
ORIGINAL RESEARCH
published: 22 September 2021

doi: 10.3389/fpubh.2021.648465

Frontiers in Public Health | www.frontiersin.org 1 September 2021 | Volume 9 | Article 648465

Edited by:

Michael Ekubu Otim,

University of Sharjah,

United Arab Emirates

Reviewed by:

Syed Afroz Keramat,

Khulna University, Bangladesh

Julie Abimanyi-Ochom,

Deakin University, Australia

*Correspondence:

Ngugi Mwenda

samwenda87@gmail.com

Specialty section:

This article was submitted to

Health Economics,

a section of the journal

Frontiers in Public Health

Received: 31 December 2020

Accepted: 25 August 2021

Published: 22 September 2021

Citation:

Mwenda N, Nduati R, Kosgei M and

Kerich G (2021) What Drives

Outpatient Care Costs in Kenya? An

Analysis With Generalized Estimating

Equations.

Front. Public Health 9:648465.

doi: 10.3389/fpubh.2021.648465

What Drives Outpatient Care Costs in
Kenya? An Analysis With Generalized
Estimating Equations

Ngugi Mwenda 1*, Ruth Nduati 2, Mathew Kosgei 1 and Gregory Kerich 1

1 School of Aerospace and Physical Science, Department of Mathematics, Physics and Computing, Moi University, Eldoret,

Kenya, 2Department of Pediatrics, University of Nairobi, Nairobi, Kenya

Objective: This study aimed to identify the factors associated with outpatient expenses

incurred by households in Kenya.

Background: The problem of outpatient healthcare expenses incurred by citizens in

countries with limited resources has received little attention. Thus, this study aimed to

determine the predictors of household spending on outpatient expenses in Kenya.

Method: We conducted a cross-sectional analysis on households in Kenya using data

from the 2018 Kenya Household Health Expenditure and Utilization Survey. We applied

the generalized estimating equations method to determine the best subset of predictors

of outpatient care cost.

Findings: The best predictors of outpatient care expenses in Kenya are age, wealth

index, and education level of the household head.

Conclusions: There were no differences regarding age in the mean spending on

outpatient care. Moreover, we found that the cost of outpatient care changes with age

in a sinusoidal manner. We observed that rich households spent more on outpatient

care, mostly owing to their financial ability. Households whose heads reported primary

or secondary school education level spent less on outpatient costs than households

headed by those who never went to school.

Keywords: GEE, outpatient, healthcare, QICu, cost

INTRODUCTION

Although Kenya is a lower middle-income country (LMIC), it is one of the fastest growing
economies in sub-Saharan Africa (1). To ensure steady economic growth and proper social
development, the need has emerged to stabilize the national health systems of Kenya (2).

Although the country continues to strive toward reforming its healthcare system, it faces
challenges in the form of financial constraints, high debt (3), a high debt-to-gross domestic product
ratio of 70%, weak institutional capacity, and a high unemployment rate [almost 20% (4)], which
in turn raises the dependency ratio (5). Thus, there are significant obstacles to effective change.
Owing to a constrained budget, funds allocated to the healthcare sector remain low (6). The recent
budget allocation of 9.1% to the healthcare sector as a proportion of total government budget (7)
is low; this is contrary to the 2001 Abuja Declaration on healthcare in Africa that at least 15% of
the budget be allocated to the healthcare sector. Therefore, to achieve any substantial advancement,
Kenya’s health sector requires comprehensive improvements or even complete reformation (2).
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Owing to limited availability of resources in LMICs (8), sound
and accurate evidence is needed to formulate and implement
health policies that are influenced by the current state of a
country’s economy (9). Still, the presence of evidence might
not be sufficient for the prioritization of resource allocation,
given the existence of other more demanding factors, such
as political strategies and donor demands on funding (10).
Therefore, developing countries have to make difficult choices
about how to allocate limited resources and spending with a view
to maximizing their output (11).

By contrast, primary healthcare in developed countries has
continuously benefited from medical security policies, provided
proper medical care to citizens, alleviated the economic burden
of disease by reducing catastrophic spending on health, and
provided financial support to ease the burden of healthcare by
making current data available (12–17).

According to the existing literature, demand for inpatient
and outpatient healthcare is likely to increase in the next
decade owing to population growth outpacing growth in the
supply of health facilities (18). This increased demand is due
to cardiovascular diseases, obesity (19), and respiratory illnesses,
like COVID-19 (20).

With limited resources due to reduced revenue collection by
the government as a result of falling household incomes (21),
the need to re-allocate resources gives rise to opportunity costs,
leading to gains in one sector and losses in another. This exerts
pressure on the governments of developing countries, which
have limited resource availability, to take decisions to meet the
expected increase in demand.

Prior studies have established that more than 11 million
Africans, of whom 0.45 million are Kenyans, are pushed
into extreme poverty every year because of out-of-pocket and
outpatient health expenses (22). To create awareness about this
healthcare spending strain, the Kenyan government has made
consistent efforts to insure significantly more of the population
through the National Health Insurance Fund (NHIF); however,
83% of the Kenya population of 50 million were uninsured as of
2017 (23).

Measures have been taken to reform the NHIF (24), which
could be Kenya’s gateway to achieving universal health coverage
(UHC) (25). This was accomplished by conducting a pilot
study in a few counties (Nyeri, Kisumu, Machakos, and Isiolo),
where the state was to meet all the medical costs (26, 27) and
advance toward achieving Sustainable Development Goal (SDG)
3 (28). The purpose of the pilot study was to determine the
possibility and sustainability of implementing the program in the
entire country.

The pilot study is in line with the ongoing global drive toward
attaining UHC in LMICs, which has paved the way for health
sector reforms to help realize this objective. The main objective
of UHC is to cushion citizens against the catastrophic and
impoverishing effects of out-of-pocket healthcare payments, such
as those in Kenya (22, 29), which have led to household poverty
(30), socio-economic inequality, inequity in the use of healthcare
services (31), and time wastage from traveling long distances to
access healthcare services (2). Unfortunately, when analyzed in
the global context, Kenya’s achievements remain inadequate (26).

The findings from the pilot study indicate that tax revenues
collected by the Kenyan government are not sufficient to fully
support UHC.

Household spending on outpatient care is an important
characteristic of financial expenditure for measuring public
health (23). However, existing studies have not focused on
this issue, because certain health conditions might not expose
the affected to risk. However, it is important to note that if
proper medical attention is not provided, some health conditions
that may appear insignificant can easily deteriorate with time.
Thus, household spending is key to arresting the deteriorating
condition of outpatients.

The choice of seeking outpatient care when sick or injured
could be influenced by (1) the seriousness of the health condition
of the affected person and (2) the person’s financial ability to
pay for the required healthcare services (32). In this case, key
determinants are the characteristics of the household figure or
care provider from whom the household member needs to seek
help (33–35).

Most often, the head of the household is the breadwinner
and makes vital decisions in the household. The education
level of the household head in a study in Uganda determined
whether birth delivery took place in the presence of a skilled
birth attendant (36). A study in Nicaragua showed that in some
households, even though the woman earned more, decisions
regarding the household, including expenditure, were made
by the male household head (37). A study in Nepal found
that, although women were involved in decision making in the
household, they did not have autonomy with respect to final
decisions, as the man was regarded as the household head (38).
Although most households regard the man as the household
head, this is not always the case, as recent literature in Kenya
shows that about 36% of households are female headed. Another
study in South Africa indicates that heads have final say over
decisions regarding household expenditure, even when they do
not earn the most income (39).

Given the tendency of the household head in Africa to
influence the members of a household, it is imperative to
investigate outpatient care predictors with reference to the
characteristics of the household head.

MATERIALS AND METHODS

Study Design and Population
The data were collected through a cross-sectional study carried
out from April 9, 2018 to May 19, 2018 across all 47 counties
in Kenya, called the Kenya Household Health Utilization Survey
(KHHEUS). The survey was household based and designed
to provide estimates for various indicators at the national,
residence (urban and rural), and county levels. The sample
design constituted 1,500 clusters with 923 rural and 577 urban
residences spread across the country. The sampling consisted of
two stages: the first was a stratified cluster sampling design in
which 1,500 clusters were selected, and the second was a uniform
sample of 25 households, which were randomly selected.

A questionnaire designed by a technical working group of
the Kenya National Bureau of Statistics (KNBS), World Bank
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(WB), and Ministry of Health (MoH) was administered to every
sampled household, and it was pretested, reviewed, and improved
before the training. More information on the questionnaire
design can be found elsewhere (40).

Briefly, the KHHEUS questionnaire objectives were set by the
MoH, WB, and KNBS officials. Its main aim is to determine
household expenditure on health services used for both inpatient
and outpatient care. It is the collective responsibility of the
technical working group to develop and review the survey tools,
recruit and train enumerators, collect data, write reports, and
disseminate them.

The questionnaire collected information on the utilization
of outpatient and inpatient services. Other details collected that
were useful for this study included household composition,
health insurance, housing conditions, assets, amenities,
household consumption, and expenditure.

The training was organized in three levels. First, the
trainers were trained between March 13 and 16, 2018. The
trainers then trained the field survey personnel, consisting
of 94 enumerators and 357 interviewers, in six regions
(Kisumu, Eldoret, Nakuru, Machakos, Nyeri, and Mombasa)
from 19 to 23 March, 2018. The training was mainly
conducted to assist with the hard copy questionnaire and
computer-assisted personnel interview for data collection.
In addition, both the interviewers and the supervisors
were trained to conduct quality checks and send data to
the servers.

After field deployment, the interviewers administered
the questionnaire to every sampled household after
obtaining consent. Interviewees were reminded that the
information was voluntary and that they could terminate
the interview at any stage. Monitoring was performed
at all levels to ensure data quality; furthermore, both
subject matter specialists and programmers were always
available to deal with technical questions and device issues,
respectively. There was an overall response rate of 95%; of
the 37,500 sampled, we had complete household interviews
for 33,286.

MEASUREMENTS

Dependent Variable
Using the KHHEUS data collected for individuals and
households in 2018, we included costs incurred for any
outpatient healthcare in the 4 weeks prior to the survey. Here,
outpatient healthcare means any medical procedures and
services performed by a health facility and health providers (e.g.,
chemists and pharmacists) without the requirement of a stay
in hospital.

These were collected based on registration cards,
medicine/chemotherapy/vaccination, consultations, diagnosis
tests (x-rays, lab, etc.), medical checkup, and dialysis. All
expenses were calculated in Kenyan shillings (KSh) and then
converted to American dollars (US$) using the mean exchange
rate for the period set by the Central Bank of Kenya from January
to December 2018 (1 US$ = 100.79 KSh).

Independent Variables
To establish an association between total cost for outpatient
care and its covariates, we selected variables that are commonly
considered to predict healthcare cost and utilization. We
included age, captured as a continuous variable; place of
residence divided into urban and rural; and wealth index, divided
into five different income groups (poorest, poor, middle, rich, and
richest). Other selected variables included sex, captured as male
or female; level of education, grouped into four categories (none,
primary, secondary, and post-secondary; employment, captured
as employed or unemployed; marital status, grouped into four
categories (single, married, separated, and divorced; existence of a
smoker in the household; and any member suffering from HIV,
hypertension, cardiac problems, diabetes, mental health, cancer,
TB, asthma, or any other respiratory problems. Employment was
used as a proxy for the income of the household head.

We considered households headed only by a person aged 18
years and above. We calculated the total expenditure for people
under outpatient care, as we were interested in estimating the
healthcare utilization per household out of 11,130 households. In
cases in which the respondent was not the head of the household,
we considered the person who had the closest relationship with
the household head as the head of the household.

Our response variable, that is, the total cost incurred for
outpatient care, exhibited some characteristics that are of interest
to this study related to users and non-users of outpatient
services. Therefore, the response variable may have a discrete
mass at zero (for non-users), continuous and right skewed (for
users), with correlation for households that belong to the same
cluster (county). To model such data, we adopted Tweedie
distribution under generalized estimating equations (GEE) with
an independent correlation structure.

Thereafter, we adopted the method of Hardin and Hilbe
(41), which enabled us to check the best model fit using quasi-
likelihood under the independence criterion (QICu). QICu is a
criterion proposed by Hardin and Hilbe (41) as an extension
of the QIC proposed by Pan (42) for correlation structure
selection, when no known structure of the data is known, or
when there is no motivating scientific evidence of a particular
correlation structure.

Our work has a predetermined correlation structure according
to the guidelines provided by Hardin and Hilbe (41) of selecting
the best correlation structure. Considering our panels, the
differences in sizes of the number of subjects in each panel, and
the fact that spending on healthcare among the panels may have
weak correlation, we opted for the independence structure. In
selecting the best subset of covariates, we evaluated the model
with the lowest value for the QICu and the fewest number
of covariates among competing models. We also evaluated the
logarithmic and canonical links of the selected model.

Statistical Methods
(EDM) has a probability density function that can be written as

p(y; θ ,φ) = bp(y,φ)exp

{−d(y,µ)

2φ

}

(1)
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We assume that the cost for outpatient care during the
survey period N follows a Poisson distribution with mean
λ, such that if the household does not incur any cost, then
N = 0. Finally, Y represents the total cost incurred by the
household, which is represented as the Poisson sum of the
gamma random variables, such that Y = R1+, . . . ,+RN.
Therefore, the resulting distribution may be called
Poisson-gamma distribution.

Dunn and Smyth (43) showed that the probability density
function for the Tweedie family can be represented as

logfp(y;µ,φ) =
{

−λ, for y = 0

− −y
ϒ−λ−logy+logW(y,φ,p)

, for y > 0
(2)

where ϒ = φ(p − 1)µp−1, λ = µ2−p

φ(2−p)
, and W is an example

identified by the Wright generalized Bessel function (44), which
can be expressed as

W(y,φ, p) =
∑

j = 1∞
y−jα(p− 1)αj

φj(1−α)(2−p)j!Ŵ(−jα)
(3)

where

α = (2− p)

1− p

with the mean of the Poisson-gamma given as µ and its variance
given by

Var[y] = φµp

.

Approximating Tweedie Densities Using
Saddle-Point Approximation
Various methods can be used to estimate a Tweedie density,
including saddle-point, inversion, and interpolation (43, 45). In
this study, we consider saddle-point approximation under the
generalized linear model (GLM) to estimate the starting values
for GEE.

A part of the density cannot be expressed in the closed part,
bp(y,µ), as seen in equation 1, but can be replaced by a simple
analytical expression, such that

p(y | µ,φ) = 1
√

2πφyp
exp

{−d(y,µ)

2φ

}

{

1+ ω(φ)
}

(4)

as φ → 0 for the Tweedie densities. The ratio is expressed as

ς = bp(y,φ)
√

2πφyp (5)

such that

fp(y | µ,φ) = 1

y
bp(1, ι)exp

{−d(y,µ)

2φ

}

(6)

where ι = φp−2, such that the ratio of the density to the
saddle-point is expressed as

ς = bp(1, ι)
√
2πι (7)

This shows that ς is a function of p and not µ, and is a function
of y and φ through ι.

Using the Chebychev interpolation method (46), we can
estimate any value of the parameter. The error is given by

f (x)− Pn(x) =
∏

1 = 0n(x− xi)
f (n+1)(̟ (x))

(n+ 1)!
(8)

FIGURE 1 | The profile log-likelihood plot for cost of outpatient care in Kenya using the Model 1 covariates. The solid line is a saddle-point approximation of the P

index from the data with a value of 1.68 and estimated 95% confidence interval [1.67,1.69].
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such that we can reduce the interpolation error by choosing xis
to minimize.

||w(x)|| = maxx ∈ [a, b]|
∏

1 = 0n(x− xi)| (9)

Data Analysis
We investigated the following set of six models to understand
the influence of covariates on predicting outpatient healthcare
expenses in Kenya.

1. logµ = β0 + β1age + β2wealthIndex + β3maritalStatus +
β4education

2. logµ = β0 + β1age+ β2wealthIndex+ β3education
3. logµ = β0+β1age+β2wealthIndex+β3maritalStatus+β4sex
4. logµ = β0 + β1age + β2wealthIndex + β3maritalStatus +

β4education+ β5sex
5. logµ = β0 + β1age+ β2wealthIndex
6. logµ = β0 + β1wealthIndex

Model 6 represents the wealth index as a predictor of outpatient
spending. The choice of its modeling lies in itsQICu value against
outpatient care spending, which is the lowest, as found by (32).
Model 5 controls for age and the wealth index. Age is found to
have a lower QICu value than that of other covariates. Therefore,
it is necessary to find its effect on the wealth index. Model 4
controls for age, the wealth index, marital status, education, and
sex of the household head. Model 3 controls for age, the wealth
index, marital status, and sex.Model 2 controls for age, the wealth
index, and education. Lastly,Model 1 controls for age, the wealth
index, marital status, and education.

In this study, we adopted a systematic approach to find the
most suitable model, since it was not possible to investigate
all possible outpatient cost models. First, a single predictor
was developed and the QICu value was examined for each
model. Second, models with the lowest QICu value were further
examined. Third, predictors were added successively in order
of importance, supported by the existing literature. Fourth, we
chose the model that fits the data adequately after comparing the
QICu values of the final models. We did not follow any specific
order while modeling the covariates.

To fit a Tweedie GLM to the outpatient cost data, we estimated
the variance power. This was achieved through the profile log-
likelihood function of themaximum likelihood estimation (MLE)
value corresponding to themost appropriate value of the variance
function p with the respective 95% CI. Owing to computational
difficulties associated with MLE, the variance parameter was
obtained by maximizing the log-likelihood function. However,
this was challenged by the presence of an infinity sum in the
probability function and non-trivial restrictions on the power
parameter space. Therefore, we fitted a cubic spline interpolation
through these computed points, which was estimated as 1.68
through the software. Figure 1 shows the Tweedie profile with
the estimated index parameter and the confidence interval for the
best fitted model.

All statistical analyses were performed using the R
programming language, version 3.6.3 (R Development
Core Team, Vienna, Austria) (47). P < 0.05 indicates
statistical significance.

TABLE 1 | Demographics of respondents (N = 11,130).

Variable Number Percentage

Sex of head of household

Female 4,142 37.21

Male 6,988 62.79

Relationship status

Single 1,251 11.24

Married 7,635 68.60

Separated 776 6.97

Divorced 1,468 13.19

Residence

Rural 7,032 63.18

Urban 4,098 36.82

Wealth Status

Poorest 2,075 18.64

Poor 2,202 19.78

Middle 2,469 22.18

Rich 2,559 22.99

Richest 1,825 16.40

Employment status

Employed 4,612 41.44

Not-employed 6,518 58.56

Education status

None 2,157 19.38

Primary 5,029 45.18

Secondary 2,883 25.90

Post-secondary 1,061 9.53

Smoker

Yes 886 7.96

No 10,244 92.04

Age of household head (Mean ± SD) years 45.57 (19.30) NA

RESULTS

A total of 11,130 households with heads above 18 years of
age were studied. Socio-demographic characteristics of the
respondents and their smoking status are shown in Table 1. The
mean age of the respondents was 45.57 years with a standard
deviation of 19.30 years. Themajority of the households (62.79%)
were male headed, married (68.60%), and residing in rural
areas (63.18%). Meanwhile, the majority of the heads had up to
primary education level (45.18%) or were unemployed (59.56%),
and very few were smokers (7.96%). The wealth status of the
households was evenly distributed across five quintiles from
poorest to richest.

Household members reporting any of health conditions
selected for this study are shown in Table 2. There were double
the number of people with hypertension (13.76%) compared to
those with respiratory problems (7.48%). While the fewest cases
were reported for cancer (0.67%), mental health (1.24%), and TB
(1.58%), there were similar numbers of those suffering from HIV
(4.19%), diabetes (4.20%), and asthma (5.83%).
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TABLE 2 | Any household member with the following conditions (N = 11,130).

Variable Number Percentage

Hypertension

Yes 1,532 13.76

No 9,598 86.24

Cardiac

Yes 232 2.08

No 10,898 97.92

Diabetes

Yes 467 4.20

No 10,663 95.80

Asthma

Yes 649 5.83

No 10,481 94.17

Mental Health

Yes 138 1.24

No 10,992 98.76

Cancer

Yes 75 0.67

No 11,055 99.33

HIV

Yes 466 4.19

No 10,664 95.81

Respiratory Illness

Yes 832 7.48

No 10,298 92.52

TB

Yes 176 1.58

No 10,954 98.42

TABLE 3 | Summary of total costs of outpatient care incurred by households from

the KHHEUS 2018.

Statistic Total cost ≥ 0 Total Cost > 0

by the household by the household

Minimum 0 0.01

Maximum 892.94 892.94

Mean 11.32 17.86

Median 1.69 6.35

Standard Deviation 32.07 38.90

Skewness 8.5 7.05

Characteristic of the skewness Right skewed Right skewed

Statistics were recorded for the survey month total cost ≥ 0 US$ (all households) and

survey month cost > 0 US$ (those who spend money on outpatient care only).

Table 3 summarizes the cost to non-users of outpatient
healthcare and continuous costs for users in a household.
Non-users do not spend money on outpatient care, while users
spend different amounts. Summary statistics when both cases
are analyzed together shows that users spend a minimum of
0.01 US$ and a maximum of 892.94 US$. The mean (SD) when
users and non-users are analyzed together is 11.31 (32.07) US$

& 17.96 (38.90) US$, respectively, with skewness of 8.5 and 7.05,
respectively, with the reference being the survey month.

The resulting output after incorporating theQICu criterion, as
explained in the six models, is shown in Table 4. The model with
the lowest QICu was chosen as the best model.

The best fitted model with the lowest QICu was Model 1. Its
coefficients and covariates can be expressed as

logµ = 6.61+ 0.01Age+ 0.04Poor+ 0.09Middle+ 0.41Rich

+ 0.59Richest− 0.04Married− 0.24Separated

− 0.22Divorced− 0.25Primary− 0.41Secondary

− 0.08Post-Secondary

where µ is the expected cost of outpatient care.
Age of the household head was found to be a significant

predictor of outpatient care expenses. A one-unit increase in age
results in an increase in healthcare spending by a factor of 1.01 (p
< 0.001). The cost of outpatient care was found to change with
age in a sinusoidal manner. Figure 2 shows the variation in total
cost of outpatient expenses for households with respect to age of
the household head during the survey period. A higher cost is
associated with higher age of the household head.

Outpatient care costs increase across the wealth quantile with
the rich and richest spending more, at 1.50 and 1.80, respectively,
than the poorest. Household heads with primary and secondary
levels of education spent less at 0.77 and 0.66, respectively, than
those who never attended school. The results are significant
at p= 0.05.

We conducted additional applications on certain probabilities
based on Dunn and Syth (43) to demonstrate the usefulness
of Tweedie distribution in modeling cost for outpatient care.
When 1 < p < 2, the Tweedie parameters (µ, p,φ) can be
parameterized into Poisson and gamma parameters (λ, γ ,α),
which can be used to provide estimates for comparison with other
outputs. This is given in the following equation

λ = µ(2−p)/φ(2− p)

γ = φ(p− 1)µ(p−1)

α = (p− 2)/(1− p)

where λ is the average expenses per month, γ is the shape of the
cost distribution when a household pays for outpatient care, and
α γ is the mean expenses per month.

Considering our best fitted model, the parameter index p
is 1.68, µ = exp(6.61) = 7.35 US$, and φ is 0.31 US$.
Reparameterizing to gamma and Poisson yields the predicted
mean cost expenditure per month, calculated as

λ = 7.35(2−1.68)

0.31(2− 1.68)
= 0.84

and
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TABLE 4 | Different model outputs with calculated QICu.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

QICu 976341.2 976874 977759.3 985834 978755 982713.3

Coefficient β̂ p β̂ p β̂ p β̂ p β̂ p β̂ p

(Intercept) 6.61 < 0.001 6.59 < 0.001 6.49 < 0.001 6.77 < 0.001 6.37 < 0.001 6.88 < 0.001

Age 0.01 < 0.001 0.01 < 0.001 0.01 < 0.001 0.01 < 0.001 0.01 < 0.001

Wealth index

Ref (Poorest)

Poor 0.04 0.64 0.05 0.59 -0.01 0.87 0.04 0.68 0.00 0.98 −0.02 0.85

Middle 0.09 0.32 0.09 0.34 0.00 1.00 0.09 0.29 0.00 0.96 0.02 0.82

Rich 0.41 < 0.001 0.40 < 0.001 0.30 < 0.001 0.41 < 0.001 0.31 < 0.001 0.31 < 0.001

Richest 0.59 < 0.001 0.58 < 0.001 0.53 < 0.001 0.61 < 0.001 0.53 < 0.001 0.42 < 0.001

Marital status

Ref (Single)

Married −0.04 0.63 0.00 1.00 −0.03 0.76

Separated −0.24 0.07 −0.15 0.25 −0.19 0.17

Divorced −0.22 0.07 −0.06 0.63 −0.12 0.35

Education

Ref (None)

Primary −0.25 < 0.001 −0.24 < 0.001 −0.27 < 0.001

Secondary -0.41 < 0.001 −0.38 < 0.001 −0.44 < 0.001

Post secondary −0.08 0.52 −0.05 0.70 −0.12 0.33

Sex

Ref (Male)

Female −0.16 < 0.001 −0.19 < 0.001

The model with the lowest QICu was selected as the best fitting model. In our case, Model 1 was selected as the most parsimonious model for predicting outpatient care cost among

households in Kenya using the KHHEUS 2018.

Bold values shows the least of QICu for the best model.

γ = 0.31(1.68− 1)7.35(1.68−1) = 19.09

finally

α = 1.68− 2

1− 1.68
= 0.47

The mean expenditure per household on outpatient care is αγ =
0.47 ∗ 19.09 = 8.97 US$.

Following Dunn and Smyth (43), the probability of incurring
zero cost on outpatient care by households (i.e., the probability of
not seeking outpatient care) is given by

Pr(Y = 0) = exp(−λ) = exp

[

− µ2−p

φ(2− p)

]

(10)

such that, the probability of zero outpatient care is given by
exp(−0.84) = 0.43, meaning that 43% of households did not
spend on outpatient care in any given month. Therefore, 57% of
households spent money on outpatient costs.

Finally, we investigated the deviance obtained from using
the two different link functions, as shown in Table 5. Using the
logarithmic link was appropriate, since it had lower deviance than
the default canonical link function.

DISCUSSION AND CONCLUSION

This study analyzed the responses of members of households who
attended outpatient facilities in Kenya in 2018; it investigated
the best predictors for outpatient care in correlation with
the household head characteristics. The best predictors were
obtained from the most parsimonious model with the lowest
QICu. Three key findings emerged: age of the household head,
education, and the wealth index were associated with spending
on outpatient care.

Households headed by older members were associated with
higher spending. This can partly be explained by the fact that
higher age could signify (1) the aged suffering from chronic
and serious illnesses that are expensive to treat, (2) more
members in the household needing these services, and (3) higher
incomes to pay for a service. This finding corroborates previous
evidence showing that out-of-pocket spending for outpatient
care increased correlatively with age in Kenya (40). Additional
evidence showed an increase in spending on healthcare among
the aged in emerging economies (48). Thus, the burden of
healthcare is higher in households headed by older people.
Another insight requiring further analysis is that households
headed by older people were also the respondents.

The rich and richest wealth quintiles spent more on outpatient
services than the poorest did. Similar results have been reported
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FIGURE 2 | Variations of mean cost for outpatients by household head age.

TABLE 5 | The residual deviance and degrees of freedom for a Tweedie GLM with

differing link functions using Model 1 covariates.

Link function Deviance DF

Logarithm 404663.6 11118

Canonical 404872.7 11118

in prior studies, where poor utility among the poor was observed
in Zimbabwe (49), south west Ethiopia (50), Brazil (51), and
in rural areas of Kenya (52). Spending on outpatient healthcare
could be influenced by financial health, which leads to choices
about where to seek care. Therefore, it is not surprising that
the rich and richest households reported higher costs. This is
possibly because the rich mostly seek care in private facilities
(7), which are expensive. Further evidence published in a
technical report on the findings of the KHHEUS survey showed
that per capita expenditure increased relative to wealth (per
capita expenditure for the rich was 23.58 US$, that for the
richest was 32.11 US$, and that for the poorest was 12.01
US$) (40).

Households that have heads with secondary and primary
education spent less on outpatient care than did those who
never went to school. Previous studies have found that per
capita expenditure on outpatient care by group was 15.20 US$
for those with primary education, 20.34 US$ for those with
secondary education, and 27.80 US$ for those who had never
attended school.

There is emerging evidence of a negative correlation between
education and self-medication (53). Self-medication could have
lower costs, as it is mostly associated with drug purchase over
the counter (54) for less complicated cases, such as headaches
and abdominal discomfort (55). Thus, those without education
may rely on facilities to diagnose their symptoms, thereby
incurring more expenses. A similar observation was observed in
Vietnam, that increased education reduced outpatient healthcare
utilization (56). It has been argued that an increase in education
could have positive impacts on health-related outcomes, such as
low risks of illnesses and healthier habits (57).

The results have significant practical implications for Kenya,
where much debate revolves around cushioning the public
from catastrophic spending. Most of the literature in Kenya on
determinants of catastrophic spending have critically considered
cash spending on both inpatient and outpatient care. For
example, the fourth round of the KHHEUS study found that four
times more out-of-pocket spending was witnessed in outpatient
than inpatient care (0.929 billion US$ against 0.253 billion US$,
respectively) (40).

There has been consistent effort by the government of Kenya
and development institutions, such as the WB, to reduce poverty
among citizens, so as to raise their socio-economic status and free
up household income to spend on healthcare (58). The inability
to pay the fees charged at a health facility is a hindrance to
Kenyans seeking care (59).

Outpatient spending has been a major source of catastrophic
spending in Kenya, and mostly has been paid from household
savings and income (60). Similar results have been recorded
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elsewhere in developing countries, such as India (61) and
Nepal (62). In Kenya, the debate centers on whether to
improve public facilities to make them more desirable
choices for healthcare treatment, or to provide insurance to
households so that members can seek care in either public
or private facilities (63). Therefore, policies targeting UHC,
especially healthcare affordability, should continue to be
implemented, as this would ease the burden of spending on
households and direct such resources elsewhere to improve
living standards.

This study has a number of limitations. Age is an endogenous
variable, and thus, its increase does not necessarily point to
severe disease, but could possibly be due to financial freedom
that comes with age. A clear analysis stratifying age with wealth
is necessary to decode this finding. However, since this work is
based on determining the overall best predictors of outpatient
spending, it is beyond the scope of this study. In addition,
this work focused on spending at the household level; it is
possible that most household spending was on the aged. An
individual analysis on specific age groups could help shed light on
this scenario.
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