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There is uncertainty in the neuromusculoskeletal system, and deterministic models

cannot describe this significant presence of uncertainty, affecting the accuracy of

model predictions. In this paper, a knee joint angle prediction model based on surface

electromyography (sEMG) signals is proposed. To address the instability of EMG

signals and the uncertainty of the neuromusculoskeletal system, a non-parametric

probabilistic model is developed using a Gaussian process model combined with the

physiological properties of muscle activation. Since the neuromusculoskeletal system is

a dynamic system, the Gaussian process model is further combined with a non-linear

autoregressive with eXogenous inputs (NARX) model to create a Gaussian process

autoregression model. In this paper, the normalized root mean square error (NRMSE) and

the correlation coefficient (CC) are compared between the joint angle prediction results of

the Gaussian process autoregressive model prediction and the actual joint angle under

three test scenarios: speed-dependent, multi-speed and speed-independent. The mean

of NRMSE and the mean of CC for all test scenarios in the healthy subjects dataset

and the hemiplegic patients dataset outperform the results of the Gaussian process

model, with significant differences (p < 0.05 and p < 0.05, p < 0.05 and p < 0.05).

From the perspective of uncertainty, a non-parametric probabilistic model for joint angle

prediction is established by using Gaussian process autoregressive model to achieve

accurate prediction of human movement.

Keywords: sEMG, Gaussian process, joint angle prediction, NARX, neurorehabilitation

1. INTRODUCTION

Rehabilitation robots and other rehabilitation equipment have developed rapidly and are widely
used for therapeutic training of patients suffering from neurological disorders including stroke,
cerebral palsy and spinal cord injury. Patients with impaired neurological function are able
to use rehabilitation equipment for a variety of exercises to restore strength and flexibility in
their extremities (1). Neurorehabilitation techniques can help both passive and active training
of patients with neurological injuries. Compared to passive training through rehabilitation
equipment, training that involves the patient’s own will can improve the effectiveness of treatment
and restore motor function through active movement (2). Electromyography (EMG) represents
the sum of subcutaneous motor action potentials generated through muscle contraction (3),
which can represent neuromuscular activity and is a way to reflect the patient’s voluntary effort.
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Surface electromyography (sEMG) is a non-invasive EMG signal
that is mainly acquired through non-invasive electrodes, which
has the advantage of being more accessible and less likely to
impede the normal activity of the user and will override the actual
joint motion (4), and is often used as a control command to
realize the human-robot interface (HRI) of portable or wearable
assisted rehabilitation equipment. The surface electromyography
(sEMG) is a non-invasive EMG signal collected by surface
electrodes, which has the advantage of being more accessible
than electroencephalography (EEG) and less likely to impede
the user’s normal activities. The forces generated by muscles in
response to neural control signals depend on a large number
of variables distributed over many spatiotemporal scales (5),
which makes it difficult to predict the muscle force. While the
nervous system clearly has knowledge of some of these variables,
such as muscle length and velocity, other aspects of muscle
dynamics (e.g., the detailed dynamics of molecules at the level of
individual myofibrils and sarcomeres) are much more difficult to
measure and estimate. With knowledge of the nervous system,
it is possible to model the relationship between neural control
signals and muscle force and use it to predict or simulate muscle
force production. However, this relationship itself cannot be
accurately estimated, and the remaining unaccounted aspects of
muscle dynamics will result in seemingly random fluctuations
in force, also known as motor noise. Therefore, there are two
main sources of uncertainty in the neuromusculoskeletal system:
irreducible noise during the motor system and variability in the
relationship between neural control signals and muscle outputs
(6). The impact of uncertainty in neuromusculoskeletal models
on joint motion prediction can be mitigated, but not completely
eliminated, by different modeling approaches. The human
neuromuscular system is a highly non-linear and time-varying
system with uncertainty (7). In order to allow models to handle
the dynamic high-dimensional nature of the neuromuscular
system, it is not enough to rely on traditional model structures
and faster computational processing. Therefore, a central issue
for further research on neuromusculoskeletal systems, or any
artificial controller, is how to command muscles effectively in the
presence of uncertainty.

Non-linear systemmodeling and identification can be divided
into parametric and non-parametric models from the perspective
of model structure (8–12). From the perspective of the
Bayesian statistical framework, probability distributions over the
functional space can be considered and modeled by optimizing
these distributions to characterize uncertainty. This type of
model has no explicit modeling mechanism or constraints and is
referred as non-parametric modeling (13). The non-parametric
model does not depend on a specified set of parameters or a
fixed model structure, and is an estimation method based on
statistical principles, which can generate functions to fit the data
without the constraints of the model mechanism. The number
and nature of the parameters of the non-parametric model are
flexible and variable, which can change accordingly with the
change of the data set. It can be used for modeling and analyzing
high-dimensional time-varying systems, taking the uncertainty
into account during the modeling process, and characterizing
the uncertainty. The non-parametric methods mainly include

spectral estimation, spectral analysis, correlation analysis and
kernel-based analysis methods. Gaussian process (GP) model is
a non-parametric kernel method in the framework of Bayesian
model, which is simple to implement, computationally efficient,
and most importantly, GP model can describe the posterior
distribution of the model function, which in turn can be used
to describe the uncertainty of the model, and is a recent
research hotspot for non-parametric methods (14, 15). Kang et al.
proposed an effective method for generating suboptimal motion
of a multi-body system using a GP dynamics model to achieve
dimensionality reduction of the system and deal with motion
optimization problems (16). Schearer and Ullauri achieved the
estimation of joint moments by building semi-parametric and
non-parametric models through GP model, respectively (17,
18). Xiloyannis et al. used a Gaussian autoregressive model
for decoding neural information to achieve multidimensional
decoding control of 11 joint movements (19). Yang et al.
proposed a proportional pattern recognition control of arm
muscles using a wearable ultrasound sensor to achieve both
gesture recognition and muscle contraction force estimation
based on statistical features and Gaussian process regression
models (20).

It has been shown that joint motion can reflect the intrinsic
dynamics of human movement (21), so motion signals can also
be used in the modeling of the neuromusculoskeletal system
for building autoregressive models for prediction. The non-
linear autoregressive with eXogenous inputs (NARX) model is
an effective method for solving non-linear sequential problems,
and modeling in conjunction with the NARX model can better
incorporate the non-linear spatiotemporal correlation structure
of muscle-driven control signals and natural humanmotion (22).
Dynamic recurrent neural networks based on the NARX model
are widely used for joint angle estimation, decoding shoulder,
elbow and wrist motions and prosthesis model control (23–25).
Gupta proposed an ankle joint angle estimation model based
on the NARX model using sEMG signals and knee joint angle
signals, and the performance of the model proved its applicability
to ankle joint angle estimation for active prosthesis, orthosis and
lower limb rehabilitation (26). Liu et al. used the NARXmodel to
train and identify the EMG signals motion mapping relationship
between a rehabilitation training bed and sEMG signals based
motion prediction to achieve the identification of upper body
tilt in different directions (27). Raj et al. proposed a multilayer
perceptron neural network model based on the NARX model for
estimating elbow joint angle and elbow joint angular velocity, and
the proposed model estimated elbow joint angle and elbow joint
angular velocity with high accuracy (28).

Since the neuromusculoskeletal system is a dynamic time-
varying system, the GP model is only a mapping of the input
to the output distribution, which is a basic static system. By
combining the NARX model into the modeling, the resulting
model can not only adapt to non-linear discrete-time processes,
but also to different noise models, and the resulting dynamic
model, which will better fit the physiological properties of the
neuromusculoskeletal system. Thus, in this paper, a knee joint
angle prediction model based on sEMG signals is proposed
by considering the physiological properties of microscopic
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FIGURE 1 | Muscle activation dynamics.

muscle activation and combining NARX with GP model. First,
considering the physiological properties of sEMG, the muscle
activation kinetic model is used to extract features from the
sEMG signals of a pair of antagonist muscles controlling knee
joint motion, and the muscle activation intensity of this pair is
obtained. Then a joint angle predictionmodel based onGPmodel
is proposed for the uncertainty of the neuromusculoskeletal
system with the muscle activation intensity as the input signal.
Since the neuromusculoskeletal system is a time-varying non-
linear system, the one-step ahead (OSA) prediction of the
NARX model is introduced to construct a Gaussian process
autoregressive model, which uses the confidence interval of the
prediction to describe the uncertainty, reduces the influence of
model uncertainty on the prediction results, and improves the
prediction rationality, accuracy, and efficiency of the joint angle
prediction model.

2. MATERIALS AND METHODS

2.1. Muscle Activation Dynamics
The sEMG signal is the sum of action potentials recruited to the
muscle by surface electrodes and is used to reflect the activation
level of the muscle. sEMG signals can be considered as a form
of characterization of neuromotor control commands and are
widely used to analyze musculoskeletal models. The feature
extraction of the EMG signals by the existing studied models only
considers the macroscopic characteristics of the EMG signals,
without considering themicroscopic physiological characteristics
of muscle activation. In order to characterize the time-varying
features of the sEMG signals, respond to micro-physiological
properties, and reflect the relationship between EMG signals,
neural activation and muscle activation, a muscle activation
kinetic model was established to achieve feature extraction of the
sEMG signals (29–31). The muscle activation kinetics is mainly
expressed as the transformation process between EMG signals
and muscle activation, as shown in Figure 1, where a(t) is the
muscle activation, e(t) is the processed sEMG signal, q(t) the
neural activation, and detailed in Li et al. (32).

2.2. Gaussian Process
Gaussian process (GP) is defined as a random process consisting
of infinite high-dimensional random variables in a high-
dimensional space, in which the joint distribution among any
finite number of random variables is a Gaussian distribution. GP
model can be derived from the weight-space view or the function-
space view. Since each set of weights implies a specific function
and the distribution of the weights implies the distribution of
the function, the distribution of the GP can be obtained from the
function-space view to obtain the equivalent of the weight-space

view (33), which is the more commonly used derivation method
for Gaussian process models.

Suppose the sample set D has N samples:

D = (X,Y) =
{

(xi,yi)|xi ∈ R
d,yi ∈ R, i = 1, . . . ,N

}

(1)

where xi denotes input vector,yi denotes output vector.
A Gaussian process is completely specified by its mean

functionm(x) and covariance function k(x, x′) (34):

f (x) ∼ GP(m(x), k(x, x′)) (2)

m(x)= E
[

f (x)
]

(3)

k(x, x′)= E
[

(f (x)−m(x))(f (x′)−m(x))
]

(4)

where the random variable function f (x) represents the
distribution of yi at xi, the mean function m(x) reflects the
expected function value at input x. The covariance function
models the dependence between the function values at different
input points x and x′, which is often referred as the kernel
function of a GP model.

In the Gaussian process regression, considering the
following model:

Y= f (X)+ ε (5)

where X denotes the input vector,Y denotes the
observed vector with noise, the noise follows a Gaussian
distribution ε ∼ N(0, σ 2), the random variable function f (X)
follows a Gaussian distribution:

f (X) ∼ N(µ(X),K(X,X)) (6)

Thus:

Y ∼ N(µ(x),K(X,X)+ σ 2I) (7)

For the prediction input X∗ = (x∗1 , . . . , x
∗
N)

T , the joint
distribution of the predicted values f (X∗) and the training data
output is:

(

Y

f (X∗)

)

∼ N

([

µ(X)
µ(X∗)

]

,

[

K(X,X)+ σ 2I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])

(8)
where K(X,X) denotes the covariance matrix of the input signal,
which is a symmetric semi-positive definite matrix of N ×

N order:

K(X,X)=







k(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1) · · · k(xN , xN)






(9)
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Knowing the joint high-dimensional distribution, the
posterior distribution is obtained by finding the conditional
probability p(f (X∗)|Y,X,X∗) according to Bayes’ theorem:

f (X∗)|X∗∼N(µ∗,6∗) (10)

µ∗ = K(X∗,X)[k(X,X+ σ 2I]−1(Y− µ(X))+ µ(X∗) (11)

6∗ = K(X∗,X∗)− K(X∗,X)[K(X,X)+ σ 2I]−1K(X,X∗) (12)

The covariance matrix accounts for the major part of the
posterior distribution of the Gaussian process, and the covariance
matrix is a key component of the Gaussian process prediction.
The kernel function is the main structure of the covariance
matrix, so it is also a central part of the Gaussian process
model. In the modeling and identification of dynamic systems,
the dimensions of the inputs are relatively high, which makes
the description of the mapping function complex. Considering
the smoothness and continuity of dynamic systems, the squared
exponential (SE) kernel function is often used in the modeling
process (35), which is defined as:

k(x, x′) = σ 2
f exp

[

−
(x− x′)T(x− x′)

2σ 2
l

]

(13)

where hyperparameter σl is the characteristic length scale, which
determines the relative weights of the distances of the input
variables. σf is the signal standard deviation, which reflects the
magnitude of the function change.

The Gaussian process model is mainly determined by the
kernel function and its hyperparameters, and its learning process
is a process of training through the data to obtain the posterior
probability distribution, which mainly includes the selection
(or design) of the kernel function and the determination of
the hyperparameters.

The kernel functions of Gaussian processes often contain
unknown and indefinite hyperparameters, such as length scales,
signal and noise variances, etc. These need to be inferred from the
data, resulting in posterior distributions of the hyperparameters
that are not easily obtained. Therefore, the full Bayesian
derivation of hyperparameters is not commonly used in practical
applications. The usual practice is to obtain point estimates of the
hyperparameters by maximizing the log marginal likelihood.

Given a sample setD and the hyperparameter of the Gaussian
process is θ , the marginal likelihood is as shown in Equation (14):

p(Y|X, θ) =

∫

p(Y|X, f , θ)p(f |X, θ)df (14)

The marginal likelihood is mainly a marginalization of the
function. In the Gaussian process model, the prior f |X, θ of
the model is a Gaussian distribution, i.e., p(f |X, θ)=N(0,Kθ ).
When the observed likelihood function p(Y|X, f , θ) of the sample
set is also Gaussian distributed, i.e., p(Y|X, f , θ)=N(f , σ 2I),
then p(Y|X, θ) is also Gaussian distributed:

p(Y|X, θ) =

∫

N(0,KY)N(f , σ 2I)df=N(0,KY+σ 2I) (15)

According to Equation (15), the log marginal likelihood is
obtained as:

log p(Y|X, θ) = −
1

2
YTKY

−1Y−
1

2
log |KY| −

N

2
log 2π (16)

where KY = K(X,X)+σ 2I is the output covariance matrix.
The maximum likelihood estimation combined with the

conjugate gradient method is commonly used for the Gaussian
process model to achieve the estimation of the hyperparameters
of the model, and the computational complexity of this method
is O(N2) for each hyperparameter, and the computational
complexity is small. The hyperparameter estimates of the
Gaussian process model are obtained by maximizing the log
marginal likelihood function through a gradient ascent based
optimization tool:

∂
∂θi

log p(Y|X, θ) = − 1
2Y

TKY
−1 ∂KY

∂θi
KY

−1Y− 1
2 tr(KY

−1 ∂KY
∂θi

)

= 1
2 tr

(

(αα
T − KY

−1) ∂KY
∂θi

)

(17)
where α = K−1

Y Y.

2.3. Non-parametric Model for Joint Angle
Prediction Based on sEMG Signals
2.3.1. Joint Angle Prediction Based on Gaussian

Process Model
The hamstrings and quadriceps are antagonistic muscles that
together control the flexion and extension of the knee joint. The
hamstrings are the muscles of the posterior thigh and consist
mainly of the semitendinosus, semimembranosus and biceps
femoris, while the quadriceps are the muscles of the anterior
thigh and consist mainly of the vastus lateralis, vastus medialis,
vastus intermedius and rectus femoris. In this paper, the sEMG
signals of a pair of muscles in this antagonistic muscle group,
the semimembranosus and the lateral femoris, were selected
for the development of a non-parametric model for joint angle
prediction. The physiological properties of muscle activation are
combined with the GPmodel, and the squared exponential kernel
is selected for subsequent modeling and analysis to establish
a non-parametric model for joint angle prediction based on
the GP model, as shown in Figure 2, where k denotes kth
time step, e1,k and e2,k are the preprocessed sEMG signals
of semimembranosus and lateral femoris muscles, respectively,
which are then subjected to muscle activation dynamics to
calculate the muscle activation a1,k and a2,k. uk denotes the input
of the GP model, uk = [a1,k, a2,k]

T . The output of the Gaussian
process model ŷk is the predicted value of the joint angle.

FIGURE 2 | Joint angle prediction based on Gaussian process model.

Frontiers in Public Health | www.frontiersin.org 4 May 2021 | Volume 9 | Article 685596

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liang et al. GP Autoregression for Angle Prediction

FIGURE 3 | Joint angle prediction based on Gaussian process autoregressive model.

2.3.2. Joint Angle Prediction Based on Gaussian

Process Autoregressive Model
Since the neuromusculoskeletal system is a dynamic time-varying
system, the joint angle prediction based on GP model only
maps the input to the output distribution, which is a basic
static system. Therefore, this paper further considers the time
series of input and output signals to establish dynamic Gaussian
process regression.

Non-linear autoregressive with eXogenous inputs (NARX)
model is an effective method for solving non-linear sequence
problems that accommodates non-linear discrete time processes
and noisy models (36, 37). NARX is a dynamic recurrent network
that predicts the current value of the system output by using
a non-linear function f with previous inputs and outputs. The
NARX model based on the actual measured values of the output
is called One-step ahead (OSA) prediction:

y∗k = f (uk, uk−1 . . . , uk−nu , yk−1, yk−2, . . . , yk−ny ) (18)

where f (·) is the non-linear function between the input uk and
the estimated value y∗

k
and yk denotes measured value of model

output, k represents kth time step, nu and ny are the maximum
lags for model input and output, respectively.

The joint angle signal can be easily collected by inertial
measurement unit (IMU), etc., and the joint angle prediction
system can be established by EMG signals to achieve further
advance prediction of joint angle. Since the high accuracy of joint
angle prediction is required in practical applications, this paper
improves the joint angle prediction method based on GP model
by using the NARX model and muscle activation dynamics,
which establishes a Gaussian dynamic model with NARX
structure, i.e., Gaussian process autoregressive model, for joint
angle OSA prediction, as shown in Figure 3, where yk denotes
measured value of joint angle, ŷk denotes the joint angle
prediction of Gaussian process autoregressive model, Ny and Ny

are the maximum lags for model input and output, respectively.

3. EXPERIMENTS AND RESULTS

3.1. Datasets
In this paper, publicly available datasets (dataset 1 and dataset 2)
were cited to validate and analyze the proposed knee joint angle
prediction model.

3.1.1. Healthy Subjects Dataset
Dataset 1 contains gait data from 10 healthy subjects in running
condition, and Dataset 1 is published in https://simtk.org/
projects/nmbl_running. The dataset measured knee moment
signals, EMG signals and motion data of 10 healthy subjects
running on a treadmill at four speeds (2.0, 3.0, 4.0, and 5.0 m/s).
Subjects were all male (age: 29 ± 5 years; height: 1.77 ± 0.04
m; weight: 70.9 ± 7.0 kg), all provided informed consent, and
each subject was experienced in long-distance running, at least 50
km per week. Fifty-four reflective markers were placed on each
subject, and the trajectory of the markers was recorded using
eight Vicon MX40+ cameras with a data acquisition frequency
of 100 Hz. Ground reaction forces and moments were acquired
using a Bertec Corporation treadmill with a sampling frequency
of 1,000 Hz. Motion data and ground reaction forces were
preprocessed with 4th order zero-phase hysteresis Butterworth
low-pass filtering (cutoff frequency 15 Hz) and critical damping
low-pass filtering (cutoff frequency 15 Hz), respectively. The
Delsys Bangoli system was used to collect EMG signals. A total
of 11 muscles including the gluteus maximus, biceps femoris
long head, medial femoris, lateral femoris, semimembranosus,
and tibialis anterior muscles were collected. Hamner et al. gave
a complete description of the dataset (38).

3.1.2. Hemiparetic Subject Dataset
Joint angle prediction is mainly applied to the development of
rehabilitation equipment and rehabilitation training, so a gait
dataset containing a male patient with high-functioning right
hemiparesis, which is publicly available at https://simtk.org/
projects/emgdrivenmodel, was also selected for further testing
and analysis of the knee angle prediction model proposed in
this paper. The subject was 79 years old, height 1.7 m, mass
80.5 kg, with a LE Fugl-Meyer motor assessment score of
32/34 and right-sided hemiparesis. All experimental procedures
were approved by the University of Florida Health Sciences
Center Institutional Review Board (IRB-01), and the subject
signed a written informed consent prior to participation in
the experiment. The dataset collected gait data from subjects
walking on a split-belt instrumented treadmill (Bertec Corp.,
Columbus, OH) at five different speeds (0.4, 0.5, 0.6, 0.7, and 0.8
m/s), with over 50 gait cycles collected for each speed. Motion
capture in the experiments was mainly performed by an optical
motion capture system (Vicon Corp., Oxford, UK) and ground
reaction force detection was measured using the treadmill with
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FIGURE 4 | Feature extraction of the lateral femoral.

FIGURE 5 | Feature extraction of semimembranosus.

sampling frequency of 100 and 1,000 Hz, respectively. The EMG
signal acquisition was performed using Motion Lab Systems
with a sampling frequency of 1,000 Hz. Ground response and
marker motion data was filtered using a fourth-order zero-phase
lag Butterworth filter with a cutoff frequency of 7 divided by
the gait period. EMG signal data were collected for 16 muscle
groups of the lower extremity, including the anterior tibialis,
semimembranosus, long head of the biceps femoris, medial
femur, and lateral femur. A full description of this dataset is
provided by Meyer et al. (39).

3.1.3. Pre-processing and Feature Extraction Results
The sEMG signals of dataset 1 and dataset 2 are preprocessed.
Raw sEMG signals was firstly filtered using Butterworth zero
phase shift bandpass filter (4th order, cutoff frequency 40 Hz)
to eliminate low-frequency noise, then full-wave rectified and

low-pass filtered (4th order, cutoff frequency = 3.5/step period),
and finally sEMG data from each muscle were normalized to
the maximum value over all trials to obtain the processed sEMG
signals e(t).

Feature extraction was then further performed using the
muscle activation kinetic model in section 2.1. The results of pre-
processing and feature extraction for dataset 1 (subject 1, 2 m/s)
for the lateral femoral and semimembranosus muscles are shown
in Figures 4, 5.

3.2. Data Allocation Strategy
To study the effect of different speeds on joint angle prediction,
joint angle prediction results were analyzed for two datasets
of healthy subjects and hemiplegic subject in three conditions:
speed-dependent, multi-speed and speed-independent. The
normalized root mean square error (NRMSE) and correlation
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coefficient (CC) were used as evaluation indicators of the
prediction performance of the joint angle, as shown in
Equations (19) and (20).

NRMSE=
1

ymax
real

√

1

num

∑num

i=1
(yest − yreal)

2 (19)

CC=
cov(yest , yreal)

σyest · σyreal
(20)

where num denotes the number of samples tested, yest denotes
the predicted value of joint angle, yreal denotes the actual value
of joint angle, and ymax

real
denotes the maximum magnitude of the

actual joint angle value.
One-way analysis of variance (ANOVA) was conducted to

assess the statistical difference of estimation errors obtained by

different models (40). The level of statistical significance was set
to p<0.05.

Dataset 1 contained 10 subjects, each speed containing five
gait cycles, and three conditions were analyzed for each subject.
speed-dependent took the first three cycles of each speed as a
training set, and the last two cycles at the corresponding speed
as test set; multi-speed took the first three cycles of each speed
together as a training set, and the last two cycles of each speed
separately as a test set; the speed-independent took the last two
cycles of one speed in turn as test set, and the first three cycles of
each unselected speed together as training set.

Dataset 2 contained the left and right leg gait data of a
subject with right-sided hemiplegia, and the left and right leg
gait data were analyzed for three conditions. speed-dependent
tested the angle prediction results of each speed, using 10
gait cycles of a single speed as the training set and another

FIGURE 6 | Joint angle prediction under speed-dependent of subject 9.
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10 cycles of the same speed as the test set; multi-speed used
data from 5 m/s, each with 10 gait cycles, for a total of
50 gait cycles as the training set, and 10 gait cycles for
each speed as the test set; speed-independent test took 10
gait cycles of one speed in turn as the test set, and 10 gait
cycles of each of the other unselected speeds together as the
training set.

Before performing the joint angle prediction based on
Gaussian process model and Gaussian process autoregressive
model, the Gaussian process model needs to be trained offline
for different datasets according to the data allocation strategy.
In this paper, the dataset was trained and tested on the
MATLAB platform, and the Gaussian process regression model
was trained offline using the “fitrgp” function. The method
of estimating the model parameters was set to “exact,” and
the point estimates of the hyperparameters were obtained

by maximizing the log marginal likelihood, and the kernel
function was set to the squared exponential kernel function.
The input signal for offline training of joint angle prediction
based on Gaussian process model was the muscle activation
of lateral femoral and semimembranosus muscles, and the
output was the normalized joint angle signal. Given that
muscle dynamics is a second-order model, the joint angle
prediction based on the Gaussian process autoregressive model
is set to second order, which lead to the number of the
maximum lags for model input and output be 2, i.e., nu
= ny = 2. Therefore, the output signal of offline training
was the joint angle signal, and the input was the muscle
activation. The model was trained offline and joint angle
prediction was performed according to the data allocation
strategy for different datasets under different data allocation
strategies, respectively.

FIGURE 7 | Joint angle prediction under multi-speed of subject 9.
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FIGURE 8 | Joint angle prediction under speed-independent of subject 9.

3.3. Estimation Results
3.3.1. Joint Angle Prediction Results for Dataset 1
The proposed method was tested using the data in dataset
1. Subjects were tested for knee angle prediction in three
cases, speed-dependent, multi-speed, and speed-independent,
according to the data allocation strategy, and the test results for
subject 9 knee angle predictionwere shown in Figures 6–8, where
“NARX-GP” was the joint angle prediction based on the Gaussian
process autoregressivemodel, “GP” was the joint angle prediction
based on the Gaussian process model, and “measurement” was
the actual measurement of joint angle. The gray shading was
the 95% confidence interval (µ ± 2σ ) for the prediction of the
joint angle based on the Gaussian process autoregressivemodel to
describe the uncertainty. From Figures 6–8, it can be concluded
that the direct joint angle prediction by Gaussian process model
cannot describe the relationship between sEMG signal and joint

angle well, and the knee joint angle prediction results have a
large error. Establishing a Gaussian process autoregressive model
for OSA prediction of joint angle can significantly improve the
prediction accuracy and can approximate the actual joint angle
signal. OSA prediction incorporates the actual values of the
previous moments of output into the model structure with high
prediction accuracy, and is suitable for scenarios where the actual
measurements of the output are easy to collect and where high
prediction accuracy is required. The joint angle signal can be
easily collected by inertial measurement unit (IMU), etc., and the
joint angle prediction system can be established by EMG signals
to achieve further advance prediction of joint angle.

Further error assessment and statistical analysis of the
prediction results were performed, and the mean NRMSE and
CC between the predicted and actual measurements for different
velocity joint angles of the subjects are shown in Figures 9, 10.
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FIGURE 9 | Average NRMSE for prediction of joint angle under different speed.

FIGURE 10 | Average CC for prediction of joint angle under different speed.

It can be seen from the figures that the prediction results of
the NARX-GP model were significantly better than those of
the GP model, the NRMSE between the prediction results of
the NARX-GP model for knee joint angle and the actual knee
joint angle was small and significantly smaller than that of the
GP model, and the strong correlation between the prediction
results of the NARX-GP model and the actual values of the
joint angle with a higher correlation coefficient than that of
the GP model.

The means and standard deviations of NRMSE and CC
between predicted and actual values of joint angles for
all subjects in speed-dependent, multi-speed and speed-
independent conditions are shown in Tables 1, 2. From
Tables 1, 2, it can be seen that the predictions of the NARX-GP
model were highly correlated, and the NRMSE of the predictions
was significantly lower than that of the GP model. The mean
NRMSE was further calculated as 0.0039 ± 0.019, 0.0038 ±

0.0019, and 0.0059 ± 0.0061 for all subjects in the NARX-GP
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model in the load-dependent, multi-load and load-independent
conditions, 0.1728 ± 0.0543, 0.1795 ± 0.0563, and 0.2003
± 0.0659 for the GP model. ANOVA was used to evaluate
NRMSE of NARX-GP and GP model predictions, showing
significant differences (p < 0.05, p < 0.05, and p < 0.05). The
NARX-GP model prediction errors were smallest for all three
scenarios, and slightly larger for load-independent. The joint
angle prediction results of the GP model for all three scenarios
were optimal for speed-dependent, with the smallest NRMSE,

followed by multi-speed, and worst for speed-independent.
The variability of joint motion at different speeds affected the
prediction results of the model, and the experimental results
also demonstrated that the speed-dependent results were
optimal and the speed-independent results were the worst.
The average NRMSE of NARX-GP model prediction results
for all scenarios was 0.0045 ± 0.0040, which was better than
the GP model results (0.1842 ± 0.0602), with a significant
difference (p<0.05).

TABLE 1 | NRMSE between the estimated joint torque of different models and the measurements (“true” values) of all subjects (mean ± std).

2 m/s 3 m/s 4 m/s 5 m/s

Speed-dependent
GP 0.1788 ± 0.0756 0.1802 ± 0.0475 0.1604 ± 0.0483 0.1718 ± 0.0356

NARX-GP 0.0046 ± 0.0016 0.0039 ± 0.0023 0.0031 ± 0.0023 0.0041 ± 0.0021

Multi-speed
GP 0.1850 ± 0.0735 0.1745 ± 0.0489 0.1712 ± 0.0457 0.1874 ± 0.0510

NARX-GP 0.0052 ± 0.0028 0.0033 ± 0.0010 0.0030 ± 0.0011 0.0035 ± 0.0011

Speed-independent
GP 0.2075 ± 0.0697 0.1852 ± 0.0560 0.1910 ± 0.0563 0.2174 ± 0.0746

NARX-GP 0.0086 ± 0.0086 0.0039 ± 0.0014 0.0046 ± 0.0030 0.0066 ± 0.0072

TABLE 2 | CC between the predicted joint angle of different models and the measurements (“true” values) of all subjects (mean ± std).

2 m/s 3 m/s 4 m/s 5 m/s

Speed-dependent
GP 0.6276 ± 0.4151 0.7819 ± 0.1202 0.8241 ± 0.1120 0.8170 ± 0.1080

NARX-GP 0.9999 ± 0.0001 0.9999 ± 0.0002 0.9999 ± 0.00004 0.9999 ± 0.0001

Multi-speed
GP 0.6381 ± 0.3708 0.7744 ± 0.1573 0.8026 ± 0.1141 0.7710 ± 0.1591

NARX-GP 0.9998 ± 0.0002 0.9999 ± 0.00003 0.9999 ± 0.00003 0.9999 ± 0.0001

Speed-independent
GP 0.5970 ± 0.3333 0.7387 ± 0.2172 0.7493 ± 0.1540 0.6733 ± 0.2494

NARX-GP 0.9991 ± 0.0020 0.9999 ± 0.00006 0.9998 ± 0.0002 0.9996 ± 0.0009

FIGURE 11 | Joint angle prediction of 5 m/s (speed-dependent).
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FIGURE 12 | Joint angle prediction of 5 m/s (multi-speed).

FIGURE 13 | Joint angle prediction of 5 m/s (speed-independent).

3.3.2. Joint Angle Prediction Results for Dataset 2
The proposed method was further tested using the data in dataset
2 to validate the accuracy of the proposed method for predicting
the knee joint angle of patients. To reduce the influence of
different muscle selections on the prediction results, the sEMG
signals of the same pair of muscles, semimembranosus and lateral
femoris, were selected for testing in dataset 2 as in dataset
1 and used to build a non-parametric model for joint angle
prediction. Dataset 2 included data from the left and right legs

of patients with different speeds, so the joint angle prediction
results of subjects in three cases of speed-dependent, multi-
speed and speed-independent were tested separately for the left
and right legs according to the data allocation strategy, and
the test results of joint angle prediction for speed of 5 m/s
are shown in Figures 11–13, where “NARX-GP” was the joint
angle prediction based on the Gaussian process autoregressive
model, “GP” was the joint angle prediction based on the Gaussian
process model, and “measurement” was the actual measurement
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FIGURE 14 | Angle prediction results of NARX-GP model and GP model for hemiplegic subject dataset.

FIGURE 15 | Angle prediction results of NARX-GP model and GP model for hemiplegic subject dataset.

of joint angle. The gray shading was the 95% confidence interval
for the prediction of the joint angle based on the Gaussian
process autoregressive model to describe the uncertainty. From
Figures 11–13, it can be concluded that the patient’s knee
joint NARX-GP model has better angle prediction than the
GP model and can achieve good prediction results, and the
joint angle prediction can approximate the actual joint angle
for both the healthy side and the affected side (right side) of
the patient.

The error assessment and statistical analysis of the prediction
results of the NARX-GP model and the GP model for the
hemiplegic subject dataset, the NRMSE and CC between the
predicted and actual values of joint angles at different speeds are
shown in Figures 14, 15. The errors between the predicted results
and the actual values of joint angles for both the left and right leg
NARX-GPmodels were small, highly correlated, and significantly
better than the GP model.

Further evaluation and analysis of variance of the prediction
results for the left and right legs of the dataset showed that
the mean NRMSE of the prediction results of the NARX-GP
model for the left and right legs were 0.0063 ± 0.0081 and
0.0032 ± 0.0028, respectively, which were significantly better
than those of the GP model (0.1466 ± 0.0127 and 0.1012 ±

0.0092), with significant differences (p < 0.05 and p < 0.05).
Joint angle prediction using the NARX-GP model for both the
healthy and affected side of the patient was able to have high
accuracy with no significant difference (p = 0.1919 > 0.05).

the NRMSE of the NARX-GP model prediction results for all
scenarios was 0.0047 ± 0.0063 on average, which was better
than the GP model results (0.1239 ± 0.0253) with a significant
difference (p<0.05).

4. DISCUSSION AND CONCLUSION

The EMG signal contains abundant motion information, which
is ahead of the actual joint motion, and is often used as a control
signal to predict joint motion. Therefore, EMG signals are widely
used in applied scientific research related to the development of
intelligent rehabilitation technologies and devices. EMG signal
based modeling of the neuromusculoskeletal system, as an
important component of joint motion prediction, has become a
hot topic of research as it is important to help the development
of rehabilitation techniques and equipment for patients with
sports injuries. There is uncertainty in the neuromusculoskeletal
system, and in order for the model to provide a description of
the uncertainty, this paper proposes to model the uncertainty
using a Gaussian autoregressive model. The muscle activation
dynamics model was first introduced into the Gaussian process
model to establish a joint angle prediction model based on
Gaussian process. Due to the high requirement for joint angle
prediction accuracy in practical applications and the fact that
the neuromusculoskeletal system is a dynamic non-linear system,
the NARX model was introduced into the Gaussian process
model to establish a Gaussian autoregressive model to achieve
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OSA prediction of knee joint angle. The results of different
test scenarios on the healthy subjects and hemiplegic subject
datasets showed that the designed Gaussian autoregressive model
had significantly better prediction accuracy than the Gaussian
process model, and there was no significant difference in the
prediction accuracy between the affected and healthy sides of
the hemiplegic subject, both of which were able to achieve more
accurate prediction results for knee angles and could provide
uncertainty information.

In this paper, a non-parametric model for knee joint angle
prediction was developed from a predictive value-based NARX
model approach by mixing a muscle activation kinetic model
with a data-driven model. The proposed modeling approach was
validated with a publicly available dataset. The proposed method
utilizes only the EMG signals of a pair of antagonistic muscles,
reducing the cost of EMG signal detection and the complexity
of the model. However, there are still some shortcomings in this
paper and there aremany problems that have not yet been studied
with some need for improvement. In this paper, the performance
of only one pair of antagonist muscles in the hamstrings and
quadriceps was tested, and the effect of sEMG signals from
other muscles in the hamstrings and quadriceps as input on the
accuracy of knee joint angle prediction can be further tested. In
addition, although the knee joint is used as the research object
for the study and validation of the model in this paper, the
proposed joint angle prediction method is not limited to the knee
joint angle prediction. In the subsequent research, the proposed
method can be applied to the angle prediction of other joints for
relevant testing and validation.
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21. Belić JJ, Faisal AA. Decoding of human hand actions to handle

missing limbs in neuroprosthetics. Front Comput Neurosci. (2015) 9:27.

doi: 10.3389/fncom.2015.00027

22. Zeng Y, Yang J, Yin Y. Gaussian process-integrated state space model for

continuous joint angle prediction from EMG and interactive force in a

human-exoskeleton system. Appl Sci. (2019) 9:1711. doi: 10.3390/app90

81711

23. Raj R, Sivanandan K. Comparative study on estimation of elbow kinematics

based on EMG time domain parameters using neural network and ANFIS

NARX model. J Intell Syst Fuzzy. (2017) 32:791–805. doi: 10.3233/JIFS-16070

24. Li Z, Hayashibe M, Fattal C, Guiraud D. Muscle fatigue tracking with evoked

EMG via recurrent neural network: toward personalized neuroprosthetics.

IEEE Comput Intell Mag. (2014) 9:38–46. doi: 10.1109/MCI.2014.2307224

25. Raj R, Ramakrishna R, Sivanandan KS. A real time surface electromyography

signal driven prosthetic hand model using PID controlled DC motor. Biomed

Eng Lett. (2016) 6:276–86. doi: 10.1007/s13534-016-0240-4

26. Gupta R, Dhindsa IS, Agarwal R. Continuous angular position estimation

of human ankle during unconstrained locomotion. Biomed Signal Process

Control. (2020) 60:101968. doi: 10.1016/j.bspc.2020.101968

27. Liu Z,Wang X, SuM, Le L. Research on rehabilitation training bed with action

prediction based on NARX neural network. Int J Imaging Syst Technol. (2019)

29:539–46. doi: 10.1002/ima.22334

28. Raj R, Sivanandan K. Elbow joint angle and elbow movement velocity

estimation using NARX-multiple layer perceptron neural networkmodel with

surface EMG time domain parameters. J Back Rehabil Musculoskel. (2017)

30:515–25. doi: 10.3233/BMR-160525

29. Zajac FE. Muscle and tendon: properties, models, scaling, and application to

biomechanics and motor control. Crit Rev Biomed Eng. (1989) 17:359–411.

30. Buchanan TS, Lloyd DG, Manal K, Besier TF. Neuromusculoskeletal

modeling: estimation of muscle forces and joint moments and movements

from measurements of neural command. J Appl Biomech. (2004) 20:367–95.

doi: 10.1123/jab.20.4.367

31. Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate

muscle forces and knee joint moments in vivo. J Biomech. (2003) 36:765–76.

doi: 10.1016/S0021-9290(03)00010-1

32. Li Y, Chen W, Yang H, Li J, Zheng N. Joint torque closed-loop estimation

using NARX neural network based on sEMG signals. IEEE Access. (2020)

8:213636–46. doi: 10.1109/ACCESS.2020.3039983

33. Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian process

regression: modelling, exploring, and exploiting functions. J Math Psychol.

(2018) 85:1–16. doi: 10.1016/j.jmp.2018.03.001

34. Williams CKI. Gaussian Processes for Machine Learning. Taylor & Francis

Group (2006).

35. Stein ML. Interpolation of Spatial Data: Some Theory for Kriging. Springer

Science & Business Media (2012).

36. Leontaritis I, Billings SA. Input-output parametric models for non-linear

systems part I: deterministic non-linear systems. Int J Control. (1985) 41:303–

28. doi: 10.1080/0020718508961129

37. Leontaritis I, Billings SA. Input-output parametric models for non-linear

systems part II: stochastic non-linear systems. Int J Control. (1985) 41:329–44.

doi: 10.1080/0020718508961130

38. Hamner SR, Delp SL. Muscle contributions to fore-aft and vertical body

mass center accelerations over a range of running speeds. J Biomech. (2013)

46:780–7. doi: 10.1016/j.jbiomech.2012.11.024

39. Meyer AJ, Patten C, Fregly BJ. Lower extremity EMG-driven modeling of

walking with automated adjustment of musculoskeletal geometry. PLoS ONE.

(2017) 12:e0179698. doi: 10.1371/journal.pone.0179698

40. Babak S. Biostatistics With R: An Introduction to Statistics Through Biological

Data. New York, NY: Springer New York (2012).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Liang, Shi, Zhu, Chen, Chen and Li. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 15 May 2021 | Volume 9 | Article 685596

https://doi.org/10.1109/ICAR.2015.7251472
https://doi.org/10.1109/TNSRE.2017.2699598
https://doi.org/10.1109/TIE.2019.2898614
https://doi.org/10.3389/fncom.2015.00027
https://doi.org/10.3390/app9081711
https://doi.org/10.3233/JIFS-16070
https://doi.org/10.1109/MCI.2014.2307224
https://doi.org/10.1007/s13534-016-0240-4
https://doi.org/10.1016/j.bspc.2020.101968
https://doi.org/10.1002/ima.22334
https://doi.org/10.3233/BMR-160525
https://doi.org/10.1123/jab.20.4.367
https://doi.org/10.1016/S0021-9290(03)00010-1
https://doi.org/10.1109/ACCESS.2020.3039983
https://doi.org/10.1016/j.jmp.2018.03.001
https://doi.org/10.1080/0020718508961129
https://doi.org/10.1080/0020718508961130
https://doi.org/10.1016/j.jbiomech.2012.11.024
https://doi.org/10.1371/journal.pone.0179698
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals
	1. Introduction
	2. Materials and Methods
	2.1. Muscle Activation Dynamics
	2.2. Gaussian Process
	2.3. Non-parametric Model for Joint Angle Prediction Based on sEMG Signals
	2.3.1. Joint Angle Prediction Based on Gaussian Process Model
	2.3.2. Joint Angle Prediction Based on Gaussian Process Autoregressive Model


	3. Experiments and Results
	3.1. Datasets
	3.1.1. Healthy Subjects Dataset
	3.1.2. Hemiparetic Subject Dataset
	3.1.3. Pre-processing and Feature Extraction Results

	3.2. Data Allocation Strategy
	3.3. Estimation Results
	3.3.1. Joint Angle Prediction Results for Dataset 1
	3.3.2. Joint Angle Prediction Results for Dataset 2


	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


