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The Severe Acute Respiratory Syndrome Coronavirus 2 pandemic has challenged

medical systems to the brink of collapse around the globe. In this paper, logistic

regression and three other artificial intelligence models (XGBoost, Artificial Neural

Network and Random Forest) are described and used to predict mortality risk of

individual patients. The database is based on census data for the designated area

and co-morbidities obtained using data from the Ontario Health Data Platform. The

dataset consisted of more than 280,000 COVID-19 cases in Ontario for a wide-range

of age groups; 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, and

90+. Findings resulting from using logistic regression, XGBoost, Artificial Neural Network

and Random Forest, all demonstrate excellent discrimination (area under the curve for

all models exceeded 0.948 with the best performance being 0.956 for an XGBoost

model). Based on SHapley Additive exPlanations values, the importance of 24 variables

are identified, and the findings indicated the highest importance variables are, in order

of importance, age, date of test, sex, and presence/absence of chronic dementia.

The findings from this study allow the identification of out-patients who are likely to

deteriorate into severe cases, allowing medical professionals to make decisions on timely

treatments. Furthermore, the methodology and results may be extended to other public

health regions.
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INTRODUCTION

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known
as COVID-19, in Wuhan, China in December 2019, the virus has caused chaos, extreme and
widespread illness and mortalities, and shutdowns of country-wide economies around the globe.
As a measure of the sheer magnitude of the impacts, more than 11.9% of the US population have
tested positive for the virus, as of January 25, 2021 (1). In Ontario, COVID-19 has infected 282,511
people and resulted in 6,614 deaths as of February 13, 2021 (2).
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In response to the day-to-day challenges of managing the
COVID-19 pandemic, massive efforts continue to be made to
protect the integrity of hospital systems to allow both treatment
of COVID-19 cases as needed, as well as to avoid having to delay
elective surgeries. However, the growth in caseloads continues
to be an ongoing major concern, needing improved predictions
to use for capacity planning. To better understand and assess
the capacity of health care systems to respond to the medical
needs arising from COVID-19, enormous efforts are being
expended involving the use of epidemiological and machine
learning modeling, to understand the projection of caseloads
of the virus. An example is an artificial neural network (ANN)
model developed by Abdulaal et al. to predict a patient-specific,
point-of-admission mortality risk to inform clinical management
decisions (3). Their modeling analyzed patient features including
demographics, co-morbidities, smoking history, and presenting
symptoms of 398 patients and achieved an area under the curve
(AUC) of 86% (3). However, while epidemiological modeling
has significant value for certain questions, the parameters of
these models are typically resolved through some estimation
procedure and future case counts through different classes are
identified. As an example, the SEIR model approach assigned
individuals to the susceptible (S), exposed (E), infected (I),
and recovered (R) classes (1, 2, 4). However, the potential to
predict how positive tests for COVID-19 at health centers will
translate to ICU cases andmortality are limited. This information
will be critical as health systems in North America are rapidly
approaching capacity.

With issues of the second wave of the pandemic ongoing at
the time of submission of this paper, interest continues to grow
in obtaining more comprehensive caseload and patient data and
predictions. Given there are now more accurate data available
from the first and second waves, inclusion of these data has
considerable merit. Until now, data security and privacy issues
have to-date limited the accessibility of alternate and detailed
data sources. Through obtaining detailed COVID-19 pandemic-
related data, more powerful artificial intelligence (AI) techniques
can be feasibly applied, offering the ability to uncover and
understand the value of alternative interpretation procedures.

This paper describes results arising from use of AI models
based on data from Ontario Health Data Platform (22 February
2020–20 October 2020) with the aim to improve prediction of
caseloads and mortality risks in patients throughout the province
of Ontario, with a population of more than 14 million. The
dataset includes extensive information from the first wave and
the beginning of the second wave of COVID-19 cases including
Canadian census information by designated area. The census
location information is based on a size of approximately three
blocks and hence is able to capture representation of ethnicity,
income level, and other social differences, and can therefore be
considered robust. The results from this paper may be extended
further to other public health regions throughout the world. The
paper is organized as follows: related works are discussed in
section Related Works. Section Materials and Methods describes
the materials and methods. Results and discussion are found in
section Results and Discussion and then the paper is concluded
in section Conclusions.

RELATED WORKS

AI models can be employed in the prediction of patient-specific,
point-of-admission mortality risks helping to inform clinical
management decisions. Thus, using AI models, healthcare
practitioners have ways to accurately predict the potential for
an individual ending up in the Intensive Care Unit (ICU). As
well, due to the very high AUC, AI models have the capability to
consider a broad range of patient data, including demographics,
co-morbidities, and much more, to predict patient-specific
mortality risk following their hospital admission.

The emergence of “big data” in the early 2000s has proven
very beneficial for public health investigations. The capabilities
of AI modeling have been able to accurately predict numerous
public health trends such as in-hospital mortality and detection
of emerging epidemics (4–6).With the emergence of the COVID-
19 global epidemic, big data and machine learning models have
enormous potential to understand who, and where, people are
most at risk.

Since March 2020, COVID-19 has spread around the
globe, affecting every country and causing more than
2.1 million deaths worldwide (7). As a result, researchers
have focused on COVID-19, to understand individuals
most at risk as well as how to best distribute scarce
resources. Identification of co-morbidities and creation of
models to predict COVID-19 mortality using big data has
significant potential.

Predictive analytics for assessing the in-hospital risk of
patients and patient mortality have traditionally been limited
to clinical decision rules (rules to reduce uncertainties in
medical decision-making), but these approaches are not
easily updated with new developments or data. Additionally,
clinical decision rules may take years to identify and test and
have been criticized for their lack of generally applicability
to entire populations (4, 5). Hence, in the current situation,
with the rapid spread of COVID-19, clinical decision
support systems are still being developed for this particular
virus (8).

Both Hernesneimi et al. and Taylor et al. note that one of the
biggest challenges in developing models to predict mortality is
assembling quality data (4, 5). However, this is outweighed by the
benefits of a machine learning model, which provides improved
performance and ability to be generalized to entire populations,
or readily adapted to new populations (9). As well, AI models
are updateable over time to recognize changing trends in medical
care, all of which are attainable dimensions, if provided the large
datasets (4, 5).

Rodriguez-Nava et al. used a random forest algorithm that
predicted ICU admissions with an AUC of 0.82 and mortality
with an AUC of 0.70 (10). Similarly, Jimenez-Solemm et al. used
a random forest machine learning model using a Danish dataset
with 3,944 COVID-19 patients that predicted ICU admissions
with an AUC of 0.820, mortality with an AUC of 0.902, hospital
admission with an AUC of 0.820 and ventilator treatment
with an AUC of 0.815 (11). They found age and BMI the
most important features for predicting hospital admission and
ventilator treatment (11). Among all models, the parameters
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that were determined to have the highest severity of COVID-
19 were heightened if male, had hypertension, and presence of
dementia (11).

A study by Schöning et al. aiming to distinguish between
severe and non-severe COVID-19 also found hypertension, along
with diabetes mellitus (Type 2) and renal impairment to be
prognostic of severe disease (12). Schöning et al. used a variety of
machine learning models which were trained using data from the
first wave in Switzerland and externally validated using data from
the second wave (confirming findings to be generalizable) and
achieved an accuracy of AUC values ranging from 0.86 (decision
tree induction) to 0.96 (support vector machine) (12).

Kim et al. used Korean National Health Insurance data to
identify co-morbidities and factors that increase mortality using
multivariate logistic regression analysis with a confidence interval
of 95% (13). A total of 9,148 COVID-19 patients, including 130
fatalities, were linked to their national health insurance record
data, considering 298 medical conditions as co-morbidities (13).
Williamson et al. performed a similar analysis on behalf of NHS
England, with a sample size of 10,926 COVID-19 related deaths
(14). Using a multivariable Cox model, Williamson et al. were
able to estimate hazard ratios for characteristics such as smoking
status, obesity, sex, age, deprivation, heart disease, etc. with a 95%
confidence interval (14). Both studies identified age, deprivation,
diabetes, bronchitis and severe asthma as top risk factors for
COVID-19 (12, 13). Additionally, Kim et al. found that dental
disorders were associated with high co-morbidity risk (13).

Machine learning has been found to predict mortality
more accurately than non-machine learning models (4, 5).
For example, mortality due to acute coronary syndrome is
reliably predicted using the GRACE score, based on patients’
variables in admission to the hospital. A machine learning model
developed by Hernesneimi et al. achieved greatly improved
results compared to traditional GRACE score (4). The machine
learning model was developed using XGBoost and included
phenotype data about the patient as well as hospital admission
variables (4). The machine learning model outdid the traditional
GRACE score method with an AUC of 0.904 compared to
an AUC of 0.802 for GRACE score (4). Another example
is a machine learning model developed by Taylor et al. to
predict in-hospital mortality of patients with sepsis (5). This
model considered 500 clinical variables including demographic
information such as age, sex, insurance and employment status
as well as health status and medical test results. Random Forest
was reported to be a relatively interpretable option and produced
the best results when compared with XGBoost, logistic regression
or CART models (5).

A similar study from Zheng et al. used machine learning
models to evaluate patients and predict rapid deterioration of
in-hospital COVID-19 patients to determine triage priority (15).
The model developed by Zheng et al. used the results of blood
tests from 601 COVID-19 patients to predict deterioration up
to 12 days before death occurred and reported that decreased
lymphocyte count and increased lactate dehydrogenase levels, c-
reactive protein levels and neutrophil counts, all corresponded
with an increased likelihood for rapid deterioration (15). The
best results were found using XGBoost and achieved an AUC of

0.953 for a small dataset (15). In addition, the illness trajectory
(moderate, severe, critical – states as defined by Israeli Ministry
of Health) of COVID-19 patients was predicted by Roimi et al.
with an AUC of 0.88 using only patients’ age, sex and day-by-day
clinical state using a multistate Cox regression-based model (16).

Estiri et al. used nested generalized linear models to predict
mortality using electronic health records (EHRs) of 16,709
COVID-19 age-separated cohorts fromMass General Brigham (a
Boston-based non-profit hospital) (17). The data included were
from the beginning of the EHR up to 14 days prior to the positive
polymerase chain reaction (PCR) test to ensure COVID-related
medications were not included in the model as risk factors (17).
The model which included patients under the age of 45 had an
AUC of 0.898, 0.789 in the 45–65 cohort and 0.753 in the 65–85
cohort, thus able to provide relatively high accuracy by relying
only on data already stored in EHRs (17).

A prognostic machine learning model created by researchers
from the Department of Decision Medicine at the University
of Maastricht in The Netherlands reported the severity of
COVID-19 in a patient (8). The model is based on the data
from 299 patients’ blood-test data and age and is readily
available as an application (8). A similar application developed
by ClosedLoop.ai determines a “vulnerability score” for an
individual’s susceptibility to severe COVID-19 illness (18).

Machine learning models have also been trained to predict
rapid deterioration due to COVID-19 and even detect COVID-
19 from lung X-Rays (19, 20). Zhu et al. used deep transfer
learning to determine COVID-19 severity from X-rays and
Elgendi et al. used deep neural networks to differentiate COVID-
19 patient X-rays from other types of pneumonias (19, 20).
Both methods used convolutional neural networks to a high
degree of accuracy, reducing the need for radiologists (who
may be in short supply in low-resource clinics) to read x-
rays (19).

Mehta et al. used caseload and mortality data from early
in the COVID-19 pandemic (March 2020), to determine
the vulnerability of a county in the US to a large COVID-
19 outbreak with high mortality (21). Mehta et al. used
XGBoost to train a model that would predict which counties
in the US were most at-risk using county-level population
statistics such as age, gender, and density as well as CDC
data for the health within a county (21). They reported
that population size of a county was by far the most
important variable, with population density, longitude,
hypertension prevalence, chronic respiratory mortality rate,
cancer crude rate, and diabetes prevalence, also playing large
roles (21). While Mehta et al. do not state which counties
are found to be the most at-risk, COVID-19 has reached
virtually all parts of the U.S., including both rural and urban
areas (21, 22).

As widely apparent from the numerous information venues,
the magnitude of the impacts to people and the economies
around the world are staggering. Hence, there is enormous
interest in using available data, and in the development of
models, that can combine available information in any manner
to improve predictions of caseloads, supporting alternative
strategies for predicting patient-specific mortality risk.
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TABLE 1 | Characteristics of 57,390 Ontario residents with COVID-19.

Variable Description Range of values

Age Age in years, as of Jan 1, 2020 0–105

Test date Test date Feb 22–Oct 20

Sex Indicator Variable for sex 26,861 (M = 1, F

= 0)

Hypertension Chronic hypertension, as of Jan 1, 2020 15,778 (0, 1)

LTC resident LTC resident, as of Jan 1, 2020 5,179 (0, 1)

Chronic_dementia Chronic dementia diagnosed, as of Jan 1, 2020 4,746 (0, 1)

Chronic_odd Chronic diabetes diagnosed as of Jan 1, 2020 9,002 (0, 1)

Ethnic concentration quint. Calculated from ontario marginalization index, based on census designation. Refers to Visible minorities

and/or recent immigrants (0–5 ranging from least diverse to most diverse)

(0–5)

Commuter concentration

quint

% of people that commute within Census designated area - converted to quintiles (5 being the highest, 0

referring to missing DA info).

(0–5)

Median income quint. Median income within census-designated area - converted to quintiles (0–5 ranging from Lowest income to

highest income, 0 referring to missing DA info).

(0–5)

Charl Charlson co-morbidity index. Only 2,059 patients with charl above 0. (0–10)

Household size quint. Avg. household size within Census-designated area - converted to quintiles (5 being the Highest, 0 = missing

DA info).

(0–5)

CKD Chronic kidney disease. 2,523 (0, 1)

Cancer Cancer index 2,995 (0–1)

Chronic_copd Chronic obstructive pulmonary disease 4,030 (0–1)

Chronic_asthma Asthma 9,100 (0–1)

Chronic_chf Congestive heart failure 2,257 (0–1)

Stroke If patient suffered a stroke previous to Jan 1, 2020 1,016 (0–1)

Cardiac ISCH Cardiac ischemia 1,916 (0–1)

Rural Indicator if a patient lives in a rural residence 1,746 (0–1)

Chronic_ra Rheumatoid arthritis 567 (0–1)

Tia Transient Ischemic Attack 722 (0–1)

Immuno_comp Immuno-compromised 237 (0–1)

Thala History of Thalassemia 36 (0–1)

Cases recovered 54,568

Cases died 2,822

MATERIALS AND METHODS

Dataset Description
For this research, to ensure adherence to strict security protocols,

extensive data for 57,390 individual cases from Ontario Health
Data Platform where data related to positive COVID-19 tests

were collected between 22 February and 20 October 2020 were

obtained for use in machine learning modeling. The dataset
contained epidemiological and demographic information,

recovery/mortality outcome information and co-morbidities of
individuals residing in Ontario at census level. The attributes

which proved most useful in the machine learning and statistical

models are indicated in Table 1. Co-morbidities and age were
collected from patient health records as of January 1, 2020;

hence diagnoses of other medical conditions after this date were

excluded. Of the 57,390 cases included in the dataset, 2,822
patients died of COVID-19 and the remaining 54,568 either
recovered from COVID-19 or are still hospitalized.

Several input variables were derived using 2016 census data
for the designated area of the individual patients. Census

data in Canada are collected at postal code level and hence,
represent approximately at three city block intervals. Census
data relied upon included: ethnic concentration (of residential
area), commuter concentration, median income and household
size (these values are unlikely to change significantly between
date of census and start of pandemic). These values were
converted into quintiles (division of the population into 5 equal
groups according to the distribution of input variables) with
“1” being the lowest quintile, and “5” being the highest. Long-
term care residents (LTC) did not include census-designated
area information and therefore were represented with a zero
value in the AI modeling. As well, for case-specific data for
which substantial data were not available, those cases were
removed from the modeling prior to undertaking the modeling
(decreasing the 280,000 data to 57,390 cases actually used in
the modeling) since the remaining cases represented a very
substantial dataset for analyses. Individuals with missing data
were not included in the analyses, however, for LTC residents’
variables derived based on postal code, such as income, ethnic
concentration, household size, and commuter percentage, were

Frontiers in Public Health | www.frontiersin.org 4 June 2021 | Volume 9 | Article 675766

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Snider et al. Variable Importance for COVID-19 Mortality

coded as zero since postal code information was not available for
these individuals.

Model Development
This study compared three machine learning models and one
statistical model. The following models were employed: artificial
neural network (ANN), Random Forest (RF), extreme gradient
boosting decision tree (XGBoost) all of which are tree structure
machine learning models, and logistic regression (23–25). These
models were adopted due to their high accuracy in binary
classification problems as well as their prevalence/adoption in
previous literature. The hardware used for developing the models
included: a virtual server fromOHDP specifically to run the code,
8 virtual CPUs and 128 GB of RAM, all running on Centos 7
Operating System. The software used included: R for coding and
Rstudio as the integrated development environment (IDE).

Data Processing
Prior to model calibration, the dataset was randomly split into
two segments, namely an 80% training dataset as an operational
characterization and a 20% testing dataset where each model was
calibrated using the training dataset and assessed for accuracy
using the testing dataset. A grid search approach was used
to adjust the hyperparameters of the models using a 10-fold
cross-validation technique, repeated three times per model and
optimized to produce the maximum area under the receiver
operating characteristic curve (Area Under Curve, or AUC).

The logistic regression’s input variables were chosen by a
stepwise Akaike Information Criterion (AIC) function (23). The
computer programming language R was used to develop and
analyze all models (26). The final predicted outcome, recovered
or died, was determined by the probability of mortality for each
recorded case outcome generated by the models, based on a 50%
threshold value ensuring highest total accuracy.

RESULTS AND DISCUSSION

As a measure of accuracy, the Receiver Operating Characteristic
curve (ROC) was calculated for each model. The Area Under the
ROC curve was used to provide the basis of comparison between
each model. Since an AUC value approaching “1” indicates high
model accuracy while a value of 0.5 represents a model that is no
better than random change, Table 2 demonstrates that all models
utilized show strong predictive values.

TABLE 2 | Comparison of models employed in the base case analyses.

Model AUC

Logit 0.9518

XGboost 0.956

Random forest 0.948

Neural net 0.9475

The bold values represent the accuracy for the model (i.e., XGBoost) which is used

primarily in this paper to explore the importance of variables.

All models developed have very high AUC values (>0.94). The
most accurate model is XGBoost which has an AUC of 0.956. To
the best of the authors’ knowledge, this is the highest accuracy
reported for COVID-19 mortality prediction models published
to-date using Canadian data.

Although the AUC is a useful metric in understanding the
overall accuracy of a binary prediction model, that metric
does not provide specific accuracy for each class (accuracy
in predicting survival vs. accuracy in predicting mortality).
To highlight the accuracy of both predictions, a confusion
matrix was developed. The confusion matrix as developed and
highlighted in Table 3, compares the prediction accuracy of
the XGBoost model with the reference (or actual outcome) of
COVID-19 patients within the test dataset, assuming any patient
with a predicted risk score below 0.5 will survive.

The confusion matrix indicates the model is extremely
accurate in predicting which patients will survive, with 97% of
the alive predictions actually surviving. The mortality prediction
accuracy is substantially lower, with 49% of predicted deaths
actually occurring. Even at 49%, the mortality prediction still
provides a strong indicator on whether a COVID-19 patient
will die and is helpful in strategic planning of possible medical
caseloads, in terms of potential overload of the medical system.

It is noted that the mortality prediction accuracy of the
modeling could be improved by increasing the risk score
threshold, but this would also increase false negative predictions.
Various methods have been created in an attempt to quantify the
variable impact but many of them are flawed when using tree
structure machine learning models (which includes XGBoost,
Random Forests, decision trees, etc.). While the values could
be adjusted to make a new set point, the models are quite
accurate and are best represented by the AUC, meaning it is
a good indicator of the actual risk of mortality. Overall, the
results indicate the risk score predicted by the XGBoost model
provides very strong insights regarding the outcome for Ontario
COVID-19 patients, including the ability to plan for possible
medical caseloads.

Variable Importance
Since the XGBoost model is the most accurate mortality
prediction model developed for COVID-19 patients in Ontario,
there is strong merit in investigating which variables are the most
important and quantify how these variables contribute to the final
predictions. To explore the impact of each variable on the final
prediction, SHapley Additive exPlanations (SHAP) values have
been used.

SHAP values determine the importance of a feature by
comparing a model prediction with, and without, the feature for

TABLE 3 | Confusion matrix and statistics.

Prediction Alive Dead

Alive 10,710 353

Dead 203 211
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FIGURE 1 | SHAP summary plot for XGBoost model.

each observation within the training data. The SHAP values are
calculated using SHAPforXGBoost R package and present the
variable contribution on a log-odds scale (logarithm of the ratio
of high mortality risk to low mortality risk) (27).

Figure 1 plots the SHAP value for each individual patient
within the training dataset by input variable. The input variables,
as listed on the y-axis, are ranked from most important (at the
top) to least important (at the bottom) with their mean absolute
SHAP value indicated next to the name. The X axis represents
the SHAP value associated with each variable and patient within
the training dataset (i.e., there is a plotted point for each case
based on the influence that variable has on the prediction of that
case). The color indicates whether the individual patients’ input
variable value was high (purple) or low (yellow). For example,
in Figure 1 a “high” age has a high and “positive” impact on
predicting mortality. The “high” comes from the purple color
and the “positive” impact is shown in the X axis. Note, a
range of SHAP values can exist per input variable value based
on the SHAP values calculated for each observation and how
they independently contribute to the machine learning model’s
predictions.

Overall, 24 variables were identified/ranked, with age as
being unquestionably the most important variable for the
XGBoost model. As a patient’s age increases (approaches
purple) the SHAP value impact increases, with a very high
age being associated with an additional 2.5 increase in log-
odds. The date of when someone tested positive for COVID-
19 also demonstrated a strong impact on overall mortality risk,
indicating as the positive test date increases (i.e., later in the
pandemic) the risk of mortality decreases. The importance of
the date when someone tested positive is very likely due to
improved understanding of treatment options by the medical
systems. Since the start of the pandemic in March 2020, health
care workers and researchers worked fast to try to find the
most effective ways to treat and prevent COVID-19 (e.g.,
including the use of antivirals and immune modulators, such as
remdesivir, hydroxychloroquine, and dexamethasone) (28, 29).
This finding described herein is supported by the European
Medicines Agency indicated in June 2020 that it was discussing
132 potential treatments with developers, showing the rapid
speed with which drugs and therapies against the virus are being
developed (29, 30).
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Other variables of high importance in terms of predicting the
outcomes included “sex,” and chronic dementia, etc. on through
the list of 24 variables, as depicted in Figure 1.

CONCLUSIONS

The impact of COVID-19 has been felt throughout populations
around the world. In Ontario, COVID-19 has infected over
280,000 people with over 6,000 deaths (2). As the people of
Ontario experience the second wave of the pandemic, the
number of deaths associated with the pandemic will continue
to increase. Understanding which Ontarians are most at risk
will be important in determining how the medical system can
most effectively deal with the pandemic, implement effective
intervention strategies, and refine vaccination priorities.

This paper described a model with an accurate mortality
prediction that can be used to assist Ontario’s medical system
in combating this pandemic and further highlight the risks
faced by individual patients. By including patient demographics,
co-morbidities, geographic, and census-based attributes, the
XGBoost model developed surpassed all other Ontario mortality
predictions published to date, with an AUC of 0.956; all
four modeling approaches provided high AUCs where findings
resulting from using logistic regression, XGBoost, ANN and RF,
all demonstrate excellent discrimination (area under the curve
for all four modeling approaches exceeded 0.948).

Findings related to the importance of 24 variables in
characterizing mortality based on SHAP values, the importance
of the variables found the most important parameters in
order of importance were age, date of test, sex and chronic
dementia, providing guidance to the medical professionals to
identify the highest risks for out-patients who are likely to
deteriorate into severe cases with the features indicating the risk
of mortality.
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