Raw data distribution in the walking and running datasets.

feature of each subject in the dataset was standardized and
normalized separately.

Multi-Input Convolution Neural Network
CNN has achieved excellent results in various classification and
recognition tasks (34–36). The advantage of using CNN for time
series classification is that it can learn directly from the original
time series data without requiring domain experts to design
input featuresmanually. Thus, after data augmentation,MI-CNN
with the 1D convolution kernel is proposed in this paper to
extract the features of normalized and standardized data from
two input channels simultaneously. Its model structure is shown
in Figure 3.

All convolutional layers in the model have 16 filters with a
convolution kernel size of 3 and a sliding step size of 1. A Relu
activation function is added after each convolutional layer to
perform a nonlinear mapping on the output of the convolutional
layer. The calculation formula is as follows:

Relu (X)= max (X, 0) (3)

Thus, if the data value transmitted to the neuron is <0, the value
of the neuron will be changed to 0.

The size of the max-pooling layer is 2 and the sliding step is 1,
which only keeps the maximum value in the window to reduce
the complexity of the model and expand the receptive field.
After the last convolutional layer, a dropout layer (rate = 0.3)
is added to randomly ignore 30% of the neurons when training
the network model. It can prevent the neural network from
overfitting and reduce the training time. Then, the flattening

layer will flatten the features extracted by the convolutional
layer into a 1D vector and concatenate the output of the two
convolutional channels by the fusion layer. At the end of the
model is a fully connected neural network to interpret all the
feature information extracted by the convolutional layer andmap
it to the category value. The first fully connected layer has 50
neurons and uses the Relu activation function. The output layer
has two neurons, representing two categories. The activation
function of the output layer is SoftMax, which maps the output
into two types of probability values. The formula for the SoftMax
function is as follows

yout= SoftMax (Zi)=
eZi

∑2
p=1 e

Zp
, for p = 1, 2, (4)

where Zi is the output value of the ith neuron in the output layer.
After setting the model structure, we use the Adam

optimization algorithm to update the network parameters by
backpropagation. The learning rate is set to 0.00001, the number
of iterations is set to 4000, and the Cross-Entropy function is
selected as the loss function.

RESULTS

Test Environment and Evaluation Index
Two datasets of 41 subjects in walking and running
states were used as experimental data to verify the
effectiveness of the proposed algorithm. The dataset is
described in detail in Section 2.1. The neural network
model in this paper was constructed using the Keras
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FIGURE 3 | Network structure of MI-CNN.

TABLE 1 | Configuration of test environment.

Parameters Version or value

Operating system Windows 10 (*64)

CPU Intel Core i7-8700

GPU GTX 1080

RAM 16.0 GB

Tensorflow 1.13.1

Keras 2.2.4

Python 3.7

framework based on Tensorflow. The configuration
parameters of this experimental environment are shown
in Table 1.

We randomly selected 70% of the dataset as the training set
and the remaining 30% as the test set. The training and test sets
were subjected to the same preprocessing, namely, normalization
and standardization, and the data enhancement was only used on
the training set. Meanwhile, given that our dataset is not large, the
training batch size of the model was set to the whole training set
to reduce the training time and improve the stability of training.

In this paper, accuracy, sensitivity, specificity, and training
time were selected as the evaluation indexes of the test results.
The definitions of these indexes are as follows

accuracy =
TP + TN

TP + FP + FN + TN
, (5)

sensitivity =
TP

TP + FN
, (6)

specificity =
TN

TN + FP
, (7)
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where TP is the number that is correctly classified as PFPS, TN
is the number that is correctly classified as pain-free controls, FN
is the number that is wrongly classified as pain-free controls, and
FP is the number that is wrongly classified as PFPS.

The best parameters of each model were selected by ten-fold
cross-validation, which is equivalent to training 10 models and
makes up for the disadvantage of a small amount of training data.
Each experiment was repeated 10 times independently, and the
average value was taken as the evaluation result.

We conducted four experiments on the running and
walking datasets, respectively, including SI-CNN without any
data preprocessing, SI-CNN with standardization processing,
SI-CNN with normalization processing, and MI-CNN with
standardization processing and normalization processing. Then,
their results were compared.

Comparison of Test Results on the Walking
Dataset
To clarify the comparison results, we randomly created the
accuracy and loss curves of four data preprocessing methods in

one of the experiments, as shown in Figure 4. Meanwhile, the
average results of the 10 repeated tests on the running dataset are
shown in Table 2.

Comparison of Test Results on the
Running Dataset
In the same way, we randomly created the accuracy and loss
curves of four data preprocessing methods in one of the

TABLE 2 | Results of neural networks with different data preprocessing methods

on the walking dataset.

Algorithm Accuracy Sensitivity Specificity Training

time (s)

SI-CNN (raw data) 0.415 0.548 0.2 28.5

SI-CNN (Normalization) 0.615 0.908 0.167 29.8

SI-CNN (Standardization) 0.639 0.824 0.32 29.8

MI-CNN 0.692 0.88 0.4 38.8

FIGURE 4 | “acc-loss” curves with different data preprocessing on the walking dataset.
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experiments, as shown in Figure 5. The average results of the 10
repeated tests on the running dataset are shown in Table 3.

DISCUSSION

As shown in Figures 4, 5, when the neural network model
does not carry out any data preprocessing, the loss curve of
its training set drops rapidly, but the accuracy of the test set
is not effectively improved. This result can be ascribed to the
considerably different data range and data distribution of the
joint angle and sEMG. The decrease in the loss curve of the
training set is mainly affected by the joint angle value. Network
learning is very one-sided, leading to poor results. The loss
and accuracy curves of the training set jitter because of the
added dropout layer, which only acts on the training of the
neural network.

Tables 2, 3 show that the results of the neural network
after data standardization are slightly better than those after

data normalization possibly because sEMG has no negative
value after rectification, but the joint angles have some negative
values, whereas the normalization completely limits the range
of values, resulting in the loss of some outlier information.
Thus, unlike image data, joint angle data are more suitable for
standardized processing.

TABLE 3 | Results of neural networks with different data preprocessing methods

on the running dataset.

Algorithm Accuracy Sensitivity Specificity Training

time (s)

SI-CNN (raw data) 0.596 0.75 0.35 29.1

SI-CNN (Normalization) 0.781 0.868 0.63 29.2

SI-CNN (Standardization) 0.825 0.84 0.72 29.5

MI-CNN 0.89 0.976 0.76 38.5

FIGURE 5 | “acc-loss” curves with different data preprocessing on the running dataset.
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TABLE 4 | Comparison results with previous methods.

Methods Sensitivity Specificity

Ferrari’ method on VM and VL 70% 87%

Briani’ method on VM 72% 69%

Briani’ method on VL 68% 62%

Squatting test 91% 50%

VM coordination test 16% 93%

MI-CNN on running data 97.6% 76.0%

Tables 2, 3 also show that the results of MI-CNN are better
than those of traditional SI-CNN on the walking and running
datasets. The accuracy rate of MI-CNN has increased by nearly
6%, but its training time is longer, because it has two input
channels. Thus, the network parameters of MI-CNN are almost
double that of SI-CNN. Given that this model is mainly used for
the auxiliary diagnosis of diseases, accuracy is more important.
Moreover, as long as the neural network model is saved after
training, it can be used for real-time diagnosis.

Comparison of Tables 2, 3 shows that the convolutional
neural network model does not perform well on the walking
dataset, and the results on the running dataset are better,
which indicates that the biomechanical data of patients with
PFPS in walking state is not much different from that
of the pain-free controls, but large differences exist in the
running state.

Finally, the method proposed in this paper is compared with
the previous methods. Ferrari et al. obtained 70% sensitivity
and 87% specificity through the sEMG signals of VM and
VL. Its dataset contains 51 subjects (22 patients with PFPS
and 29 pain-free controls) (15). Briani et al. obtained 72%
sensitivity and 69% specificity through the sMEG signals of
VM and 68% sensitivity and 62% specificity through the sEMG
signals of VL. Its dataset includes 59 subjects (31 patients
with PFPS and 28 pain-free controls) (24). According to the
survey (14), in the previous methods, the squatting test has
the highest sensitivity (91%), but its specificity is only 50%.
The VM coordination test has the highest specificity (93%), but
its sensitivity is only 16%. To clarify the comparison results,
we prepared Table 4. The MI-CNN method proposed in this
paper has a sensitivity of 97.6% and a specificity of 76.0% on
the running dataset, which is better than the previous methods
in general.

CONCLUSION

PFPS is a common knee joint disease, but its specific etiology
remains unclear. An accurate, convenient, and real-time PFPS
detection system must be established for clinical auxiliary
diagnosis. MI-CNN is proposed to diagnose PFPS. Compared
with the musculoskeletal model, this model is more convenient
and more versatile without considering the differences between
subjects. Compared with the linear regression model, this

model is more suitable for non-linear biomechanical data.
Compared with the traditional 1D convolution neural network
model, this model can fully mine data information from
standardization and normalization at the same time to improve
the accuracy of the model. The multi-dimensional biomechanical
data are also augmented to prevent the neural network
model from overfitting and further improve the accuracy of
the model.

In sum, the biomechanical analysis technology based on
real and objective gait data of patients can effectively reduce
the influence of subjective factors and improve the stability
of diagnosis and medical treatment. Combining it with the
neural networkmodel canmake the biomechanical analysis more
convenient and accurate.

This work is a preliminary study, and its applicability needs to
be cautious. The next research work will focus on two aspects.
One is to try to test the dataset with multiple gait diseases
to obtain multi-classification models. The other is to continue
to optimize the network structure to improve the accuracy
of diagnosis.
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