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Understanding tuberculosis (TB) transmission chains can help public health staff

target their resources to prevent further transmission, but currently there are

few tools to automate this process. We have developed the Logically Inferred

Tuberculosis Transmission (LITT) algorithm to systematize the integration and analysis

of whole-genome sequencing, clinical, and epidemiological data. Based on the work

typically performed by hand during a cluster investigation, LITT identifies and ranks

potential source cases for each case in a TB cluster. We evaluated LITT using a diverse

dataset of 534 cases in 56 clusters (size range: 2–69 cases), which were investigated

locally in three different U.S. jurisdictions. Investigators and LITT agreed on the most

likely source case for 145 (80%) of 181 cases. By reviewing discrepancies, we found

that many of the remaining differences resulted from errors in the dataset used for the

LITT algorithm. In addition, we developed a graphical user interface, user’s manual,

and training resources to improve LITT accessibility for frontline staff. While LITT cannot

replace thorough field investigation, the algorithm can help investigators systematically

analyze and interpret complex data over the course of a TB cluster investigation.

Code available at: https://github.com/CDCgov/TB_molecular_epidemiology/tree/1.0;

https://zenodo.org/badge/latestdoi/166261171.

Keywords: tuberculosis, whole-genome sequencing, transmission, genomic epidemiology, cluster investigation

INTRODUCTION

Public health investigations now routinely use phylogenetic analysis of whole-genome sequencing
(WGS) data to help characterize infectious disease transmission (1, 2). By identifying chains
of recent Mycobacterium tuberculosis (Mtb) transmission, health officials can detect and treat
additional cases of tuberculosis (TB) disease, identify contacts with latent TB infection for
preventive therapy, and target populations and settings where transmission may have occurred
for additional public health interventions. Thus, identifying potential source cases can help public
health staff to determine the best way to use limited resources to prevent further transmission.
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However, cases in the same chain of transmission often have
Mtb strains that are genetically indistinguishable or very similar
(3). Therefore, WGS data must be considered within clinical
and epidemiologic contexts to reliably infer TB sources and
directionality of transmission. This is generally done manually
by frontline investigators, which can be time consuming
and inefficient.

Several algorithms have been published to infer transmission
chains from WGS and epidemiologic data, including SeqTrack
(4), outbreaker (5), Structured Coalescent Transmission Tree
Inference (SCOTTI) (6), TransPhylo (7), and phybreak (8).
Although their flexible designs allow for diverse applications
across many pathogens, these algorithms rely heavily on
complete sequencing data and genomic diversity among isolates.
This reliance makes them less applicable to Mtb, which can
have relatively low mutation rates (9) and less genomic diversity,
while excluding cases that do not have sequence data. These
algorithms also generally rely on sample collection dates that
are not necessarily representative of transmission timing in the
context of TB because TB patients can have long periods of
latent infection or undiagnosed TB disease. In addition, cases
in young children (<10 years old) and cases with exclusively
extrapulmonary sites of disease are typically not considered
contagious (10), and should not be designated as source cases,
but these algorithms have no methods to treat certain cases as
unlikely to transmit. Furthermore, they cannot make predictions
for cases that do not have sequencing data. For example, over 20%
of cases in the United States do not have WGS available because
they are culture-negative (11).

We developed the Logically Inferred Tuberculosis
Transmission (LITT) algorithm, which is based on the logic
and methods applied by expert U.S. state and local TB control
program staff in the field, to evaluate evidence and make
inferences during investigations of Mtb transmission events.
Once data are compiled, LITT runs quickly (<60 seconds on a
laptop analyzing a large dataset). Here we describe how LITT
integrates WGS, clinical, and epidemiologic data to identify
and rank potential source cases (from most to least likely to be
the source) for cluster investigations. We evaluated LITT using
retrospective data from diverse transmission circumstances
in multiple high-burden jurisdictions in the United States.
We then reviewed discrepancies when LITT predictions for
source cases did not match presumed source cases identified by
TB investigations.

METHODS

Data Compilation
We used available molecular and epidemiologic data from
56 clusters that were investigated between 2011 and 2019

Abbreviations:CDPH, California Department of Public Health; CDC, Centers for

Disease Control and Prevention; IA, infection acquisition; IP, infectious period; LA

DPH, Los Angeles County Department of Public Health; LITT, Logically Inferred

Tuberculosis Transmission; Mtb, Mycobacterium tuberculosis; NYC DOHMH,

New York City Department of Health and Mental Hygiene; SCOTTI, Structured

Coalescent Transmission Tree Inference; SNP, single nucleotide polymorphism;

TB, tuberculosis; TST, tuberculin skin test; WGS, whole-genome sequencing.

by the California Department of Public Health (CDPH),
the Los Angeles County Department of Public Health (LA
DPH), or the New York City Department of Health and
Mental Hygiene (NYC DOHMH). These clusters ranged
from two to 69 cases, represented a range of transmission
scenarios, and were split into a training set (30 clusters) to
develop the algorithm and a test set (26 clusters) to assess
performance. Clusters were defined by the investigators and
included cases with matching or similar genotype results
or an epidemiologic relationship to a genotyped case if no
genotype was available. The presumed source case was defined
as the most likely source identified by the investigation.
Using standardized definitions defined by local investigators,
we recorded epidemiologic links between patients based
on close associations or shared locations. The strength of
these epidemiologic links (i.e., definite, probable, or possible
based on pre-established definitions) were also recorded
(Supplementary Table 1). We summarized WGS results in a
single nucleotide polymorphism (SNP) matrix, which indicates
the number of base-pair differences between each pair of isolates
in the cluster. See Appendix 1.1 in Supplementary Material for
additional details.

For adult patients with pulmonary or laryngeal TB, we defined
infectious period (IP) start dates as the IP start date recorded
in the investigation records, if available; otherwise, we used 3
months before the earliest date that we could determine the
patient had TB (using available surveillance and investigation
data), which is based on U.S. Centers for Disease Control
and Prevention (CDC) guidelines (10). We used the IP end
date from the investigation records, if the local program had
calculated this date. Otherwise, we calculated an IP end date
as 2 weeks after treatment start date, if available. Because
patients with exclusively extrapulmonary TB (not including
laryngeal TB) and pediatric TB cases typically are not infectious,
LITT also calculates an infection acquisition (IA) period to
define a time window when a given case could have been
infected, such as date of birth or date of arrival in the
United States for persons born outside of the United States.
See Appendix 1.2 in Supplementary Material for more details
on date calculations. CDC and the involved public health
departments determined that this project did not constitute
human subjects research and did not require Institutional Review
Board approval.

LITT Algorithm
For each given case, LITT evaluates all other cases in a
cluster as potential source cases and outputs a filtered,
ranked list of potential source cases (Figure 1). Briefly,
LITT first filters out any case that does not meet the
following four criteria (i.e., could not logically be the
source case):

1) Genetic distance: have an Mtb isolate within 5 SNPs
of the given case’s isolate, or, if no SNP distance is
available, have an epidemiologic link or shared risk factor
(e.g., homelessness),

2) Disease site: have an infectious form of TB disease,
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FIGURE 1 | Schematic overview of Logically Inferred Tuberculosis Transmission (LITT) algorithm. LITT picks one case to be the given case then looks at all other

possible source cases in the cluster (cases A–I). First, LITT filters out cases that could not be a source (cases C, E, F, and H) based on genetic distance between

isolates (i.e., distance in single nucleotide polymorphisms, or SNPs), a non-infectious disease site (i.e., extrapulmonary disease), sequential timing (i.e., cases with

infectious periods after given case), and young age (i.e., typically non-infectious). Next, LITT scores the remaining cases and ranks these cases as potential sources by

numeric score (Table 1, Appendix 1 in Supplementary Material). LITT then repeats this process for each given case in the cluster.

3) Sequential timing: be infectious before the earliest known time
a given case had TB disease and after the IA start, and

4) Age: be a patient with pulmonary capacity capable of
transmitting Mtb, defined as a patient who is at least 10 years
old at the time of TB diagnosis (10).

For any remaining potential sources, LITT assigns each source
case a score based on four criteria (Table 1):

1) SNP rating: the number of SNPs between isolates for the
source and given case,
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TABLE 1 | Logically Inferred Tuberculosis Transmission (LITT) scoring system used to rank potential tuberculosis (TB) source cases*.

Criteria Score Relationship between given and potential source case characteristics

SNP rating 0 0 SNP difference between Mycobacterium tuberculosis isolates

1 1 SNP difference between M. tuberculosis isolates

2 2 SNP difference between M. tuberculosis isolates

3 3 SNP difference between M. tuberculosis isolates

4 4 SNP difference between M. tuberculosis isolates

5 5 SNP difference between M. tuberculosis isolates

Missing No SNP data available

Infectiousness rating 0 Source case has cavitary disease on chest radiograph regardless of sputum smear microscopy results

1 Source case has no evidence of cavitary disease on chest radiograph, but positive sputum smear microscopy

5 Source case has no evidence of cavitary disease on chest radiograph, and negative sputum smear microscopy

Disease timing rating 0 Source IP start date is before given case IP start date and source IP end < 2 years before given case IP start date

1 Source IP end date ≥2 years before given case IP start date

2 Source IP start date after given case IP start date (but passes sequential timing filter)

Epidemiologic and shared risk factor rating 0 Definite epidemiologic link

1 Probable epidemiologic link

2 Possible epidemiologic link

2–3 No epidemiologic link but shared risk factor (e.g., shelter, substance use)

3 No epidemiologic link or shared risk factor

*For each potential source of a given TB case, LITT assigns a value for the SNP rating, infectiousness rating, disease timing rating, and epidemiologic and shared risk factor rating.

These ratings are summed to create the score (total score uses all four; without-SNP score uses all but the SNP rating), which is used to rank the potential sources. Note that lower

scores indicate a higher likelihood of being a potential source for each given case. See Appendix 1.4 in Supplementary Material for more details on scoring.

SNP, single nucleotide polymorphism; IP, infectious period.

2) Infectiousness rating: source case’s degree of infectiousness
based on the presence or absence of acid-fast bacilli noted on
sputummicroscopy or cavitation noted on a chest radiograph,

3) Disease timing rating: timing of cases’ infectious periods, and
4) Epidemiologic and shared risk factor rating: epidemiologic

relationships between source and given case (strength of link),
or shared risk factors (e.g., homelessness) that are relevant to
the cluster.

Appendix 1 in Supplementary Material describes LITT filtering
(Appendix 1.3) and scoring (Appendix 1.4), with an example
(Appendix 1.5), in more detail. LITT sums the four ratings for
each potential source case to calculate a total score. The score
is designed inversely so that the lower the value, the more likely
that case is the presumed source from the investigation for the
given case. A total score cutoff ≥8 is used to filter out unlikely
potential source cases (based on analysis of the investigation
presumed sources; Appendix 1.6 in Supplementary Material).
The remaining potential sources are ranked from most to least
likely for the given case (i.e., lowest to highest total score), and
categorized as high, medium, or low likelihood of being the
source, based on an analysis of the investigation presumed source
scores (Appendix 1.4 in Supplementary Material). If no SNP
distance is available for the given case-potential source pair (i.e.,
one or both do not have WGS data), a “without-SNP” score
is calculated and used to rank the potential source. LITT then
repeats the algorithm with the next case in the cluster being
defined as the given case. This procedure is repeated for all
remaining cases in the cluster. Note that LITT can evaluate
clusters where some cases have WGS data while some (or all)
do not.

LITT Evaluation and Detailed Review
We started with a comparative evaluation of previously published

algorithms (4–8) and LITT, as applied to the largest cluster in the

dataset (details in Appendix 2 text in Supplementary Material).

To further evaluate LITT, we then applied LITT to the full
dataset from the cluster investigations (see Data Compilation
above). We used the presumed source cases identified by
investigators as our gold standard in comparison with the most
likely source case identified by LITT or the other algorithms
(see Supplementary Figure 1B for distribution of presumed
source determinations among clustered cases). If the presumed
source from the investigation was ranked first by LITT, we
considered the algorithm in agreement with investigators, even
if LITT identified another potential source that was tied
for first. Likewise, for given cases with multiple presumed
sources identified by investigators due to uncertainty during the
investigation, as long as one of the presumed sources was ranked
first by LITT, we also considered this as an agreement.

We also performed a detailed review for cases in the
three clusters investigated by CDPH and local partners.
Detailed reviews were conducted for any given case where: (a)
LITT identified a different most likely source case from the
investigation records, (b) LITT and the investigation agreed on
a most likely source, however, LITT found an additional case
that was equally qualified to be the most likely source case, (c)
the investigation identified multiple presumed source cases but
LITT ranked one above the other, (d) the investigation identified
a source case but LITT did not, or (e) the investigation did
not identify a source case but LITT did. For each scenario,
we reviewed all available investigation data and classified each
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FIGURE 2 | Comparison of the Logically Inferred Tuberculosis Transmission (LITT) algorithm’s predicted source cases to presumed sources identified by local

investigators for all 56 TB clusters. Shown here are all cases in all clusters. Supplementary Figure 3 splits the results by whether the cluster was in the training or

test set. *Presumed source cases of Mycobacterium tuberculosis transmission identified by public health investigations conducted by the California Department of

Public Health, Los Angeles County Department of Public Health, New York City Department of Health and Mental Hygiene, and their partners.

difference as confirming or refuting the LITT prediction, or as
lacking sufficient data for classification.

Code Availability
A LITT user’s manual, training (mock) datasets, training
presentation, input file templates, and all code written in R (12)
are available at: https://github.com/CDCgov/TB_molecular_
epidemiology. In addition, CDC’s Office of Advanced Molecular
Detection (OAMD) has LITT running as an R Shiny application
(Supplementary Figure 2) on the OAMD Portal, which is
available at: https://amdportal-sams.cdc.gov/portal/. Access
requests can be sent to TBGenotyping@cdc.gov.

RESULTS

LITT Evaluation
In the comparative evaluation of LITT and previously published
algorithms (4–8), we ran each algorithm on our largest cluster
three times with the same settings (to assess reproducibility of
the findings given that several algorithms use random sampling
from a posterior distribution) and compared the results with
the presumed sources from the investigation. We found that
LITT identified the same most likely source case in each of three
evaluation runs and identified the same most likely source as

investigators for 17 (89.5%) of 19 cases in a large cluster (n =

69 total cluster cases). This finding contrasted significantly with
evaluation findings for the next best algorithm, SCOTTI, which
identified the same most likely source as investigators for an
average of 3.3 (17.5%) cases but also identified different sources
for two cases in different evaluation runs with the same settings
(Supplementary Table 2).

We then applied LITT to 56 clusters composed of 534 cases
(cluster size range: 2–69 cases, Supplementary Figure 1),
of which 181 (34%) cases had at least one presumed
source case identified by local investigators (Figure 2,
Supplementary Figure 3). When at least one presumed
source case was identified, the given case of interest was more
likely to be U.S.-born (61%) and, by design, have at least one
epidemiologic link identified (99%) compared to cases that did
not have a presumed source identified (38 and 45%, respectively)
(Table 2). All pediatric cases had a presumed source identified
by local investigators, reflecting the source case investigations
commonly performed for pediatric cases, while as cases got older,
the proportion with a presumed source case decreased. WGS was
available for all clusters, but 32 (57%) of 56 clusters were missing
WGS data on at least one case.

Of the 181 cases with a presumed source case identified by
the investigation, LITT ranked the presumed source first for
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TABLE 2 | Select demographic and clinical characteristics of 534 tuberculosis

cases in 56 clusters – California, Los Angeles County, and New York City,

2011–2019.

Characteristic Given cases with no

presumed source

(n = 353)*

Given cases with at

least one presumed

source (n = 181)*

Age group (years)

0–9 0 (0%) 29 (16%)

10–24 52 (15%) 43 (24%)

25–44 115 (33%) 63 (35%)

45–64 137 (39%) 30 (17%)

65+ 49 (14%) 16 (9%)

Sex

Female 108 (31%) 71 (39%)

Male 245 (69%) 110 (61%)

Place of birth

United States 135 (38%) 110 (61%)

Other country 217 (61%) 71 (39%)

Unknown 1 (0%) 0 (0%)

Race/ethnicity

Hispanic 166 (47%) 87 (48%)

Non-Hispanic Asian 81 (23%) 38 (21%)

Non-Hispanic Black 80 (23%) 35 (19%)

Non-Hispanic White 18 (5%) 20 (11%)

Multiple/Other 4 (1%) 1 (1%)

Unknown 4 (1%) 0 (0%)

Sputum smear microscopy

Positive 229 (65%) 86 (48%)

Negative 111 (31%) 63 (35%)

Unknown 13 (4%) 32 (18%)

Evidence of cavitary disease

on chest radiograph

Cavitary 91 (26%) 39 (22%)

Non-Cavitary 231 (65%) 117 (65%)

Unknown 31 (9%) 25 (14%)

HIV Status

Positive 29 (8%) 1 (1%)

Negative 252 (71%) 150 (83%)

Unknown 72 (20%) 30 (17%)

Whole-genome sequencing

(WGS) data available

292 (83%) 144 (80%)

Symptom onset or infectious

period start data ascertained

from investigation

272 (77%) 118 (65%)

Has at least one epidemiologic

link**

158 (45%) 179 (99%)

*Having a presumed source indicates that the local investigation identified a most likely

presumed source for a given case. Investigations were conducted by the California

Department of Public Health, Los Angeles County Department of Public Health, New York

City Department of Health and Mental Hygiene, and their partners.

**In total there were 490 epidemiologic links identified (233 definite, 93 probable, and 164

possible epidemiologic links).

145 (80.1%) cases (Figure 2). An additional 14 (7.7%) of the
investigation presumed sources were ranked second or third by
LITT (i.e., LITT agreed with the investigation that these cases

could be a source but identified other more likely potential source
cases). The remaining 22 cases had their presumed source filtered
out by LITT. Twelve (55%) of these 22 filtered presumed source
cases had large SNP distances (median 7; range 6–59 SNPs).
The investigation generally identified these cases as the most
likely source beforeWGS results were available. Another six cases
were filtered because of data discrepancies, such as inconsistent
date or site of disease. The remaining four filtered cases were
not included in the analysis because data were incomplete (e.g.,
missing timing of disease). In addition, LITT was able to identify
at least one potential source case for 139 of the 353 cases that
had no presumed source case identified by local investigators.
The remaining 214 cases had no source identified by either
the investigators or LITT. These cases were included in the
investigation because of their genotype, but were then excluded
by WGS results (SNP distance >5 from any other case in the
cluster), or had no WGS and no epidemiologic links to tie
them to another case in the cluster. Thus, taken together, there
was high concordance (80%) between the LITT predictions and
the investigation presumed source cases when sufficient data
were available.

The presumed sources identified by investigators had
significantly lower total LITT scores (median total LITT score:
2) compared to other potential sources identified by LITT
(median total LITT score: 8) (Wilcoxon rank sum test, p-
value: < 0.0001) (Figure 3A). Lower LITT scores indicate the
potential source is more likely to be source for the given
case. Likewise, the investigation presumed sources also had
significantly lower without-SNP LITT scores (median without-
SNP LITT score: 1) compared with other potential sources
identified by LITT (median without-SNP LITT score: 5) (p-value:
<0.0001) (Figure 3A). Furthermore, potential sources with lower
scores were more likely to be identified by investigators as
the most likely source (Figure 3B). Based on these results,
we categorized total score and without-SNP score values into
high, medium, and low likelihood to help LITT users prioritize
potential sources for investigation and public health action
(Appendix 1.6 in Supplementary Material).

Detailed Review
We were interested in better understanding the differences
between the LITT and investigation results, so we performed a
detailed review of all 111 cases associated with the three clusters
investigated by CDPH (Figure 4). Of these cases, LITT and the
local investigators agreed on the most likely source case for
45 (41%) cases. Nineteen (17%) had no source case identified
by either LITT or investigators, and 13 (12%) had insufficient
data on the presumed source case identified by investigators to
corroborate or refute the most likely source identified by LITT.
The detailed review focused on the remaining 34 (31%) cases.

Of the remaining 34 cases with a different source case
identified and sufficient data for review, two (6%) cases had
an investigation presumed source who resided outside the
United States. These presumed source cases were not eligible
for consideration by LITT because of lack of additional data,
such as the timing of when they were infectious, site of disease,
and infectiousness (Figure 4C). The detailed review also refuted

Frontiers in Public Health | www.frontiersin.org 6 June 2021 | Volume 9 | Article 667337

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Winglee et al. Logically Inferred Tuberculosis Transmission (LITT)

FIGURE 3 | Frequency distributions of the Logically Inferred Tuberculosis Transmission (LITT) algorithm’s scoring for TB given case-potential source pairs by local

investigation presumed source determinations. Presumed source cases of Mycobacterium tuberculosis transmission identified by public health investigations

conducted by the California Department of Public Health, Los Angeles County Department of Public Health, New York City Department of Health and Mental Hygiene,

and their partners. Data were subset from all 873 potential sources that passed LITT’s filters for 177 given cases that had an investigation presumed source in the data

set (presumed sources for four given cases had insufficient data). See Table 1 for LITT scoring system. (A) The LITT total scores (left) or without-SNP scores (right) by

case pair status, where “investigation presumed source pairs” indicate presumed sources identified by the investigation and “other pairs” indicate all other potential

sources that passed LITT’s filters (Wilcoxon rank sum tests, p-values < 0.0001). (B) The LITT total score (left) or without-SNP score (right), where points indicate the

proportions of pairs with that score that were presumed source pairs identified by local investigation. Bars indicate 95% confidence intervals calculated assuming

point estimates were binomially distributed. Point shapes indicate the likelihood category assigned to each score (i.e., high, medium, or low likelihood, or filtered).

LITT’s most likely sources for 13 (38%) and corroborated LITT’s
sources for 17 (50%) of 34 cases. Another two cases each had two
sources identified by LITT, one that was corroborated and one
that was refuted by the review.

Among the 13 source cases identified by LITT that were
refuted upon further review, six were the result of data entry
errors (missing or improperly labeled epidemiologic links, or
incorrect dates). Three additional LITT-identified source cases
were refuted because of tuberculin skin test (TST) history. The
three given cases associated with these sources had documented
TST conversions from negative to positive before LITT’s most
likely source was infectious. Three additional case reviews refuted

LITT because of patient characteristics that were not considered
strong enough to be an epidemiologic link for inclusion in
the LITT dataset (e.g., two cases in persons who lived in
the same small neighborhood). However, these three presumed
source cases were listed as potential sources and ranked second
by LITT. One other case was refuted because the given case
occurred in a person who first arrived in the United States
after the infectious period of LITT’s most likely source. After
this review, we added the infection acquisition start to the
LITT algorithm (Appendix 1.2 in Supplementary Material).
In addition to these 13 cases, two cases each had two most
likely source cases identified by LITT; the review corroborated
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FIGURE 4 | Detailed review of most likely TB source cases predicted by the Logically Inferred Tuberculosis Transmission (LITT) algorithm vs. presumed sources

identified by local investigation. In the analysis of discrepancies, 111 given cases associated with three clusters were included. Presumed source cases of

Mycobacterium tuberculosis transmission were identified by public health investigations conducted by the California Department of Public Health and their partners.

(A–C) Transmission networks for three TB clusters. Each circle represents a case in the LITT dataset; squares indicate cases not in the LITT dataset (i.e., insufficient

data on disease timing and clinical characteristics). Arrows point from a source case identified by LITT and/or the investigation to a given case. Solid arrows point from

the most likely source predicted by LITT to the given case. Black solid arrows indicate that the source case was also determined to be the most likely by the

investigation. Dashed arrows indicate the source case was determined to be the most likely by the investigation, but not by LITT. A detailed review was performed

when the most likely source case predicted by LITT was different than the presumed source case determined by the investigation (i.e., all arrows except the black

arrows). The arrows are colored by detailed review results. Gold: review corroborated LITT or refuted the investigation in favor of LITT; red: review refuted the most

likely LITT source or corroborated the investigation source over LITT; and gray: inconclusive detailed review (i.e., insufficient data to corroborate or refute). Blue dashed

lines indicate possible connections from cases not in the LITT dataset. (D) Aggregate summary of detailed review findings combining cases from the three clusters.

Relative numbers of given cases in each category are included by the same color code (see legend). In other words, the color of the arrows (solid or dashed in (A–C)

going in to the given case corresponds where that given case was counted in the pie chart, with the exception of the pink wedge, which corresponds to given cases

having two LITT potential sources, one of which was refuted (red) and the other was identified by the investigation (black).
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one of the source cases while refuting the other based on
TST history.

Of the 17 cases where the detailed review corroborated LITT,
seven initially had no source identified by the local investigation,
but the detailed review agreed with LITT’s most likely source
case. The 10 other cases had an initial source assessment made,
but the presumed source identified had not been updated as new
data became available that contradicted this designation, such as
WGS results or updated infectious periods.

DISCUSSION

The field of molecular epidemiology for investigating recent TB
transmission is rapidly evolving, with WGS increasingly being
used in public health practice to detect clusters and identify and
characterize recent transmission (13–16). However, analysis and
use ofWGS, such as SNP cutoffs, is still not standardized (17, 18).
WGS can be used to rule out transmission, but cannot be used
alone to determine if direct transmission occurred, especially
when there is low genetic diversity (19, 20). In addition, it cannot
be used to infer direction of transmission without additional
data. Fully understanding TB transmission requires not just an
analysis ofMtb sequences, but also integration of the clinical and
epidemiological characteristics of the patients (21, 22).

We initially conducted a literature review to identify candidate

algorithms that infer transmission chains from sequencing

and clinical data. Our TB-specific comparative evaluation of
published algorithms (4–8) found low agreement between
predicted and presumed source cases identified locally in an
investigation of a large TB cluster with low genetic diversity.
Furthermore, the variability between runs (except for SeqTrack)
may make these algorithms impractical for use in public health
decision-making during active investigations because differing
outputs could be difficult to reconcile for use in guiding
public health interventions. In contrast, LITT outputs were
highly concordant with source cases identified locally during
an investigation, with LITT and the investigation agreeing on
the same most likely source 80% of the time; many of the
discrepancies were due to specific data issues. Taken together,
LITT agreed with investigation presumed sources more than
other methods. This difference most likely results from the fact
that LITT is based on field investigation work and incorporates
much more information, such as clinical data, infectious periods,
and known epidemiologic links, than other algorithms. The
other algorithms include only WGS and sample collection date
with parameter estimates for timing of illness. Thus, LITT is a
novel approach to automating transmission detection. The LITT
algorithm provides a standardized method for integrating WGS,
clinical and epidemiological data in order to infer directionality
ofMtb transmission (i.e., chains of transmission) by generating a
filtered and ranked list of potential sources for every given case in
the cluster.

We validated the LITT algorithm retrospectively using data
from 56 cluster investigations, which represented a diverse
range of cluster sizes and transmission circumstances. These
clusters come from three high burden U.S. jurisdictions with
densely sampled sequencing results. Future follow-up work could

include validating LITT’s performance prospectively with larger
sample sizes and other cluster or outbreak settings. Furthermore,
although the investigation presumed sources were used as a gold
standard, these determinations have some uncertainty and can
be prone to human error (23). For example, 12 investigation
presumed source cases were refuted by large SNP differences that
became apparent after the investigation once WGS data were
available. Also, some predictions could not be validated because
the local investigation had not identified a source. These cases
generally occurred earlier in the cluster and were not prioritized
for investigation. However, the fact that LITT was able to identify
a most likely source for 39% of cases that did not have an
investigation presumed source allows investigators to consider
additional potential transmission chains. There is no guarantee
that the investigation presumed sources are the true source cases,
just that they are the most likely source given available data. Some
amount of imprecision may be acceptable, however, as a primary
goal of investigation may be to make overall inferences about
transmission at the cluster (not patient) level.

LITT is meant to facilitate the analysis of investigation data
and cannot replace a thorough field investigation. One limitation
of LITT is that it will not detect missing cases. If the true source
for a given case is not in the dataset, LITT may incorrectly
identify another case as a potential source. However, LITT does
not assume that all cases in the input dataset are part of the
same chain of transmission and does not require that all patients
have a sequenced isolate. Therefore, it may predict multiple
transmission chains or cases without any potential sources. These
scenarios are indications that there may be additional cases that
have yet to be identified. Likewise, LITT will not detect missing
epidemiologic links, which is an important consideration because
links were particularly discriminatory for the investigators when
they identified presumed sources (i.e., almost all cases with a
presumed source had at least one epidemiologic link). However,
LITT can consider shared risk factors, which are user-defined and
often reflect additional data from the investigation, and LITT
can be run with and without epidemiologic links to compare
how epidemiologic links that are currently known influence the
putative transmission network. We have found that in clusters
with relatively few or no known epidemiologic links and low SNP
diversity, potential source rankings will be driven only by the
estimates of disease timing and infectiousness of cases, resulting
in predictions that are difficult to validate. Thus, epidemiologic
relationships are a crucial part of the LITT analysis.

In fact, as with all algorithms, the completeness and accuracy
of input data will determine LITT’s performance in identifying
a potential source case. For example, if an infectious period is
miscalculated, which often happens due to recall bias from self-
reported symptoms, the true source may be ruled out. However,
due to LITT’s rapid run-time, users can compare results with
different infectious period lengths when there is uncertainty
with an infectious period. Furthermore, because many of the
discrepancies in our review were explained by data entry errors,
the review highlighted an additional use of LITT as a tool for
data quality control in situations where transmission chains
are already well-understood. It can be challenging to maintain
current data and presumed source determinations during an
investigation (e.g., data are changing and staff have competing
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priorities). Thus, using LITT can assist the investigation by
helping to identify issues with data quality, and by systematically
updating predictions as data change. Although LITT may
highlight situations when data are illogical, there is no substitute
for data completeness and quality.

We designed LITT to incorporate WGS, clinical, and
epidemiologic data that are commonly available at the national
level by virtue of being included in the national case-based
surveillance system for TB in the United States. However,
local staff may have additional data systems or knowledge that
refute LITT predictions. For example, five of LITT’s most likely
potential sources in the detailed review were refuted using TST
conversion results. We did not include TST conversion data
because it was not routinely available (i.e., typically only a single
TST result is reported to the national surveillance system); future
work may revisit this decision. Thus, we encourage LITT users
to carefully review the full list of potential sources and make best
use of additional data and local investigators’ knowledge.

LITT scores provided strong discriminatory power between
investigation presumed sources and other potential sources;
scores can be categorized to help frontline public health
staff interpret most likely sources in a structured framework.
Furthermore, the required data inputs provide a guide for what
data need to be collected and a useful structure for analyzing
the data. Given the short runtime (<60 seconds on a laptop),
LITT can increase efficiency and save data analysis time. We have
made LITT accessible to users without R programming expertise
by developing a user’s manual, training resources, and an R
Shiny graphical user interface that outputs Excel spreadsheets.
Thus, LITT can help investigators quickly, systematically, and
repeatedly analyze data to identify and rank potential source cases
over the course of an investigation. The application of LITT,
particularly for large clusters with complex data sources, can help
public health staff use molecular and epidemiologic information
together to prioritize strategies and resources that prevent TB
disease and interrupt transmission.
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