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Countries are recording health information on the global spread of COVID-19 using

different methods, sometimes changing the rules after a few days. All of them are

publishing the number of new individuals infected, recovered and dead individuals, along

with some supplementary material. These data are often recorded in a non-uniform

manner and do not conform the standard definitions of these variables. In this

paper we show that, using data from the first wave of the epidemic (February-June),

Kaplan-Meier curves calculated with them could provide useful information on the

dynamics of the disease in different countries. We developed our scheme based on

the cumulative total number of infected, recovered and dead individuals provided by

the countries. We present a robust and simple model to show certain characteristics of

the evolution of the dynamic process, showing that the differences in evolution between

countries are reflected in the corresponding Kaplan-Meier-type curves. We compare the

curves obtained for the most affected countries at that time, with the corresponding

interpretation of the properties that distinguish them. The model is revealed as a practical

tool for countries in the management of the Healthcare System.

Keywords: COVID-19, Kaplan-Meier, survival, decision, optimization

1. INTRODUCTION

Since its first detection in China, COVID 19—disease caused by SARS-CoV-2 virus—has spread to
different parts of the world to reach pandemic status in a short period of time. This has created a
social and scientific challenge, in which understanding how the virus behaves is crucial to stop its
spread. A classic tool in the analysis of epidemics that could be used in this sense is the Kaplan-
Meier (KM) survival model (1) that allows to calculate the stepwise survival probability of a fixed
group of patients suffering from a disease [see for example (2, section 15) for a contextualised
explanation of the topic]. Kaplan-Meier curves provide an easy and visual way to understand
processes involving a population of individuals that is decreasing over time. They give the rate
of individuals who still remain in a group—in our case, individuals who still remain under the
control of the corresponding national health system—after a given time, and can therefore be
understood as an estimate of the probability of this occurring. Comparisons of the curves for
different countries provide a method for analyzing the different strategies that countries used at the
onset of the pandemic. In a first approximation, the rapidly decreasing curves could be understood
as a sign of the efficiency of the strategies developed by the countries, but this simplistic explanation
cannot be established as a general rule, since the data presented by the countries on the pandemic
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also involve variables other than the response capacity of the
health systems. However, we have found—and this is the main
contribution of the present work. that countries can be grouped
according to the shape of their Kaplan-Meier curves, which
opens the door to a global analysis of the strategies—including
data management, medical treatment, isolation measures and
other relevant actions—used throughout the world. For this
research, we collected data from the database of John Hopkins
University (Coronavirus Resource Center), which provided an
internationally accredited source of information. Of course,
depending on the country the data were affected by a lot of
different biases, so we have no choice but to assume that the
national strategies we want to consider in our comparative
analysis include the data management itself. In other words, we
consider the management of these data as a component of the
national strategies to fight Covid-19. But there is another fact
that is even more problematic for the mathematical analysis: the
data are aggregated—they are essentially given by the number
of new infections, deaths and individuals cured each day, so a
disaggregation (deconvolution) procedure is necessary to obtain
Kaplan-Meier curves. The mathematical issue of doing this
was studied in our work (3), where several analytical-heuristic
methods are considered. Finally, we decided to use Genetic
Algorithms for our overall analysis, as it was the method that was
shown to be the most efficient. However, although the question
of comparing different calculation procedures is interesting in
itself from a mathematical and computational point of view, it
is not the aim of the present work, in which we try to present
some information on comparative treatments against pandemic
situations using a synthetic information resource: Kaplan-Meier
curves. The proposed method which would allow a prediction of
how, given an average infected individual, his or her infection
status changes over time. As we have explained in the precedent
paragraph, the nature of data collected on the pandemic in
different countries is diverse and this model needs to be adapted
to the specific case of COVID-19 to provide relevant information.
As will be shown in the paper, each country has its own survival
curve with strong differences, which cannot be justified as a
unique consequence of local population characteristics: a survival
curve should only depend on the virus, assuming the usual degree
of homogeneity in the infected population. Therefore, the reason
for the strong difference in the results in different regions have to
be sought in two directions: first, the way countries are reacting
to the epidemic, and second, the characteristics of the data these
countries have made public.

In addition, current models are not sensitive enough to
capture the different dynamics of different virus strains. This
is because viruses with RNA as their genetic material are less
stable than those with DNA and tend to accumulate a greater
number of mutations. This means that the virus changes more
quickly, ending up in different variants of the same virus that
have different mortality and infection rates. Furthermore this
feature raises the fear about future cases of re-infection, where
the virus differs enough from previous versions to evade the
immune system again—as such other virus with the same genetic
material do, e.g., Influenzavirus A, that causes the common flu
and is able to infect us repeatedly (4). This scenario may occur

as other coronaviruses are able to infect humans periodically
such as HCoV-NL63 or HCoV-229, that are responsible of one
out of five colds (5). The mutation rate for SARS-CoV-2 is
not known yet, but given its potential, the possibility should
be considered.

Thus, although all these arguments could influence the
unusual results of the survival curves these facts do not
substantially change the structure of the model (3). Therefore,
the problem comes from the data. But this fact does not
invalidate the usefulness of the Kaplan-Meier curves. Here,
we show that some significant patterns can be detected by
comparing the curves constructed for different countries. In
further applications, survival curves could also provide some
useful information for decision-making on the implementation
of strategies against the spread of COVID-19, such as the length
of confinement periods or the intensity of new case detection
policies. In this work we use the available data of the dynamics of
the disease COVID-19 to understand the survival of the virus that
causes it, SARS-CoV-2. Although more information is already
available on the second wave of COVID-19 in the countries
we have analyzed, we have opted for the methodological
approach of using data from the first wave—February to June.
The reason is because this period defines a complete (almost
closed) cycle of infection. Since we are interested in drawing
some methodological conclusions from the experience, we
believe that this procedure allows a more stable framework for
obtaining them.

The results of our analysis are the estimates of the probability
distributions of virus survival in different countries. These are
functions that are sensitive to changes in the epidemiological
data of different populations. This makes the model adaptable to
reinfection scenarios and other more subtle differences such as
the virulence of different strains (6). Together with some usual
models for predicting the amount of new infected population,
this allows the development of a complete model for the
evolution of newly infected individuals, people who must be kept
in quarantine and individuals who have already overcome the
disease. To approximate the solution of the equations we use a
genetic algorithm approach (7), which provides estimates of the
probability and therefore clear images of the expected infection
scenario. A full explanation of the mathematical method we have
developed to do this is available in (3). In this paper we show
that our model provides information that can be relevant for
the management of health systems for different countries. We
have found—and this is the main contribution of the present
work. that countries can be grouped according to the shape of
their Kaplan-Meier curves, which opens the door to a global
analysis of the strategies—including data management, medical
treatment, isolation measures and other relevant actions—used
throughout the world. We believe that these results may allow
us to monitor the effectiveness of containment policies, thus
helping in the decision making process. The simplicity, both of
the model itself and of its calculation and interpretation, is one of
the main advantages of our approach, which makes it suitable as
a forecasting tool.

Regarding other models being used in the pandemic crisis,
a great effort is being made to improve the mathematical
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FIGURE 1 | Survival curve, S, of the virus corresponding to Spain. The red point signs the number of days after which a standard individual has a probability of

staying in the group of infected people smaller than 0.2. This value has been arbitrarily set as an aid to the visualization of the decreasing of the curve. The size of the

balls is proportional to their value at the point.

representation of the number of newly infected individuals in
order to provide an accurate predictive tool. The most popular
model being used is the SIR model and modifications of this
model, that in particular provides a forecast of the number of new
infected people in subsequent steps of the dynamical process [see
for example (2, 8) and the references therein]. Also, other models
have used time series to forecast the confirmed and recovered
cases (9, 10).

However, the probability of survival of the virus could be even
more relevant for the management of strategical information
for decision-making regarding important data that affects the
population in different countries. For example, to decide how
long a period of confinement should last and to which type of
population it should apply. The aim of this work is to define
a general management and evaluation model based on Kaplan-
Meier survival curves to assist healthcare system managers in
their decision making. Other approaches has been done in
the same sense for improving decision making using Machine
Learning techniques (11). Our approach is similar to that
presented in (12) but the mathematical setting is much easier and
directly interpretable in terms of the system’s ability to deal with
the pandemic, as we will show in the next sections. This simplifies
both its use and the data needed to feed the model. We would
also like to point out that our model can also be used for resource
planning for a particular hospital (13).

2. METHODS

Our model is based on a modification of the classical Kaplan-
Meier survival curve. The idea is to fit the evolution curve of
the accumulated total amount of recovered (R) plus dead (D)
people—data provided by countries—from the beginning of the
epidemic to time t. We call this number X and we will refer it
as discharged people. We consider X = R + D. On the basis of

the accumulated total amount of infected people, (J ), in the same
period—data provided also by countries, the model fits J vs. the
discharged ones (X ) estimating the stepwise probability of the
virus to survive—denoted by P—in a given infected patient. The
result of our fit provides the time series of both the probabilities
of survival of the virus, P , and the approximation X̂ of the
accumulated number of discharged people (X ). We would like
to point out here that other definitions of “people living with the
virus”are possible: (i) people living with symptoms, (ii) infectious
people, or (iii) people requiring health system care. All of these
are useful for healthcare systems management, but due to the
available data they cannot be used.

On the one hand, in the right panel of Figures 2–4 it can
be seen examples of the approximation of the function X for
different countries. The black line corresponds to the real data of
discharged people (X ) while the red line is the result of our curve
fitting (X̂ ). As it can be seen, both curves are almost coincident
for all the countries considered and in a period of time of 95
days. The reddish shaded area represents a range of 10% over the
maximum value of X .

On the other hand, in the left panel of Figures 2–4, we show
the representation of the survival curve of the virus. It gives the
probability of an individual continuing to be infected—in terms
of being under the control of the national healthcare system
according to the data collection in each country—after the day
when he/she was labeled as infected (which corresponds to t = 0
in the representation).

The Kaplan-Meier (KM) survival curve (1) is based on the
estimation of the instantaneous probability of survival at a given
time in the process of reduction of a given population. The
interested reader can find a complete explanation of this and
related topics in (14, Ch.2) and (15, 16). We assume that the
time variable has discrete values. For the sake of simplicity of
formulas and without loss of generality we will consider t ∈ N
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FIGURE 2 | On the right, curve fitting of the sum of the accumulated number of recovered and dead people in USA (top), United Kingdom (center), and Sweden

(bottom): black line is the real value (X ) and red line is the approximation (X̂ ). The x-axis represent the date and the y-axis represents the number of cases. Vertical

line signs the 100 cases. On the left, the corresponding survival curve of the virus S. The red point signs the number of days after which a standard individual has a

probability of staying in the group of infected people smaller than 0.2. This value has been arbitrarily set as an aid to the visualization of the decreasing of the curve.

The size of the balls is proportional to their value at the point.

starting at the moment t = 0. We write P(t) for the probability
of an individual that has been labeled as “infected” is still infected
by the virus at the time t. An estimate of this value for a given
population of N infected individuals at the time t = 0 is given by

P(t) =
n(t)

N
, t = 0, 1, 2, 3, ...,

where n(t) is the number of patients that are still infected at the
day t. Note that n(0) = N and P(0) = 1.

Let us now turn our attention to the infection process that
began in the first wave of the epidemic. Given a fixed country,
let us write now I :N → N for the function that gives the number
of new infected individuals I(t) at time t. The total amount X̂ (t)
of individuals surviving after a time t can be written as a KM type
survival function given by the convolution formula

X̂ (t) =

t∑

s=0

I(s) ·
(
1− P(t − s)

)
, t = 1, 2, 3, ...,

where P(u) is, as we have said, the probability that an individual
is still infected at the time u. This quantity approximates the

number of discharged people X (t). Using this equation it is
possible to compute the Kaplan-Meier survival curve P from the
data extracted of the reports of the different countries affected by
the pandemia. The complete explanation of how this can be done
can be found in (3).

3. RESULTS AND DISCUSSION

In the previous section, we have introduce a model based on
variables that are directly related to the epidemiological data
provided by countries during the first wave of the Covid-19
pandemic. The meaning of the quantities appearing in this
model has a straightforward interpretation. Let us start with the
explanation of the probability distribution P . For example, in the
case of Spain (Figure 1) 62 days after being classified as infected
a standard patient has a probability of remaining infected of 0.2.
In other words, 20% of the patients listed as infected the first day
(t = 0) will still be labeled as infected after 62 days (remaining in
the hospital or at home in quarantine). It can be seen that there is
a significant decrease in the curve in the first 10 days. Indeed,
since S(1) = 0.96 then after one day 96% of infected people
will still be infected whereas 10 days later only the 53% will be.
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FIGURE 3 | On the right, curve fitting of the sum of the accumulated number of recovered and dead people in China (top), South Korea (center), and Germany

(bottom): black line is the real value (X ) and red line is the approximation (X̂ ). The x-axis represent the date and the y-axis represents the number of cases. Vertical

line signs the 100 cases. On the left, the corresponding survival curve of the virus S. The red point signs the number of days after which a standard individual has a

probability of staying in the group of infected people smaller than 0.2. This value has been arbitrarily set as an aid to the visualization of the decreasing of the curve.

The size of the balls is proportional to their value at the point.

However we need 52 days more to reduce the percentage to 20%.
The shape of these curves is the main element of our analysis.

Here, the most remarkable feature is that, as can be seen in
Figures 2–4, the model is sensitive to the progression of the
epidemic in different countries, showing different patterns of
survival curves.

In countries such as the United States or the United Kingdom,
the form of the curves suggests that the spread of SARS-CoV-
2 was not been effectively controlled at an early stage, either
because no general testing of infected people was done or the
government Health authorities decided to present the global
numbers in a different way, not counting a big group of people
suspicious of being infected. As a consequence, the reported
number of “admissions” in the system (registered infected people
J ) is greater than the number of discharges (X ) over a long
period of time, so it takes longer to reach equilibrium. Then the
individual’s probability of getting out of the group of infected
people decreases slowly (see Figure 2).

As opposed, there are countries where, after the first cases were
detected, mobility was restricted and a large number of tests were
carried out to identify and isolate infected persons—as the case
of South Korea or Germany. The number of infections reported

by these countries reveals this fact. The curves suggest that this
policy was maintained throughout the whole process of the first
wave of the epidemic. The number of “admissions,” although
initially much higher, is rapidly decreasing, approaching the
number of “discharges.” The curve shows a rapid decrease in
the probability of an individual remaining infected, followed by
a flattening of the curve in which a slower decrease is observed
corresponding to the normal evolution of infected individuals in
hospitals (Figure 3). This would also be caused by—or together
to, a powerful campaigne of test made over all the general
population, getting and reporting—as the figures provided by
these countries reflect—a big number of individuals who were
positive but asymptomatic, or who had a very good response to
the medical treatment. In some cases such as in Korea, since the
number of infected persons is not so large, the model shows the
changes in trendwith greater sensitivity. This allows us to see how
the initial trend is similar to that observed in countries with late,
deficient or ineffective control measures, with a strong decrease
immediately afterwards.

Finally, in countries such as Spain or Italy (Figure 4), where
the measures taken have partially slowed down the expansion, a
less pronounced decline in the KM curve is observed, showing
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FIGURE 4 | On the right, curve fitting of the sum of the accumulated number of recovered and dead people in Spain (top), Italy (center), and France (bottom): black

line is the real value (X ) and red line is the approximation (X̂ ). The x-axis represent the date and the y-axis represents the number of cases. Vertical line signs the 100

cases. On the left, the corresponding survival curve of the virus S. The red point signs the number of days after which a standard individual has a probability of staying

in the group of infected people smaller than 0.2. This value has been arbitrarily set as an aid to the visualization of the decreasing of the curve. The size of the balls is

proportional to their value at the point.

a mixed behavior between the two extreme cases that have been
considered in Figures 2, 3.

Thus, the KM survival curve gives an estimate of the speed
of the national system to detect and manage new infected
individuals. A large number of tests makes it possible to control a
relevant number of infected individuals (perhaps asymptomatic)
reducing the stress for the national healthcare system because
it can reduce the severity of the infections, i.e., the period in
which infected individuals are under control of the healthcare
system (with a lower use of clinical resources). This results in a
considerable efficiency of the system, especially if done early in
the epidemic, and (looking at the results) appears to be the most
effective strategy. Early detection (at any stage of the process, but
especially at the beginning) and massive testing, together with
containment measures to reduce the rate of infection, appear
to be the main weapons against the virus. Containment also
appears to be an effective tool, but its effectiveness is based on
other aspects of the system: it clearly reduces the number of new
infections, but this may not affect the survival curve.

In short, we can consider that themodel can help the decision-
makers of each country to know the distribution of time periods
in which the healthcare system has to take care of infected

people, according to the same variables that the healthcare
policy makers have chosen to measure, in our case, infected
(confirmed), recovered and dead people. Finally, in Figure 5,
we show the variation of the survival curve of the virus, when
computed with different time series of days (50, 70, and 90 days)
that provide an idea of the stability of the solutions. Note that
the principal feature of the curve, the decreasing in probability
during the early period is maintained independent of the number
of days considered.

The values of the slopes from the analysis of the tail of
the survival curves are shown in Table 1. Countries that show
a strong decrease after a few days, at the beginning of the
curve, have lower slope values. This could be attributed to
better medical treatment in countries with higher slopes, as the
proportion of people leaving the system increases. However, as
we assume that the medical methods used in all the countries
analyzed are similar, this interpretation does not seem to be
correct. Instead, it seems to be a consequence of the higher
proportion of the population tested in the countries with small
slopes: more people start to be followed by the healthcare
systems at an early stage in countries such as South Korea
or Germany, so the medical prognosis is statistically better.

Frontiers in Public Health | www.frontiersin.org 6 October 2021 | Volume 9 | Article 646863

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Calabuig et al. Kaplan-Meier Type Curves for COVID-19

FIGURE 5 | Survival curve of the virus considering different number of days for USA (left-top), Spain (right-top), and South Korea (center-bottom). Red circles

corresponds to data of the first 90 days, pink circles to only the first 70 days and maroon circles to only the first 50 days. The size of the balls is proportional to their

value at the point.

TABLE 1 | Slopes of the linear final trends of the KM curves.

USA United Kingdom Sweden

−0.0106 −0.0102 −0.0109

China South Korea Germany

−0.0025 −0.003 −0.003

France Italy Spain

−0.008 −0.0087 −0.006

Therefore, of the total population followed in these countries,
only a small rate needs medical attention in the late stage,
but these patients need it for a long time, so the slope
is small.

4. CONCLUSIONS

The aim of this work, as mentioned above, is to define a general
model for the management and evaluation of healthcare systems
based on the Kaplan-Meier survival curves of the virus. In
particular, in this paper we use it to compare the efficiency of
different healthcare systems (different countries) in dealing with
the pandemic. In this particular case, our arguments can be
summarized in relation to two different discursive axes:

1. If the data provided by all countries were comparable—that is,
if the criteria for diagnosis, addition of new cases, deaths and

cured patients were recorded according to the same rules—
each country’s Kaplan-Meier curve would accurately represent
its capacity to manage the covid-19 crisis. Indeed:

a) An increased number of diagnostic tests registered for
screening of new cases of infected persons results in a steep
downward curve, as the health system detects more cases
that are at an earlier stage of the infection, thus avoiding
more serious complications and increasing the likelihood
of a faster cure.

b) A faster action on the infected population results in a
higher rate of patients being cured in a shorter period of
time and therefore leaving the healthcare system earlier,
reducing the stress of it.

2. We cannot assume that the data provided by countries are
homogenous, i.e., the criteria for choosing indicators have
not been the same everywhere. For example, the criteria
for defining when a patient’s death is caused by the virus
have been different in each country. Therefore, the results
presented in this paper are not definitive. However, and this
is our main point, they are reasonable, as the comparison
between countries and the groups defined are consistent with
the general perception of which countries have had fewer
problems in the first wave of the pandemic.

These arguments give a clear picture if the data taken by the
different countries are comparable: the faster the Kaplan-Meier
curve of the virus falls, the better the reaction of the health system
to the crisis, and vice versa. Thus, the policies—special measures
against the virus, closure of shops and stores, confinement of
cities—adopted by countries with steepest downward curves tend
to be better and this experience should be taken into account
for future crises. It should be stressed that the total number of
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infected people is not the only parameter to monitor—experience
shows that this variable is extraordinarily difficult to control—but
that the capacity of healthcare systems to respond to the crisis
must also be taken into account and is, in fact, the only relevant
information for practical purposes.

There is also a technical problem caused by the fact that the
data provided by public institutions are not disaggregated, i.e.,
they give an overall number of new infected people, deaths and
cured per day but do not provide the number of days each patient
is followed by the health services before being discharged and
considered cured. This fact makes it necessary to deconvolute
the data to obtain the survival curve using new mathematical
procedures, as explained in (3), which inevitably introduce more
errors. Analysis using complete data provided by the health
administration would also reduce the error caused by this need
for mathematical processing. This has been tested in (13).

Here, we have presented the estimates of virus surviving
probability functions that have been calculated using the data
available for the first wave in nine countries, which in a sense
represent three different ways of data collection and healthcare
system management. Epidemiology experts, data scientists and
the public at large have noted that the count of newly infected,
recovered and dead people depends on the country—the tools are
not at all homogeneous—and does not reflect the real situation,
mainly in terms of new cases of infected people. We have found
the probability function for each country with the information
made public by the corresponding governments during the first
wave of the pandemic because it reflects the parameters that these
same governments are able to measure and on which they can
base their strategies.

The main characteristic of the curves is possibly the initial
behavior, which allows us to group the nine countries we
have selected into three categories. In our interpretation, this
initial behavior reflects the way in which national healthcare
systems are measuring the infected population as a whole:
how many patients with some symptoms have been tested,
and how they decide whether they should be under the
supervision of the national healthcare system or not. Despite
the known fact that the data provided by the countries
are deficient, it is precisely the difference between countries
in the shape of the curve that makes our model a useful
tool from the point of view of epidemiology and healthcare
system management. Under this assumption we have shown
that the curve allows grouping countries according to the
strategy followed to deal with the pandemic desease and in
consequence it contains useful information about the different
actions undertaken.

Regardless of how the variables are defined in each country—
this has to be taken into account by the country itself when
interpreting the results—the KM curve shows how quickly the

healthcare system is able to deal with infected individuals: the
faster the decrease of the KM curve in the first steps, the less
pressure the system has to bear, since individuals need to spend
less time controlled by this system. We emphasize that this
control depends on how each country measures infection, and
have to be understood in the context of each country. Different
regions within a country could follow the same rules, and so
could be compared.

However, some general conclusions can be drawn. The main
one is that massive COVID-19 testing in the population improves
the overall rating of the effectiveness of the healthcare system.
This is clearly demonstrated by the survival curves in Germany
and Korea, compared to other countries. As this can help control
infected individuals, it allows countries to manage the healthcare
system, resulting in a rapid decrease in the KM curve.

Finally, let us recall that the KM curve does not give
a measure of how good the medical treatments are for the
infected people in each country. Instead, once the counting
method is fixed in each country, the KM curve provides
decision-makers with a strategic tool for that country, as it
gives a clear idea of how much time the healthcare system
has to take care of an infected individual, whatever this
means in the particular country’s statistics. This could be
relevant, for example, for the installation of emergency hospitals,
the duration of special confinement measures, and other
extraordinary measures.
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