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INTRODUCTION

In the last decade, polymyxins have been reintroduced in the therapeutic arsenal to treat severe
infections by carbapenem-resistant Enterobacterales. At that time, reports of polymyxin resistance
were all due to chromosomal mutations (1). These mechanisms included (i) modifications of the
lipopolysaccharides (LPSs) moiety via the addition of cationic groups; (ii) mutations that lead
to the loss of the LPS; (iii) porin mutations and overexpression of efflux pump systems; (iv)
overproduction of capsular polysaccharide (CPS) in some Gram-negative bacteria (GNB) that
hide the polymyxin-binding sites and the release of CPS-trapping polymyxins; and (v) enzymatic
inactivation of polymyxins (2). Although some chromosomal resistance mechanisms have been
studied since the 1960’s, it was in the late 1990’s, after the reintroduction of polymyxins in the
therapeutic arsenal, that this problem became more important (3). In fact, this information is
supported by the first report of colistin resistance among Acinetobacter baumannii clinical isolates
from the Czech Republic in 1999 and Klebsiella pneumoniae from Athens in 2004 (4).

However, in 2015, the mcr-1 gene, associated with IncI2-type plasmid, was identified in
Escherichia coli resistant to colistin obtained from food animals and humans in China (1).
This finding promoted a great concern in the international scientific community since the last
therapeutic option to treat serious infections by multidrug-resistant GNB could be exhausted.With
the horizontal transfer, the rapid spread of themcr-1 gene would be inevitable.

The mcr-1 gene carried by different plasmid types has already been identified in all five
continents from different sources and hosts (1, 5). Surprisingly, Shen and colleagues, in a
retrospective study, characterized the early occurrence of the mcr-1 gene in chicken isolates from
1980’s (6).

So far, a total of 10 different variants (7) of themcr gene have been described mainly among the
Enterobacterales, but with themcr-1 gene remaining the most prevalent (1). To date, the sequences
of 30mcr-1mutations (mcr-1.2 tomcr-1.30) have already been deposited in the GenBank database,
differing from mcr-1 by one or few amino acids. Besides that, 10 mcr gene variants (mcr-1 to mcr-
10) were deposited, with amino acid identity ranging from 31 to 83% (8). These variants were
identified at the beginning in Enterobacterales isolates, including E. coli (mcr-1, mcr-2, and mcr-
3 genes), Salmonella enterica (mcr-4, mcr-5 and mcr-9 genes), K. pneumoniae (mcr-7 and mcr-8
genes), and Enterobacter roggenkampii (mcr-10 gene). The exception is due to mcr-6 gene that
was first identified in Moraxella spp. After that, some variants were identified in non-fermenter
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Gram-negative rods, asAcinetobacter spp. (mcr-1 andmcr-4) and
Pseudomonas spp. (mcr-1 only) (9, 10).

In general, the isolates carrying mcr genes were first isolated
from animals such as pigs (mcr-1,mcr-2,mcr-3,mcr-4,mcr-6, and
mcr-8 genes) and chickens (mcr-5 and mcr-7 genes), but mcr-9
and mcr-10 genes were identified, for the first time, from human
patients (8).

EPIDEMIOLOGY OF POLYMYXIN
RESISTANCE

The resistance to polymyxins was attributed mainly to
chromosomal mutations and is rare in human clinical isolates
(0.67–1.6%) (11). Nevertheless, this differs among bacteria
species, being higher in K. pneumoniae and A. baumannii
(20–80%) (4) in contrast to lower rates in E. coli (0.2–0.6%) (11).

The polymyxin resistance rate associated to plasmid, as mcr-
1, is also low in humans (∼1%) (4). On the other hand,
according to a large US surveillance study, the association
between mcr-1 and other antibiotic resistance genes, such as
extended-spectrum β-lactamase (ESBL) and carbapenemases,
may reach 32% of prevalence in K. pneumoniae (11). Regarding
the mortality associated with infections caused by colistin-
resistant isolates in humans, the rate is variable, and it is higher
in critically ill patients (30–37%) including those previously
exposed to colistin (4). The mortality rate may reach 100%
in patients with nosocomial infections caused by pan–drug-
resistant K. pneumoniae.

It is important to emphasize that the prevalence ofmcr-1 gene
is higher among production animals, mainly in pig and chicken
isolates (5). The data show colistin resistance rates of ∼70% in
E. coli isolates from China and ∼90% among Enterobacterales
in some European countries (8). So, these data corroborate with
the scientific evidence that the worldwide spread of the mcr-1
gene is mainly associated with the large amounts of colistin use
in production animals, and its emergence is a particular threat to
public health as colistin is considered the last-resort antimicrobial
for treatment of severe human infections, and its use in livestock
production contributes to emerging resistance globally (1).

mcr-1 IN LATIN AMERICA

In Latin America, a systematic review analysis showed that the
prevalence ofmcr-1 gene is higher in isolates from animals (8.7%)
than in food (5.4%) and humans (2.0%) (12). To the best of
our knowledge, the first reports of mcr-1 gene in Latin America
dated from July and October 2012 when this gene was identified
in E. coli isolates from two inpatients in different hospitals in
Argentina (Table 1) (13). Patients presented neurological disease
and diabetes, and the mcr-1–positive isolates were obtained
from blood and urine, respectively. In this study, the authors
evaluated the presence of the mcr-1 gene in 87 colistin-resistant
clinical human isolates from 2008 to 2016 (28 E. coli, 19
K. pneumoniae, 36 of other members of the Enterobacterales,
and 4 non-fermenter Gram-negative rods), and nine isolates
of E. coli were mcr-1 positive. These isolates were associated

with human infections, mainly in males, and the average age of
the patients was 68.5 years. All mcr-1–positive E. coli isolates
were genetically unrelated as determined by pulsed-field gel
electrophoresis, and the resistance mechanism was horizontally
transferable by conjugation (13). Still, in 2012, other studies
reported mcr-1 harboring E. coli recovered from Kelp Guls in
Argentina (14) and from swine in Brazil (Table 1) (15).

Since 2012, the mcr-1 gene has already been identified in
bacteria from humans, animals, animal food products, and
environmental sources in different countries in Latin America,
including Brazil (15), Bolivia (16), Colombia (17), Chile (18),
Uruguay (19), Paraguay (20), Peru (21), Mexico (22), Venezuela
(23), and Ecuador (24). Brazil is the country with the highest
number of mcr-1–positive bacteria reported in Latin America
mainly from bacterial isolates obtained from poultry rectal swabs
(15) (Table 1).

It is important to consider that Brazil is the fourth largest pork
producer and exporter and the largest chicken meat exporter in
the world, which could contribute to the high prevalence of the
mcr-1 gene in this country (25). As in other countries, the colistin
was extensively used in Brazil as a growth promoter for many
years. In 2016, the government published restrictions on the use
of colistin in animal production (1, 26), which came into force in
2018. However, the use of colistin to treat or prevent infections in
veterinarymedicine including animal productions is still allowed.

E. coli is the most common species harboring the mcr-
1 gene in Latin America countries. However, many other
Enterobacterales members such as K. pneumoniae, Salmonella
spp., Citrobacter spp., and Enterobacter spp. were also reported
as positive for themcr-1 gene (17, 27). In addition tomcr-1, other
variants of the gene were reported rarely in Latin America, such
asmcr-3,mcr-5,mcr-7, andmcr-9 (28–30).

GENETIC CONTEXT AND DISSEMINATION
OF mcr-1 GENE

E. coli isolates harboringmcr-1 gene belong to different sequence
types (STs) (31, 32) (Table 1), indicating that the dissemination
of the mcr-1 gene is associated with different clonal strains (1).
Loayza-Villa and colleagues investigated the relationship between
an E. coli carryingmcr-1 recovered from the gastrointestinal tract
of a boy and an mcr-1–positive E. coli from fecal samples and
rectal/cloacal swabs from his domestic animals. E. coli strains
from domestic animals and from the boy were different; however,
all plasmids harboring the mcr-1 gene shared 90% nucleotide
identity and a highly conserved backbone, supporting the idea
of horizontal dissemination of themcr-1 gene (32).

In Latin America, the E. coli belonging to CC10 clonal
complex, known as the largest human clonal complex, was the
most reported in previous studies, including the ST744 and ST10
(1, 17, 22, 33). E. coliCC10 strains are widely disseminated among
humans, animals, meat products, and environmental sources
(34, 35) and are designated asmultidrug-resistant strains carrying
frequently ESBL, among others (5, 31).

The mcr-1 gene is carried by a wide range of conjugative
and non-conjugative plasmid types, including IncX3, IncX4, an
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TABLE 1 | Summary of mainly studies reporting mcr-1 gene in Latin America.

Period of

the study

Country Source of Isolate Total Isolates

(mcr-carried)

Species Plasmid Type Sequence Type (ST) Genetic Context References

2000–2016 Brazil Fecal samples-chicken and

swine (Production Animals)

515 (16) E. coli – – – (15)

2002–2016 Colombia Urine vaginal secretion blood

stool tissue right toe leg

secretion abdomen abscess

(Human)

513 (12) E. coli

S. enterica Typhimurium

K. pneumoniae

IncP-1 IncFII IncHI1

IncH

E. coli (ST10, ST37, ST101,

ST744, ST1263, ST3056,

and ST6627)

S. Typhimurium (ST34)

K. pneumoniae (ST307)

ISApl1-mcr-1-pap2 (IncP-1)

mcr-1-pap2 (IncP-1)

(17)

2008–2016 Argentina Urine, blood, abdomen,

abscess, bone (Human)

87 (9) E. coli – – – (13)

2012 Argentina Fecal samples - Kelp gulls

penguin (Wild Animal)

50 (5) E. coli IncI2 ST101 and ST744 ISApl1-mcr-1 (14)

2012–2018 Argentina Urine, blood, other samples

(Human)

192 (192) E. coli IncHI2

IncX4

ST10, ST156, ST354,

ST8492, ST5208

– (37)

2013 Bolivia Potatoes (Food) 83 (1) C. braakii IncI2 – – (16)

2013 Argentina Fecal samples–Chicken

(Production Animals)

10 (10) E. coli IncI2 ST155 (CC10: ST10,

ST1141 and ST1286),

ST617, ST10, ST410,

ST1011, ST1408

ISApI1-mcr-1.5-pap2- ISApI1 (33)

2013–2014 Ecuador Feces–chicken (Production

Animals)

176 (6) E. coli – – – (24)

2013–2016 Brazil Meat Poultry (Food) 60 (2) Salmonella enterica serovar

Schwarzengrund

IncX4 ST96 parA and hypothetical protein

upstream mcr-1 and pap2

downstream

(44)

2013–2017 Chile Urine (Human) 13 (1) E. coli IncI2 ST4204 (CC10) mcr-1 was delimited upstream

by a gene that encodes a pap2

protein and downstream by a

relaxase-encoding gene (nikB)

(18)

2014 Argentina Clinical samples - dogs and

cats (Pets)

54 (1) E. coli IncI2 ST770 mcr-1 was delimited upstream

by nikB gene which encodes a

relaxase and pap2 downstream

(31)

2014–2017 Brazil Pork carcasses (Food) 490 (8) S. enterica serovar

Typhimurium

IncX4 ST19

ST4556

ST50

mcr-1 was delimited upstream

by IS26 and hypothetical protein

and pap2 downstream

(26)

2015 Venezuela Fecal samples (Human and

Animal)

93 (2) E. coli IncI2 ST452 and ST19 Absence of ISApl1 (23)

2015 Mexico Swine stool samples

(Production Animal)

1 (1) E. coli Incp0111 ST744 ISApl1 upstream mcr-1 gene (22)

(Continued)
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TABLE 1 | Continued

Period of

the study

Country Source of Isolate Total Isolates

(mcr-carried)

Species Plasmid Type Sequence Type (ST) Genetic Context References

2015–2016 Brazil Rectal swab and urine (Human) 140 (2) E. coli IncX4 ST206 and ST354 mcr-1 was delimited upstream

by IS26 and hypothetical protein

and pap2 downstream

(46)

2016 Brazil Seawater (Environment) 11 (3) E. coli IncX4 – – (36)

2016 Ecuador Fecal swabs and soil

fecal from chicken and two

dogs (Domestic Animals)

42 (3) E. coli IncI2 ST3941, ST1630, ST2170 mcr-1 was delimited upstream

by nikB gene and pap2

downstream

(32)

2016 Brazil Rectal swab (Human) 3 (3) E. coli and K. pneumoniae IncX4 E. coli ST744 and

K. pneumoniae ST101

– (38)

2016 Bolivia Fecal samples (Human) 337 (173)
E. coli,

C. europaeus,

E. hormaechei

IncI2 and IncHI1 (E.

coli); Citrobacter and

Enterobacter ( IncI2)

E. coli (ST48, ST744, ST10,

ST206, ST2705, ST2936,

ST1286, ST7,570, ST69,

ST10, ST117, ST711,

ST7571, ST3056)

mcr-1-pap (IncI2)

mcr-1.5-pap ISApl1 (IncHI1)

ISApl1-mcr-1-pap-

ISApl1 (IncHI1)

(27)

2016–2017 Paraguay Urine and feces (Human) 150 (7) K. pneumoniae, E. coli, and

S. Schwarzengrund

– – – (20)

2017 Brazil Water Sample from a

mangrove (Environment)

1 (1) E. coli IncX4 – – (39)

2017 Uruguay Blood, rectal swab, and urine

(Human)

3 (3) E. coli IncI2 e IncX4 ST10, ST93, and ST5442 – (19)

2017 Peru Urine (Human) 10 (7) E. coli – – – (21)

2019 Brazil Fecal sample and Water from

Zoo (Wild Animal and

Environment)

27 (5) – – – – (28)

2020 Brazil Blood, urine, and peritoneal

fluid (Human)

100 (2) E. coli and K. pneumoniae IncX4 ST471/ST410 (E. coli) and

ST15 (K. pneumoniae)

– (29)

–: No data.
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IncX3–X4 hybrid, IncH1, IncHI1, IncHI2, IncP, IncI2, IncF,
IncFII, an IncI2–IncFIB hybrid, and IncY (5). The mcr-1 gene
can also be integrated into the chromosome of some strains
(17). However, in Latin America, only four plasmids have been
described so far: IncX4 (36), IncP (22), IncI2 (31), and IncHI2
(37), of which the IncX4 plasmid is the most frequent in Brazil
(38, 39) (Table 1). There is a clear association between the
IncX4 plasmids and the insertion sequences associated with the
dissemination of themcr-1 gene (40).

Plasmid analysis has revealed that the insertion sequence
ISApl1 (which belongs to the IS30 family transposase), in a
composite transposon (ISApl1-mcr-1-ISApl1), is usually present
in IncHI2-type plasmids (size of 200 kb), being either present or
absent in IncI2-type plasmids (60 kb), and completely absent in
IncX4-type plasmids (30 kb) (Table 1).

The role of ISApl1 in the mobilization of the mcr-1 gene was
demonstrated in vitro by transposition. It was suggested that the
recombination events associated with mobilization of the mcr-
1 gene were initially mediated by two copies of ISApl1 from an
unknown progenitor to a plasmid and subsequently transferred
to Enterobacterales (41).

Besides that, according to Snesrud et al., the presence of a
single or two copies of ISApl1 indicates a recent acquisition of
the mcr-1 gene, whereas the absence of this insertion sequence
could be correlated with the adaptation of the mcr-1 gene to a
new host (41).

The regulation mechanism of mcr-1 gene expression is
complex and remains unknown. In general, the gene expression
is controlled by its promoter and the corresponding activators
and/or inhibitors. Zhang et al. suspect that genes encoding
activators and/or inhibitors in the host chromosome may affect
the expression of the mcr-1 gene found on plasmids IncX4
and other plasmids. They may vary expressively in unlike
genetic backgrounds of the different strains and/or mcr-1–
harboring plasmids, despite that their promoters are remarkably
similar (42).

Although the mobility and dissemination of the mcr-1 gene
are associated with ISApl1 and the pap2 gene in most plasmid
types (43), the genetic context of the IncX4 plasmid type, in Latin
America, is different. This context is characterized by lacking the
ISApl1, but it preserves the pap2 sequence and a hypothetical
protein (hp) around the mcr-1 gene (26, 44). What would be the
explanation for that?

Snesrud et al. analyzed the genetic environment of the
mcr-1 gene associated or not with ISApl1 and concluded that
the target site duplications generated by ISApl1 transposition
are present even in lack of the ISApl1. This result suggests
that the mechanism to mobilize the mcr-1 gene is the same
as that observed in other plasmids, and after that, the loss
of the insertion sequence by recombination events in IncX4
occurs (45).

Furthermore, the IS26 mobile element upstream to the mcr-

1 gene has been also associated with IncX4 plasmid types in
Brazil, but there are no other reports in Latin America (26, 46)
(Table 1). This Insertion Sequence (IS) plays an important role

in the dissemination and evolution of the antimicrobial resistance
genes on plasmids, including colistin resistance genes (1).

DISCUSSION

In veterinary medicine, colistin is mainly administrated in pigs
and poultry production, for prophylaxis or treatment. The spread
of colistin resistance may lead to treatment failure, as well
as increase the pathogen transmission reach with quality and
economic loss in production animals.

Strong scientific evidence indicates that the mcr-1 gene might
have originated from animals because (i) colistin has been
used extensively for decades in veterinary practices; (ii) mcr-1
gene was largely identified in several animals and animal food
products; (iii) the identification of themcr-1 gene in E. coli isolate
recovered before 1980 in China suggests that the emergence
of this gene may be linked to the use of colistin as a growth
promoter in the poultry industry; and (iv) genetic features
of mcr-1 gene associated with ISApl1 were first identified in
Actinobacillus pleuropneumoniae, a common animal pathogen
(43), which could be involved in recombination events leading
to the mobilization of themcr-1 cassette.

Finally, a recent study has demonstrated that when colistin
is banned from use in animal feed, there was a significant
decrease of themcr-1 gene prevalence in most sources, including
pig farms, food, and environment samples (47). Given that the
production animals can be a reservoir for mcr-1 gene and its
dissemination can occur by food and environment, all countries
should apply surveillance, monitoring, and restrictive measures
to polymyxins use. In Latin America, Brazil, and Argentina (1)
have already banned the use of colistin as a growth promoter, but
the impact of this measure has not been evaluated yet.

The problem of antimicrobial resistance is related to the
use and abuse of antibiotics in humans, animals, and the
environment. Besides that, themcr-1 gene is disseminatedmainly
by E. coli clones, with a high capacity to survive in different
ecological niches, some of them with pandemic and epidemic
potential. So, it seems clear that the One Health approach should
be adopted to integrate veterinary and human medicine to
address antimicrobial resistance.
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