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Neonatal infants communicate with us through cries. The infant cry signals have distinct

patterns depending on the purpose of the cries. Preprocessing, feature extraction,

and feature selection need expert attention and take much effort in audio signals in

recent days. In deep learning techniques, it automatically extracts and selects the

most important features. For this, it requires an enormous amount of data for effective

classification. This work mainly discriminates the neonatal cries into pain, hunger, and

sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image

by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional

neural network (DCNN) technique takes the spectrogram images for input. The features

are obtained from the convolutional neural network and are passed to the support

vector machine (SVM) classifier. Machine learning technique classifies neonatal cries.

This work combines the advantages of machine learning and deep learning techniques

to get the best results even with a moderate number of data samples. The experimental

result shows that CNN-based feature extraction and SVM classifier provides promising

results. While comparing the SVM-based kernel techniques, namely radial basis function

(RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of

kernel-based infant cry classification system provides 88.89% accuracy.

Keywords: convolutional neural network, infant cry classification, short time fourier transform, support vector

machine, spectrogram

INTRODUCTION

Babies convey their needs through cries. Experienced baby care persons and parents can understand
the reason for the baby’s cries. Some young working parents struggled to interpret the baby’s cries.
The baby’s cries imply their emotions, physical needs, and pathological problems from internal
or external stimulation. Humans can listen to the audio signal in the frequency range from 50 to
15,000Hz for music, 20 to 20,000Hz for sounds, and 100 to 4,500Hz for speech. Within this range,
humans can discriminate the audio. Babies do not have control over their vocal tract so that it is
more sensitive than adults. Baby cries contain information, and their crying pattern varies based on
their physical and emotional state. The researchers found that there is a pattern for each kind of cry.
Infant cry classification can be considered pattern recognition or speech recognition. An abnormal
cry of the infant can indicate a genetic or pathological problem. Childcare experts can differentiate
it. The baby cry-based recognition approach will help us know the infant’s feelings from their cries.
Techniques such as signal preprocessing, feature extraction, feature selection, and classification are
the steps involved in baby cry classification.
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Signal preprocessing is crucial to eliminate the unwanted
signal present in the audio signals. The audio signal features can
be analyzed based on their time, frequency, and time-frequency
domain. Neural networks can be able to learn features from the
audio itself. The spectral representation of audio plays a crucial
role in the classification of audio signals using neural networks.
The initial work of infant cry classification was started in the
1960s. Kia et al. (1) designed a system to detect a baby’s cries using
fast Fourier transform with a fuzzy classifier. Petroni et al. (2)
attempted to distinguish the baby’s anger, fear, and pain cries. The
features were extracted from the Mel cepstrum coefficient, and
four kinds of neural networks such as time-delay network, feed-
forward network, cascade network, and recurrent network were
implemented; the results showed that a fully connected neural
network gave a better performance.

Mima and Arakawa (3) examined the frequency analysis
of infant cries (hunger, discomfort, sleepiness) and found the
difference in Fourier transform tendencies for each state. Jam
and Sadjedi (4) carried out work to distinguish the pain
and normal infant cries. They observed that, while processing
the audio signal, silence elimination, filtering, pre-emphasizing
was crucial. Mel frequency and entropy based on multibands
were used in the extraction of features. Principal component
analysis reduces the dimensions of the feature vector. Multilayer
perceptron recognized the infant cries and achieved better results
because multiband entropy provides entropy distribution in the
spectrum. The work was focused on the linear and the non-linear
feature coefficient technique to detect and classify the normal
and hearing impaired infant cries. The linear feature coefficients
were extracted from linear predictive coefficient (LPC), and those
features were optimized by using the hereditary approach. The
bilinear nilpotent technique was used to analyze the non-linear
signal. Kernel discriminant analysis (KDA) transforms those
features into a low-dimensional basis to show the linear and
non-linear features’ contribution. Support vectormachine (SVM)
and expectation-maximization (EM) algorithms over an expert
system were employed to classify the data. It shows that non-
linear feature with an expert system-based classification approach
gives better performance (5).

In previous works, the audio signal involves numerous
preprocessing techniques; feature extraction and feature selection
techniques were used to classify the data. However, deep learning
approaches automatically extract the raw data features, even
without additional preprocessing methods. Implementing the
deep learning approach needs millions of data samples to get the
best results. Moreover, this motivates us to enhance the infant
cry classificationmodel’s performance even with the small dataset
by extracting the features using the deep learning technique and
classifying the infant cries using a machine learning algorithm
with less computational complexity. This work classifies the most
common infant cries such as hunger, pain, and sleepiness.

RELATED WORKS

It is a crucial task to discriminate the infant cries, so in this work
(6), dealt with K-NN classifier with features such as short-time

energy, harmonic to average power ratio (HAPR), Mel frequency
coefficient, and harmonicity factor (HF) to recognize the infant
cry sounds. In this work (7), convolutional restricted Boltzmann
machine was used to analyze the unsupervised auditory filter
banks. The network consists of the visible and hidden layers,
and the weights were shared between those layers. The non-
linear activation of Noisy Leaky Rectifier Linear Unit (NLReLU)
was used. The parameters of the network were optimized by
using the Adam optimization method. Convolutional restricted
Boltzmann machine and discrete cosine transform were applied
to reduce the feature dimensions. Those features were compared
with MFCC features, and it was found that CNBM-based feature
performs well in the discrimination of healthy and pathological
auditory cries. In this case (8), they employed a convolutional
neural network in infant cry vocalizations. The cry segments were
manually extracted from the audio signal and segmented into
a 4–8-s duration of segments. Audio signals were represented
as spectrogram through short-time Fourier transform, which
is based on Fourier transform. The spectrogram is the input
for convolutional neural network. The convolution layer can
obtain the features from the spectrogram, and the network can
successfully discriminate the baby cry vocalizations.

This study (9) investigated the feature extracted from
wavelet packet transform based on complex dual-tree form
to discriminate the three sets of infant cries such as normal
vs. asphyxia, normal vs. deaf, and hunger vs. pain. Various
feature selection techniques such as correlation feature selection,
principal component analysis, and information gain were applied
to select the most relevant and essential features. Extreme
machine learning can successfully classify infant cry patterns.
This work (10) presented the combined acoustic and prosodic
features to distinguish the audio signal’s variations. Merge those
features and generate a feature matrix for the deep neural
network. MFCC features were considered to present the acoustic
features. The features such as fundamental frequency, intensity,
and formats carry the prosodic feature information. The neural
network has an input, two hidden, and an output layer to
calculate the weighted prosodic features. Those features were
taken as input to the deep learning approach, which is found
that the merged features can distinguish the variation present in
infant cry signals.

Priscilla Dunstan found that every baby makes certain sounds
while crying to convey their needs, such as Owh Heh, Eh,
Eair, and Neh, representing tired, discomfort, burp or sleepy,
pain, and hunger. Dewi et al. (11) analyze the feature extraction
techniques such as linear frequency cepstral coefficient and Mel
frequency cepstral coefficient. It extracts the features from the
spectrogram. Vector quantization, KNN, and neural network
were deployed in the classification of infant cries. It is found
that LFCC with KNN classifier gives a better result than other
techniques. Felipe et al. (12) discussed the motivation concerning
the classification of infant cries. The local visual features such
as binary pattern, robust binary pattern, phase quantization, Mel
frequency cepstrum coefficient, Mel scale features, and constant
Q chromogram were considered to obtain the features from
the spectrogram. The best result was obtained from the local
binary pattern using SVM with an accuracy of 71.68%. Gujral
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FIGURE 1 | Work flow diagram for baby cry classification.

et al. (13) analyzed and fine tuned the neural network using
the transfer learning approach to recognize infant cries. Long
short-time memory (LSTM) and convolutional neural network
(CNN) were analyzed with and without transfer learning. It is
observed that transfer learning based CNN outperforms LSTM
with an average recall of 75.7%. The latent factor approach
can efficiently obtain the information from high-dimensional
and sparse data. A multilayered and randomized latent factor
model was adopted to reduce the time complexity and enhance
data representation for better understanding. In the case of
nonnegative data, β divergence latent factor model is adopted to
analyze the performance in recommender systems (14–17).

MATERIALS FOR FEATURE EXTRACTION
AND CLASSIFICATION

In our approach, the infant cry signals are taken as input, and
short-time Fourier transform (STFT) is deployed to convert the
neonatal cry signals into the spectrogram image. The features
are extracted from the image using a deep convolutional neural
network. Furthermore, the SVM classifier discriminates the
neonatal cries as pain, hunger, and sleepiness. Figure 1 represents
the procedure involved in the infant cry classification system.

Audio Signal Analysis
The frequency content of the audio signal varies by time. For
that, a standard technique is required to analyze the signal
in time-frequency domain. Fourier transform is deployed to
characterize the time-varying frequency content present in the
signal. It analyzes the signal by converting the domain of time
to frequency. As a result of applying fast Fourier transform
(FFT), the signal phase and magnitude are obtained. The FFT
length of the signal must be equal to two times the power
of length needed to get a good frequency resolution in FFT.
The STFT simultaneously examines the time and frequency
content of the signal. The signals are breakdown into numerous
segments called frames; then, each segment multiplied with a

window either with or without overlapping. Spectral leakage
will happen while converting the signal from time into a
frequency domain. The windowing function tries to reduce the
spectral leakage and unusual discontinuity in the signal due to
segmentation. Several windowing functions are there, such as
Hamming, Blackman, uniform, flattop, and exponential. STFT
computes the Fourier transform for each windowing segment.
The magnitude square of the STFT is spectrogram. It represents
the distribution of frequencies present in the signal changes over
time (18–21). Short-time Fourier transform and spectrogram are
mathematically described as follows.

F (m,ω) =
∑

x (n)w (n−m)e
−jωn

S (m,ω) = |F (m,ω)|2

whereas, F(m, ω) is the short-time Fourier transform, x(n)
represents a signal, w(n–m) represents the windowing technique,
and S(m, ω) is the spectrogram. Figure 2 illustrates the process
involved in audio signal analysis.

Convolutional Neural Network
The classical neural network comprises input, hidden, and output
layers (22). The data has passed from one layer to another layer.
Every layer has several nodes; each node takes a set of values from
previous as input and does some mathematical operation that
produces a single value as an output to the consecutive layer’s
nodes. In convolutional network, the image itself is taken as an
input and generates an image as an output. It breaks the image
into features and detects the particular pattern from that image.

Furthermore, it comprises convolution, pooling, and a fully
connected layer. The convolution layer performs convolution
with the help of filters. Each node has its own filters, and it
extracts the features from the image. It is succeeded by a non-
linear function (RELU, sigmoid, tanh) that performs threshold
operation. Pooling tends to minimize network complexity. Max
pooling and average pooling are types of pooling. It gathers the
part of images into small rectangular portions and examines the
highest values in max pooling. In average pooling, it calculates
the median value of that specific rectangular portion. The
rectangular regions are the kernels. The fully connected layer
carries information about the number of output classes, and it
maps the data to its output. The softmax layer normalizes the
data and gives the score a probability for that input to every
output data. The classification layer produces a result based
on the probability score (23, 24). Figure 3 shows the simple
convolutional neural network.

Support Vector Machine
SVM executes classification by differentiating the data points
with a larger margin using hyperplane as a decision boundary.
SVM classifier includes hyperplane, margin hyperplane, kernels,
and soft margin. The hyperplane is the line that differentiates
the discrete data points. Margin is the distance between data
samples and the hyperplane. The margin hyperplane divides the
dissimilar data with maximum distance from one another. The
data samples which are near the hyperplane are named as support
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FIGURE 2 | Audio signal transform into spectrogram.

FIGURE 3 | Pictorial representation of convolutional neural network.

FIGURE 4 | Pictorial representation of linear SVM.

vectors. Soft margin in SVM creates accurate models from data
that are not able to generalize. The purpose of kernel function
converts the data samples into high dimensional feature space.
Linear SVM and non-linear SVM are the categories involved in
SVM. Figure 4 shows the simple linear SVM model. In linear
SVM, the data points can be distinguishable with a simple straight
line. It can be defined as

w · a+ b = 0

where, “w” represents the adjustable weight, “a” defines the input
data, and “b” indicates the bias.

FIGURE 5 | Pictorial representation of non-linear SVM.

When the data samples are not separable using a straight line,
non-linear SVM is used to solve the non-linear problems. For
that, the kernel functions are used to modify the data into higher
feature space. The most common kernel functions are linear,
quadratic, polynomial, and radial basis function (RBF) kernel.
Linear kernel combines all support vectors linearly to produce
the output. It can be described as

G
(

xi, xj
)

= xi
′xj

The quadratic kernel does not require any changes in the
parameter to get an efficient result. The polynomial kernel
considers each support vector and computes its kernel function.
In the polynomial kernel, the polynomial order is usually chosen
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FIGURE 6 | Convolutional neural network for feature extraction.

by more than one. If the polynomial order is one, then it will
become a linear kernel. It is mathematically defined as

G
(

xi, xj
)

= (xi
′xj + 1)

p

RBF kernel can effectively generalize the data and perform better
to solve the practical problem. In the RBF kernel, the support
vectors can automatically determine the number of RBF and its
centers. It can be represented as

G
(

xi, xj
)

= exp(−
∥

∥xi − xj
∥

∥

2
)

where, xi and xj represent the observations and p represents
the polynomial order. SVM optimization can be performed by
increasing the margin space between data samples and selecting
the precise kernel function for our system demands (25, 26).
Figure 5 shows the non-linear SVMmodel.

RESULTS AND DISCUSSION

The dataset of pain, hunger, and sleepiness cries was collected
from the infants born in National Taiwan University Hospital
Yunlin Branch, Taiwan (27, 28). The infants’ cries were recorded
from the healthy infants’ age range from 1 to 10 days. There
were no pathological problems or any complications found in
the babies, even during birth and after birth. In this study, we
consider 300 audio records, in that every 100 audio samples for
hunger, pain, and sleepiness cries. Each audio signal is in the
length of 4 s data with a sampling frequency of 8 kHz. Eighty
percent of the data is utilized for training, and the remaining
data is used for testing. The whole experiment is implemented
in MATLAB using the Deep Learning Toolbox and Statistics and
Machine Learning Toolbox. The convolutional neural network-
based feature extraction process is shown in Figure 6.

At first, the neonatal cry auditory signals are transformed
into spectrogram images by applying the short-time Fourier
transform. The audio signals are broken down into numerous
segments called frames; then, the windowing function multiplies
with each frame. In this study, the auditory signals are
segmented into 128 sections with 64 windows overlapping. The
Hamming window function is deployed here. Fourier transform
is computed; for that purpose, 256 discrete Fourier transform

points are considered. The magnitude square of the STFT gives
the spectrogram image. Figure 7 illustrates the overall process
involved in this study.

The data augmented is done to resize the image into
227∗227∗3 to meet the pretrained deep convolutional network’s
requirement. The convolutional neural network comprises eight
layers, five convolution layers succeeded by RELU activation layer
and pooling, and three fully connected layers. The deep network
breaks the images into features using multiple sets of layers.
The foremost layer of the network is taking the input data and
normalizes the input image. The first layer of convolution has
96 filters; each filter size is 11∗11 with four strides and zero
padding, succeeded by RELU activation and max pooling of
size 3∗3 with a stride of two. The second layer of convolution
comprises 256 filters, 5∗5 filter size with one stride, succeeded
by RELU and max pooling, in which 3∗3 pooling size with
two strides and zero paddings. The third layer of convolution
has 384 filters, 3∗3 filter size with one stride and one padding
succeeded by RELU. The fourth layer of convolution consists of
384 filters, 3∗3 size of filters with one stride succeeded by the
RELU layer. The last layer of convolution has 256 filters, 3∗3 size
of filters with one stride succeeded by RELU and max pooling,
in which 3∗3 pooling size with two stride and zero paddings.
The convolution layer description is shown in Table 1. We get
the features from a fully connected layer instead of convolution,
making it easier to execute the model with crucial features.
The obtained features from the convolutional network are fed
into the machine learning classifier. SVM with several kernel
techniques such as polynomial, linear, and radial basis function
is implemented to discriminate the baby cries. We have used
error correcting output code (ECOC) approach with a one vs.
one coding design to train the multiclass SVM model. In this
case, we have considered three kinds of baby cries, for that the
approach yields three binary learners which use all combinations
of infant cries and return a multiclass model. To avoid overfitting
or underfitting, we had cross validated the model using 10-
fold cross validation, efficiently estimating the model with
conventional variance.

The confusion matrix analyzes the performance of the
approach. It has attributes such as true positive (TP), false
positive (FP), false negative (FN), and true negative (TN). The
3∗3 confusionmatrix is defined inTable 2where, TPA defines the
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FIGURE 7 | Proposed infant cry classification system.

number of samples that are classified as class A. TPB represents
the number of data samples that are correctly recognized in class
B. TPC describes the number of data samples that are precisely
classified in class C. EAB represents the number of data samples

TABLE 1 | Convolution layer description of the network.

Layer number Layers Number of

filters

Filter size Number of

channels

1 Conv1 96 11*11 3

2 Conv2 256 5*5 48

3 Conv3 384 3*3 256

4 Conv4 384 3*3 192

5 Conv5 256 3*3 192

TABLE 2 | 3*3 confusion matrix.

A B C

A TPA EAB EAC

B EBA TPB EBC

C ECA ECB TPC

from class A which are mislabeled as class B. EAC describes
the number of samples from class A that are misinterpreted as
class C. EBA represents the number of data samples from class
B which are mislabeled as class A. EBC describes the number of
data samples from class B that are mislabeled as class C. ECA
represents the number of data samples from class C which are
misinterpreted as class A. ECB defines the number of data samples
from class C that are misinterpreted as class B. For class A, false
negative (FNA), false positive (FPA), and true negative (TNA) can
be calculated as

FPA = EAB + EAC

FNA = EBA + ECA

TNA = EBC + ECB + TPB + TPC

For class B, false negative (FNB), false positive (FPB), and true
negative (TNB) can be calculated as

FPB = EBA + EBC

FNB = EAB + ECB

TNB = ECA + EAC + TPA + TPC

For class C, false negative (FNC), false positive (FPC), and true
negative (TNC) can be calculated as

FPC = ECA + ECB

FNC = EAC + EBC

TNC = EAB + EBA + TPA + TPB

Those are used to compute the performance metrics such as
precision, accuracy, recall, F1 score, and specificity. Accuracy
compares the actual and desired output. Specificity shows the
proportions of all negative cases, and recall represents the
proportions of all positive cases. Precision shows the proportions
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TABLE 3 | Performance evaluation of SVM-RBF.

Performance

metrics

Hunger Pain Sleepy Average

measures

Specificity 0.8571 0.8235 1.0000 0.8935

Sensitivity 0.9032 0.9643 0.9677 0.9450

Precision 0.8000 0.9333 0.9333 0.8888

Accuracy 0.8889 0.9111 0.9778 0.9259

F1 score 0.8276 0.8750 0.9655 0.8893

TABLE 4 | Performance evaluation of SVM-polynomial.

Performance

metrics

Hunger Pain Sleepy Average

measures

Specificity 0.8125 0.8750 0.9231 0.8702

Sensitivity 0.9310 0.9655 0.9063 0.9342

Precision 0.8667 0.9333 0.8000 0.8666

Accuracy 0.8889 0.9333 0.9111 0.9111

F1 score 0.8387 0.9032 0.8571 0.8663

TABLE 5 | Performance evaluation of SVM-linear.

Performance

metrics

Hunger Pain Sleepy Average

measures

Specificity 0.8125 0.8571 0.8667 0.8454

Sensitivity 0.9310 0.9032 0.9333 0.9225

Precision 0.8667 0.8000 0.8667 0.8444

Accuracy 0.8889 0.8889 0.9111 0.8963

F1 score 0.8387 0.8276 0.8667 0.8443

of positive which are actually positive. F measure/F1 score
computes the mean of recall and precision.

Accuracy =
(TN+ TP)

(TP+ FP+ FN+ TN)

Recall =
TP

(FN+ TP)

Specificity =
TN

(TN+ FP)

Precision =
TP

(FP+ TP)

F1 Score =
2TP

(2TP+ FP+ FN)

Tables 3–5 represent the performance metrics such as specificity,
sensitivity, precision, accuracy, and F1 score of infant cries based
on SVM-RBF, polynomial, and linear kernels.

Figures 8–10 show the CNN-SVM-based infant cry
classification model’s performance measures with various
kernel functions. It is clearly shown that SVM with RBF
performs better than other kernel functions. Overall, the deep
convolutional network-based feature extraction and SVM with
the RBF classification-based model by the parameters of c = 1

FIGURE 8 | Performance measures of SVM-RBF.

FIGURE 9 | Performance measures of SVM-polynomial.

FIGURE 10 | Performance measures of SVM-linear.

and gamma = 1 provides the highest accuracy of 88.89% with a
generalized classification error of 5.56% and standard deviation
of 0.0835.

Receiver operating characteristics (ROC) curve illustrates
the correlation between the true-positive rate (TPR) and false-
positive rate (FPR). It is a crucial tool to estimate the performance
of the approach. Figures 11–13 represent the ROC curve for
SVM-based polynomial, linear, and RBF kernel. The area under
the curve for the polynomial kernel is 90.3%, the linear kernel is
87.9%, and the RBF kernel is 91.9%.
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FIGURE 11 | ROC analysis of SVM-polynomial.

FIGURE 12 | ROC analysis of SVM-linear.

Figure 14 shows the comparison of overall accuracy obtained
from various kernel functions in SVM. SVM-polynomial, linear,
and RBF kernel’s accuracy is 86.67, 84.44, and 88.89%. It clearly
shows that the performance of the SVM-RBF kernel gives more
accurate results than other kernel functions. We observe that by
varying the kernel functions in SVM, the classification system’s
performance changes drastically.

In the SVM polynomial kernel, the 3rd and 4th order of
polynomial gives an accuracy of 86.67%, the 5th order acquires
84.45%, and the 6th polynomial order provides 82.22%. It is
observed that the variations in the polynomial order affect

FIGURE 13 | ROC analysis of SVM-RBF.

FIGURE 14 | Comparison of various kernels in SVM.

the performance of the model. By increasing the polynomial
order, the system’s performance (accuracy) gradually decreases.
In the classification of infant cries’ physiological needs, the
pretrained network, which uses stochastic gradient descent,
acquires 76% accuracy, and stochastic gradient descent with
momentum obtained 82% accuracy (29). It is also compared
with convolutional neural network feature extraction based on
other machine learning techniques such as KNN, Naïve Bayes,
and Decision Tree, which acquire 84.69, 83.56, and 84.45%
accuracy. While comparing this CNN architecture with another
pretrained CNN architecture which comprises 13 convolution
layers followed by three fully connected layers, the features were
extracted based on those layers. They passed the features to the
SVM classifier, which gives 87.22% accuracy, respectively. MFCC
was used to analyze the infant cry audio signal, which acquires an
accuracy of 85.76%. It is found that STFT outperformed baseline
MFCC. Compared with these, the proposed approach gives better
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performance than the existing approach concerning infant cry
classification and the SVM classifier performs better than KNN
and Naïve Bayes. It is observed that the time taken to train
the pretrained network takes more time than the convolutional
feature extraction-based machine learning classification. The
neonatal cry classification model helps the new parents to know
their infants once they discover the need for baby cries. They can
respond to their baby’s needs more quickly and effectively.

CONCLUSION

Infant cries carry information about the infant’s feelings. This
study combines the deep learning and machine learning model
to enhance the infant cry classification model’s efficiency even
with small datasets. The audio cry signals are converted into a
spectrogram image using STFT. The spectrogram images are fed
into the deep convolutional network. The convolutional network
is good at extracting features from images. The extracted features
are taken as input for the SVM technique. The experimental
result exhibits that the proposed method acquires the highest
classification accuracy of 88.89% compared with all other
approaches considered in the literature. It is found that CNN
can extract the features from the time-frequency representation
of audio signals. To the best of the authors’ knowledge,
the demonstration of CNN feature extraction and machine
learning classifier is reported for the first time in infant cry
classification. Convolutional feature extraction-based machine
learning classifier provides good results even with the moderate
dataset, but tuning the SVM technique’s hyperparameters is
computationally expensive. In the future, we would like to
experiment with this deep neural network feature extraction with
hybrid or embedded machine learning based classifiers. Also,
much more focus will be given to implementing the machine

learning model’s optimization techniques, which may enhance
these approaches’ efficiency.
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