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Rheumatoid arthritis (RA) is a chronic autoimmune disorder that commonly manifests

as destructive joint inflammation but also affects multiple other organ systems. The

pathogenesis of RA is complex where a variety of factors including comorbidities,

demographic, and socioeconomic variables are known to associate with RA and

influence the progress of the disease. In this work, we used a Bayesian logistic regression

model to quantitatively assess how these factors influence the risk of RA, individually

and through their interactions. Using cross-sectional data from the National Health and

Nutrition Examination Survey (NHANES), a set of 11 well-known RA risk factors such

as age, gender, ethnicity, body mass index (BMI), and depression were selected to

predict RA. We considered up to third-order interactions between the risk factors and

implemented factor analysis of mixed data (FAMD) to account for both the continuous

and categorical natures of these variables. The model was further optimized over the

area under the receiver operating characteristic curve (AUC) using a genetic algorithm

(GA) with the optimal predictive model having a smoothed AUC of 0.826 (95% CI:

0.801–0.850) on a validation dataset and 0.805 (95% CI: 0.781–0.829) on a holdout test

dataset. Apart from corroborating the influence of individual risk factors on RA, our model

identified a strong association of RA with multiple second- and third-order interactions,

many of which involve age or BMI as one of the factors. This observation suggests

a potential role of risk-factor interactions in RA disease mechanism. Furthermore, our

findings on the contribution of RA risk factors and their interactions to disease prediction

could be useful in developing strategies for early diagnosis of RA.

Keywords: rheumatoid arthritis, comorbidities, interactions, prediction, Bayesian, NHANES, genetic algorithm,

factor analysis of mixed data

1. INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disorder of the joints and internal organs
that affects 0.5–1.0% of the adult population worldwide (1, 2). It is a major cause of disability and
is associated with an increased risk of premature death (3). The chronic and progressive nature of
RA poses a significant financial burden, with the annual societal cost of RA estimated to be $19.3
billion in the United States alone (4). Despite its profound impact on society and the healthcare
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system, many aspects of this complex, multifactorial disease
remain unknown. A variety of genetic, environmental, and
behavioral risk factors have been identified for RA and its
associationwith a number of comorbidities has been reported (5).
Since current medicine does not offer a cure for RA, the major
therapeutic goal is preventing flare-ups, inducing fast remission,
and slowing down progressive changes such as irreversible joint
deformity (6). Despite RA’s demand for close and specialized
medical supervision, the number of rheumatologists across the
United States has been steadily decreasing. There were roughly
5,000 practicing rheumatologists in 2015, but this number is
projected to decrease to 3,500 by the year 2025 (7). One
promising approach to address this increasing disparity in the
patient-to-rheumatologist ratio is the development of analytical
tools to facilitate early diagnosis and predict disease progression,
thus enabling better access to care and improving the plan for
managing the disease.

RA has a strong connection to age and sex. Disease onset is
most likely between 50 and 75 years of age (5, 8) and females
are affected 2–3 times more than males (5). Race and ethnicity
are also known to influence RA; for example, a lower rate of
remission and increased disease activity are reported in African-
Americans relative to whites (9). While the reason for such
differences is not completely understood, the presence of a
“shared epitope”(SE) that is highly correlated with RA severity
and outcome is suggested to underlie the higher incidence of
the disease in certain sub-populations (10, 11). Apart from
demographic factors, several genetic, environmental, behavioral,
and socioeconomic risk factors are identified for RA (5, 12).
Increased RA incidence in the presence of a family history with
66% heritability observed among twins suggests a genetic link of
RA (13). SE alleles within the major histocompatibility complex
are shown to have the strongest association with RA, accounting
for up to 40% of total genetic risk (12, 13). Environmental factors
that can increase the risk of RA include certain infections such as
Porphyromonas gingivalis bacteria and Epstein-Barr virus (EBV),
where an inappropriate immune response to these microbial
agents could trigger autoimmunity (14, 15). Additionally, air
pollution and occupational exposure to silica have been reported
to increase the risk of RA (16, 17). Multiple studies show a
strong association of RA with history of tobacco smoking, and
the risk of RA increases with the intensity of smoking (18–20).
Lower socioeconomic status and less education pose a higher risk
of developing the disease (21) as well as experiencing a poorer
prognosis (22).

Comorbidities are widespread with RA and often contribute
to worse health outcomes (23, 24). Consistent with the complex,
systemic nature of RA, these comorbidities often also affect
many systems in the body. Among them are widely prevalent
chronic conditions such as cardiovascular disease (CVD) and
diabetes, which increase the risk of mortality in RA patients (25,
26). Likewise, hypertension and depression increase the risk

Abbreviations: FAMD, factor analysis of mixed data; HDI, highest density

interval; GA, genetic algorithm; SEC, socieconomic condition; IPR, income to

poverty ratio; MA, mexican-american; OH, other hispanic; ONH, other non-

hispanic; BP, systolic blood pressure; PHQ, patient health questionnaire.

of disability (26). Gout, another disease of joints, has been
found to have a higher association with RA (27). Additionally,
RA interferes with the antinociceptive pathway, resulting in
enhanced pain perception and leading to a greater risk of sleep
problems (28, 29). Several of RA’s comorbidities, such as obesity
and depression, demonstrate a bidirectional association with RA,
implying their presence elevates the risk of developing RA (30,
31). It is of great clinical interest for physicians and researchers
to study the concurrent presence of high Body Mass Index
(BMI), depression, and CVD in RA patients as it poses a unique
clinical repertoire and has significant consequences on affected
individuals. Therefore, careful consideration of comorbidities is
important for clinicians working in rheumatology care.

Studies have aimed to predict the occurrence of common
diseases like CVD to provide early diagnosis or risk assessment
using data mining, machine learning algorithms, and
mathematical modeling (32). While some studies have attempted
to predict RA using a similar approach (33, 34), these studies
were neither very selective in defining relevant factors for disease
prediction nor did consider their interactions. Karlson et. al. (35)
developed prediction models for RA from a combination of
clinical and genetic predictors. The models considered age, sex,
and smoking as clinical risk factors and studied eight human
leukocyte antigen (HLA) and 14 single nucleotide polymorphism
(SNP) alleles associated with seropositive RA as genetic risk
factors. Models considering either clinical risk factors alone
or both clinical and genetic risk factors were compared for
discrimination ability using the receiver operating characteristic
(ROC) curve. The models with clinical risk factors alone had
areas under the ROC curve (AUC) of 0.566-0.626, while models
considering both clinical and genetic risk factors had AUC of
0.660-0.752, indicating an improvement of discrimination ability
following the inclusion of genetic risk factors. Chibnik et. al. (36)
developed a weighted Genetic Risk Score (GRS) from 39 alleles
associated with an increased risk of RA. After controlling for
age and smoking, the authors used the Genetic Risk Score in
a logistic regression to discriminate between non-RA and four
phenotypes of RA in the NHS dataset. Their model predicted
seronegative, seropositive, erosive and seropositive, and erosive
RA with AUCs of 0.563, 0.654, 0.644, and 0.712, respectively.
Several other studies (37–40) have performed similar predictive
analyses using a combination of environmental and genetic risk
factors to create models with good discrimination abilities. The
best predictive model we are aware of (as measured by AUC)
was developed by Scott, et. al. (41). In this study, the authors
considered age, sex, and 25 human leukocyte antigens and 31
single nucleotide polymorphism alleles to develop a model
with an AUC of 0.857 (95% CI: 0.804–0.910), indicating high
discrimination ability.

While previous studies have demonstrated the feasibility of
predicting RA from environmental and genetic information,
patient genetic data are not readily available in a regular
healthcare set-up, thus limiting their practical applicability. In
this work, we aimed to develop a predictive model of RA using
information commonly available in peripheral health centers
or rural infrastructures, such as comorbidities, demographic,
socioeconomic, and behavioral factors that are known to
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FIGURE 1 | Study methods diagram.

associate with RA. We used Bayesian logistic regression to
build our model and considered up to third-order interaction
between the variables (Figure 1). Furthermore, to reduce the
computational need without compromising predictive accuracy,
we implemented FAMD and wrapper methods, which allowed
the selection of the most important variables for the model.

2. MATERIALS AND METHODS

2.1. Description of Data and Preprocessing
Subjects in this study were participants in the National Health
and Nutrition Examination Survey (NHANES)1, a biannual
survey designed to assess the health of the US population
administered by the Centers for Disease Control and Prevention.
NHANES offers freely accessible detailed health datasets on
a sample drawn from the US that is representative of
the national population. These datasets provide information
on demographic variables, socioeconomic condition, survey
questionnaires, and bio-specimen examinations. Participants are
deidentified and represented by a unique sequence number in
each dataset.

NHANES data cohorts from 2007 to 2016 were used in
this study, providing an initial dataset with 48,484 participants
(Figure 2). The survey protocol and data collection methods
for the data were approved by the National Center for Health
Statistics Research Ethics Review Board (protocol #2005-06 and
protocol #2011-17). The Institutional Review Board (IRB) at the
researchers’ institution does not require an IRB approval or an
exemption for the analysis of de-identified and publicly available
NHANES data. NHANES uses a multistage, probabilistic

1https://www.cdc.gov/nchs/nhanes/

sampling design to select participants and provides sample
weights for variables to obtain a more accurate estimate of the
nationally representative population. While the implementation
of sample weights for complex survey data is straightforward for
classical analysis, this is a challenging problem for a Bayesian
model and is still an active area of research (42, 43). In our
preliminary analysis with NHANES RA sample data, we did not
find any substantial changes in the distribution of variables after
sample weight adjustment and therefore we used the data in our
model without further accounting for the sample weights.

Information on demographics, medical conditions,
depression, body measures, blood pressure, diabetes, smoking
habits, and sleep were obtained from each release cycle, giving
a total of 11 variables. Data for gender, age, ethnicity, and
socioeconomic condition were obtained from the demographics
datasets. Socioeconomic condition was measured using the ratio
of a participant’s family’s income to their poverty threshold
(IPR). Participants 17 years old or younger were excluded
from the analysis to prevent confounding effects from juvenile
RA. Participants were divided into five categories according
to their reported ethnicity: Mexican-American (MA), other
Hispanic (OH), white, black, and other non-Hispanic (ONH).
The ethnicity variable was coded into four new dummy variables
using the white ethnicity as the reference category because it
contained the largest number of participants. Self-reported
diagnoses of RA and gout were obtained from the medical
questionnaire dataset. Depression was measured using the
nine-question Patient Health Questionnaire (PHQ) (44). Scores
on each of the nine questions were manually summed to create
a quasi-continuous variable for measuring depression. BMI for
each participant was obtained from the body measures dataset
as a continuous measurement of obesity. Systolic blood pressure
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FIGURE 2 | Selection of study population.

(BP) was calculated from the average of four readings in the
blood pressure dataset. Self-reported diagnosis of diabetes were
used in this analysis. Borderline diabetes was not considered as
diabetes. Participants were included in the smoking category if
they indicated smoking of at least 100 cigarettes in their life on
the smoking questionnaire. Nightly hours of sleep were recorded
in 1-h increments with a maximum of 12 to accommodate for
variations in NHANES data collection between 2007–2014 and
2015–2016.

Participants who responded “don’t know,” refused to respond,
or had missing data for any variable were excluded from
this study, retaining 17,366 participants who fulfilled the
selection criteria (Figure 2). We created second- and third-order
interactions between the independent variables by multiplying
the initial variables together (except for sequence number and
RA). Interactions created by squaring binary variables and
multiplying mutually exclusive binary variables were removed
from the dataset. New variables that represent an interaction
between two or three initial variables are termed “interacted”
variables. Quantitative variables were centered and scaled to have
means of zero and standard deviations of one. This dataset was
further divided into training, validation, and test datasets by
randomly distributing to a 50–25–25% split for use in model
building and validation.

2.2. Factor Analysis of Mixed Data
The added interacted variables are highly-correlated, posing
a problem for regression analysis. Using factor analysis of
mixed data (FAMD) (45) new uncorrelated synthetic variables
were created, and data projected onto them. FAMD effectively
performs principal component analysis (PCA) on quantitative
variables and multiple correspondence analysis on qualitative
variables. PCA takes in observations of correlated variables and
constructs a change of coordinates such that the synthetic output
variables are decorrelated. Similarly, multiple correspondence
analysis takes in observations of nominal categorical variables
and returns a set of decorrelated synthetic variables that represent
the underlying structures in the original data. In both cases,
the physical interpretability of the created variables is sacrificed

to obtain favorable statistical properties, allowing efficient
representation of data by a small set of uncorrelated variables.

In FAMD, a new synthetic variable v is created by maximizing
the criterion

∑

k∈K1

r2(k, v)+
∑

q∈K2

η2(q, v), (1)

where K1 are qualitative variables, K2 are continuous variables, r
2

is Pearson’s correlation statistic, and η2 is the effect size measure
from analysis of variance model (46). A complete disjunctive
coding was performed on all qualitative variables. This created a
pair of indicator variables corresponding to each state of every
categorical variable in the dataset, all of which were already
boolean variables. This process creates K2 indicator variables that
are only used in FAMD. The original categorical variables were
kept as supplementary variables in the dataset (variables that are
not used for calculating the synthetic variables but are projected
onto them for interpretation), while all remaining quantitative
and indicator variables are active variables (used for calculating
the synthetic variables).

A decorrelated set of synthetic variables maximizing
(Equation 1) can be computed using the singular value
decomposition (SVD) of the data matrix M, whose columns
correspond variables and rows to observations, that is to the
values of those variables for participants. SVD was performed
on all active variables, amounting to calculating matrices
M = U6V

⊤, used to project the data onto orthogonal axes
(synthetic variables). U is an orthogonal matrix used to calculate
the projections of the participants onto the synthetic variables.
V was used to find the projections of the active variables on
the new synthetic variables. The projections of categorical
variables onto the synthetic variables are determined from
their indicator variables. 6 is a diagonal matrix containing the
singular values, which are in turn square-roots of variance they
explain in the dataset so that 62 is the (diagonal) covariance
matrix of the synthetic (decorrelated) variables. Synthetic
variables corresponding to variances less than one were omitted
to maintain low intercorrelation after the validation and test
datasets were projected onto them. Due to the properties of SVD,
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discarding low-variance synthetic variables is known to be the
optimal approach, in the sense of Equation (1), to construction of
reduced-order representation of the data. FAMD was performed
using the package FactoMineR (47) in R 3.6.0.

2.3. Statistical Analysis
Bayesian logistic regression was used to predict RA in this
study (48). A Bayesian approach was preferred over standard
logistic regression because the former provides full posterior
information as opposed to point-estimates by the later, and
also allows one to incorporate prior information. The model
being linear has also an advantage over the common supervised
learning algorithms such as random forest by allowing an easier
interpretation of predictor effects, important for this study.

Bayesian regression summarizes model coefficients and
predictions with probability distributions. The results are
frequently reported using the highest density interval (HDI),
which is the smallest interval corresponding to a certain
probability of the posterior distribution. Here 50% and 99%HDIs
were included in the interval plots of the posterior distributions.
Variables are ranked in the interval plots based on the posterior
probabilities that their coefficients are greater or less than one
(when transformed from log-odds to odds scale). If a coefficient’s
median is greater than one, the probability that it is greater
than one is calculated, Pr(β > 1 | y). However, if a coefficient’s
median is less than one, the probability that it is less than one
is used, Pr(β < 1 | y). Ties between coefficients with equal
probabilities of being greater or less than one are broken using
the absolute values of themedians of their posterior distributions.
A Bayesian approach also allows us to specify prior information
about model coefficients using a probability distribution (the
prior distribution).

The posterior distribution for Bayesian logistic regression up
to a normalizing factor is given by

p( Eβ|y1, . . . , yN ,X) ∝ p( Eβ)
N∏

i=1

p(yi| Eβ ,X), (2)

where p( Eβ) is the prior and p(yi| Eβ ,X) the likelihood for each data
point. The model uses a total of K predictors, combined using
coefficients Eβ = (βk)

K
k=1

, and the added intercept term β0. The
data set X contains data points Xi,k, where i indexes up to a total
ofN participants and k the predictors. Binary variables yi indicate
whether the i-th participant has RA (if so, yi = 1, otherwise
yi = 0). Because we are performing Bayesian logistic regression,
the distribution p(yi| Eβ ,X) is the Bernoulli distribution

p(yi| Eβ ,X) =
{
p yi = 1

1− p yi = 0
, (3)

where

p = F

(
β0 +

K∑

k=1

βkXi,k

)
(4)

is calculated using the standard logistic function F(x) := [1 +
exp(−x)]−1. Each of the coefficients β0,β1, . . . is assigned a

uniform prior, weighing all possible values equally. Although
uniform densities supported on the entire real line are improper,
i.e., they cannot have densities that integrate to one, such a choice
of the prior still leads to a valid posterior and is standard in
Bayesian analysis.

We implemented Bayesian logistic regression using Stan
in R 3.6.0 through the package RStan (49), which uses
Hamiltonian Monte Carlo to sample the posterior distribution
described by Equation (2). Markov chains were required to
have potential scale reduction factors below 1.1 to indicate
approximate convergence, imposing a stringent convergence
requirement (50).

2.4. Predictive Performance and Feature
Selection
A wrapper approach to feature selection was implemented in
this study to identify the optimal subset of synthetic variables
to predict RA. Feature selection is necessary to identify the
most relevant predictors from a larger set, and such operation
also improves the precision of estimated effects of the selected
predictors. A wrapper approach (as opposed to a filter or
embedded approach) uses the predictive performance of subsets
of synthetic variables to identify the optimal subset. The
predictive performance of the regression models in the genetic
algorithm (GA, described below) was determined using the
area under the receiver operating characteristic curve. Binormal
smoothing of the ROC curve is implemented for its robustness in
obtaining an unbiased estimate of themodel’s true discrimination
ability (51). This assumes that the distributions of the predicted
probabilities of response for the positive and negative cases
can be described by a pair of normal distributions, y1 and y0,
respectively:

y1 ∼ N(µ1, σ 2
1 ), y0 ∼ N(µ0, σ 2

0 ).

In this study, the binormally smoothed AUC is calculated using
two parameters:

a = µ1 − µ0

σ1
and b = σ0

σ1
.

The AUC is calculated as

AUC = 8

(
a√

1+ b2

)
, (5)

where8 is the standard normal cumulative distribution function.
Estimates for a and b are obtained by linear regression to
the equation

8−1(TPR) = a+ b8−1(FPR), (6)

where TPR and FPR represent the true positive and false positive
rates across all thresholds of classification.

A radial sweep is used to generate confidence bands for the
ROC curve to provide optimal coverage (52). Equation (6) is
transformed to polar coordinates with center (FPR = 1, TPR =
0) in ROC space. r is calculated for values of θ in increments of
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0.01 from zero to π /2. Confidence intervals (CIs) for the AUC
and for values of r are found from 10,000 bootstrapped samples
of the predicted probabilities used to generate the ROC curve.

We used a GA in this study to implement a wrapper approach
to feature selection. The GA performs an optimization to find
the best subset of synthetic variables for predictive performance
according to the AUC Equation (5). The GA was parameterized
to have a population size of 500 and run for 200 generations. The
GA was seeded with variable subsets always containing the first
seven synthetic variables and randomly containing the remaining
45 synthetic variables. All computation for the GAwas performed
using a server from the Clarkson Open Source Institute at
ClarksonUniversity with two Intel Xeon E5-2650 processors with
192 gigabytes of usable physical memory. Running the GA on this
server took approximately 2 weeks.

Rank selection was used to determine which variable subsets
would be selected for genetic transformation to create the next
population. The probability that a subset x will be selected is
given by

p(x) = 1

n

(
min+(max−min)

rank(x)

n− 1

)
, (7)

where n is the size of the population. min represents the expected
number of times the subset with the poorest predictive ability is
selected, while max represents the same for the subset with the
best predictive ability, with the constraint that min+max = 2
is imposed (53). rank(x) gives the rank of the variable subset
within the population such that the best subset has rank n.
In this study, we set min = 0.7 and max = 1.3 to allow
for substantial generational improvement while maintaining
sufficient exploration of the search space.

Each variable subset had a probability of 0.8 to be selected
for single-point crossover, which was used for its simplicity and
performance in GAs (54). Each subset was also subject to a 0.1
probability of being randomlymutated. Elitismwas implemented
using 5% of the population to maintain high-quality solutions
throughout the GA’s search. The optimal subset was tested on a
holdout set of data to assess for overfitting.

2.5. Coefficient Reconstruction
HDIs for the coefficients of the original variables are obtained
from the posterior distributions of the optimal subset of synthetic
variables. The optimal feature subset of size n was fit to the
data using eight Markov chains each with 400 samples of
the posterior distribution, creating a 3200-row by n-column
matrix A of the probability distributions of the coefficients for
synthetic variables in the logistic regression model. Columns
corresponding to synthetic variables that were omitted were set
to zero in A. Probability distributions for the coefficients of the
interacted variables B are calculated from V according to the
equation below.

B = AV
T (8)

Estimates for the binary variables in the interacted dataset were
obtained from the difference between the estimates for their
indicator variables.

3. RESULTS

3.1. Variable Selection
Selection of risk factor variables to incorporate in our model
for RA prediction was guided by their reported association
with RA and data availability in the NHANES database.
Although a large number of risk factors are reported to be
associated with RA, in the present study we selected only a
few well-known factors to better understand the contribution
of their individual and interaction effects. These variables
include disease comorbidities (diabetes, depression, high BMI,
hypertension, and gout), demographic factors (gender and
ethnicity), socioeconomic factors (IPR), and behavioral factors
(smoking and sleep hours) (Figure 3). Other RA risk factors such
as asthma or EBV infection were not included in the present
analysis even though data for these variables are available in
the NHANES database (15, 55). Consistent with the literature,
the NHANES dataset demonstrated an association of these
risk factors with RA (see Figure 3 and Table 1), although the
extent of the difference varied. For example, RA was found
to be less common among males (41.4% of RA subjects) but
the gender disparity was substantially smaller than reported
by previous studies (Figure 3A) (5). This difference could
be attributed to the survey-based diagnosis of RA, the data
preprocessing procedure, and the inherent design of NHANES
(see Supplementary Table 1). Subjects with RA were also more
likely to suffer from diabetes, gout, high BMI, depression
(measured by PHQ score), and high BP (Figures 3A,C). Risk of
RA was found to increase with age, and it was more common
among black ethnicity (56) but substantially less prevalent among
the ONH population (Figures 3B,C). Behavioral factors such as
smoking were observed more among RA subjects, while sleep
has a less conspicuous impact even though it was reported
previously (29). Interestingly, subjects with RA were found
have a lower IPR, suggesting an association of RA with lower
economic status.

A total of 11 risk factors were considered in our study,
which generated 14 first-order variables including 4 binary
variables obtained from dummy coding ethnicity, using the
white population as the reference category. For model building
and validation, the dataset was further divided into training,
validation, and test categories (Table 2). The distribution of
the variables were found to be nearly equivalent across each
category, indicating an even split after data preprocessing. A
slightly greater variation among the three datasets was observed
for the RA group, which could be attributed to a substantially
smaller number of individuals in this group than the control
no arthritis group. In order to analyze second- and third-order
interactions, we created 475 interaction variables from the 14
first-order variables, leading to a total of 489 variables.

3.2. Predictive Performance
To build our model, we first excluded the highly correlated
variables from the total set of variables containing higher-
order interactions. Since our data contained both categorical
and continuous variables, we implemented FAMD to identify
the correlated variables. A total of 52 synthetic variables with
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FIGURE 3 | Distribution of various RA risk factors in the study population. (A) Comparison between RA and no arthritis population for risk factors coded as binary

variables. (B) Prevalence of RA among various ethnicity. (C) Comparison between RA and no arthritis population for risk factors coded as continuous variables. Units:

Age, years; BMI, kg/m2; PHQ, PHQ score; Sleep, hours; IPR, nondimensional; Systolic, mmHg. MA, Mexican-American; OH, Other Hispanic.

variances greater than one were obtained by FAMD that
represented 92.3% of the variation in the training data. Table 3
summarizes these synthetic variables according to the percentage
of variance explained by each of them. A feature selection
from these synthetic variables was further performed by a
wrapper approach using GA. An optimal subset containing 33

of these synthetic variables was identified that provides the
greatest discrimination ability. Figure 4A shows the progression
of the GA’s search to find the subset of synthetic variables that
best predicts RA. 33 of the 52 total synthetic variables were
selected through this process, which was able to predict RA
with a smoothed AUC of 0.826 with 95% CI of 0.801–0.850
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TABLE 1 | Summary characteristics of demographics and risk factors for RA and

no arthritis (None) group in the study population.

Total participants (n = 17, 366)

Prop. RA None

Male 473 (41.4%) 8,523 (52.5%)

Female 670 (58.6%) 7,700 (47.5%)

Gout 122 (10.7%) 406 (2.50%)

Diabetic 308 (26.9%) 1,480 (9.12%)

Smoked 643 (56.3%) 6,769 (41.7%)

MA 157 (13.7%) 2,652 (16.3%)

OH 120 (10.5%) 1,720 (10.6%)

Black 339 (29.7%) 3,313 (20.4%)

White 476 (41.6%) 6,608 (40.7%)

ONH 51 (4.465%) 1,930 (11.9%)

x̄ (s)

Age 59.8 (13.3) 44.8 (16.8)

BMI 31.3 (7.76) 28.6 (6.62)

PHQ 5.04 (5.44) 2.81 (3.91)

Sleep 6.72 (1.75) 7.02 (1.42)

IPR 2.09 (1.49) 2.53 (1.64)

BP 129 (19.8) 122 (17.5)

Counts and percentages are shown for discrete variables; sample means and standard

deviations are shown for continuous variables. Units: Age, years; BMI, kg/m2; PHQ, PHQ

score; Sleep, hours; IPR, unitless; Systolic, mmHg. MA, Mexican-American; OH, Other

Hispanic; ONH, Other Non-Hispanic.

(Figure 4B). The potential scale reduction factors (̂R) and
estimated coefficients from the final regression model for these
selected synthetic variables are shown in Table 3. For variables
omitted through the feature selection process, the medians for
posterior distributions of coefficients (β) were set to one and do
not have R̂ values (Table 3). This subset of variables was also used
on the test dataset to obtain a smoothed AUC of 0.805 (95%
CI: 0.781–0.829), indicating high accuracy on external data and
that the model was not overfitting to the training dataset during
regression or the validation dataset during feature selection.

Interestingly, we find that even the first-order variables
alone are highly predictive, with an AUC of 0.823, and that
higher-order interactions yield only a small improvement of
AUC to 0.826. Furthermore, our approach can generate a
predictive accuracy higher than most previous works reported
even when using a small set of first-order variables (see
Supplementary Table 2) (35–37). For example, considering age
and smoking alone can generate a model with an AUC of 0.748,
and including sex further increased the AUC to 0.772. While
these findings suggest the potential of model building from first-
order variables alone, future studies are required to identify
the set of variables that maximizes the predictive accuracy of
the model.

3.3. Risk Factor Interactions
The subset of synthetic variables returned by the GA is not easily
interpretable on its own. Each synthetic variable represents a
latent variable that is a linear combination of the total pool of
489 variables. The posterior distribution of the synthetic variables

TABLE 2 | Breakdown of participants into training, validation, and test datasets with comparison of summary characteristics between RA and no arthritis (None) groups in

each dataset.

Prop. Training (n = 8,683) Validation (n = 4,342) Test (n = 4,341)

All RA None All RA None All RA None

Male 0.523 0.436 0.529 0.513 0.353 0.524 0.523 0.434 0.529

Gout 0.030 0.103 0.024 0.033 0.112 0.028 0.027 0.100 0.022

Diabetic 0.106 0.270 0.095 0.099 0.283 0.087 0.098 0.244 0.088

Smoked 0.428 0.555 0.419 0.419 0.543 0.410 0.435 0.595 0.424

MA 0.163 0.128 0.166 0.157 0.152 0.157 0.163 0.129 0.166

OH 0.105 0.097 0.106 0.114 0.123 0.114 0.102 0.111 0.101

Black 0.208 0.305 0.201 0.216 0.309 0.210 0.205 0.269 0.200

White 0.410 0.427 0.408 0.402 0.368 0.404 0.412 0.448 0.409

ONH 0.114 0.043 0.119 0.111 0.048 0.115 0.118 0.043 0.124

x̄ (s)

Age 45.6 (16.9) 59.9 (13.3) 44.6 (16.6) 45.9 (17.1) 59.5 (13.4) 45.0 (16.9) 45.8 (17.1) 59.6 (13.2) 44.8 (16.9)

BMI 28.7 (6.65) 31.4 (7.49) 28.5 (6.54) 28.9 (6.81) 31.6 (7.75) 28.7 (6.70) 28.6 (6.59) 30.6 (7.91) 28.4 (6.47)

PHQ 2.89 (4.03) 4.80 (5.45) 2.76 (3.88) 3.01 (4.16) 5.37 (5.69) 2.84 (3.98) 3.03 (4.02) 5.11 (5.18) 2.88 (3.88)

Sleep 7.01 (1.44) 6.83 (1.68) 7.02 (1.42) 7.02 (1.47) 6.79 (1.76) 7.03 (1.45) 7.01 (1.44) 6.46 (1.81) 7.05 (1.40)

IPR 2.50 (1.64) 2.13 (1.50) 2.53 (1.64) 2.50 (1.63) 2.05 (1.50) 2.54 (1.63) 2.51 (1.65) 2.11 (1.48) 2.54 (1.65)

BP 123 (17.9) 130 (19.9) 122 (17.6) 123 (18.0) 130 (20.6) 122 (17.7) 123 (18.3) 129 (19.7) 122 (18.1)

Proportions are shown for binary variables. Sample means and standard deviations are reported for continuous variables. Units: Age, years; BMI, kg/m2; PHQ, PHQ score; Sleep, hours;

IPR, unitless; Systolic, mmHg. MA, Mexican-American; OH, other Hispanic; ONH, other non-Hispanic.
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TABLE 3 | Percentage of variance explained, R̂, and medians for posterior distributions of coefficients for synthetic variables (β) returned by FAMD.

Var % Exp R̂ β Var % Exp R̂ β Var % Exp R̂ β Var % Exp R̂ β

1 10.3 1.00 1.0963 14 1.60 1.00 0.9788 27 0.849 — 1 40 0.442 1.00 0.9086

2 7.30 1.00 1.0545 15 1.59 1.00 0.9239 28 0.821 — 1 41 0.433 — 1

3 6.65 1.00 0.9542 16 1.49 1.00 0.8932 29 0.802 1.00 1.1096 42 0.419 — 1

4 6.49 1.00 0.9640 17 1.24 — 1 30 0.740 1.00 1.0633 43 0.387 — 1

5 6.17 1.00 0.9967 18 1.21 1.00 0.9688 31 0.658 1.00 1.0092 44 0.367 — 1

6 5.96 1.00 0.9963 19 1.18 1.00 0.9598 32 0.630 1.00 0.9839 45 0.343 — 1

7 5.19 1.00 0.9836 20 1.15 1.00 1.0240 33 0.590 1.00 0.9812 46 0.336 — 1

8 4.26 1.00 1.0169 21 1.07 — 1 34 0.552 — 1 47 0.304 1.00 0.9828

9 3.31 1.00 0.8923 22 1.04 — 1 35 0.537 1.00 0.9777 48 0.281 — 1

10 2.91 1.00 1.0987 23 1.02 — 1 36 0.493 1.00 1.0614 49 0.277 1.00 0.9798

11 2.61 1.00 0.9484 24 0.931 — 1 37 0.491 — 1 50 0.262 1.00 1.0314

12 1.83 1.00 1.0846 25 0.903 1.00 1.0062 38 0.470 1.00 0.9688 51 0.248 1.00 0.8923

13 1.61 1.00 1.0362 26 0.872 — 1 39 0.466 — 1 52 0.230 — 1

Synthetic variables omitted through feature selection have β set to one and do not have R̂ values.

FIGURE 4 | Performance of genetic algorithm (GA) for feature selection. (A) Convergence of GA on an optimal subset of synthetic variables with maximum, mean,

and median fitness values in each generation of the search. (B) ROC curves and confidence bands of optimal model predicting on validation datasets (confidence

region shaded blue) and test datasets (confidence region shaded green). Dashed line represents the ROC curve of a model with no predictive ability, corresponding to

an AUC of 0.5.

obtained through this process was used to construct HDIs for
each of the 489 variables using Equation (8). Furthermore, to
allow intuitive comparison across variable types and effect orders,
the coefficient estimates were computed for the standardized
versions of the variables (Figure 5). Thus, the variables withHDIs
further away from 1.0 are more significant predictors of RA,
while a narrower interval indicates a greater certainty about how
a specific variable affects RA. The analysis aims to identify the
effects of first-order variables and the influence of any second-
and third-order interactions as illustrated in Figure 5A.

The prediction of RA in the test dataset by the first-order
variables overall aligns well with the association of these variables
to RA observed in Figure 3. Age, BMI, depression (PHQ score),

diabetes, gout, and smoking are found to be positive predictors,
while male gender and financial wellness (IPR) reduce the risk
of having RA (Figure 5B). A clear influence of ethnicity is also
observed: Risk of RA is higher among black population and lower
among Mexican-American population when compared against
white. Interestingly, sleep emerged as a strong negative predictor
(the most influential first-order variable after age), even though
an association of RA and sleep was not clearly observed in the
data. In contrast, systolic BP played no effect on RA prediction
as a first-order variable (HDI roughly symmetric about one),
although RA subjects had a higher mean systolic BP than the
control population. The key first order effects are summarized in
Table 4 and RA probabilities against the amplitude of variables
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FIGURE 5 | (A) A schematic illustrating the interaction analysis between four risk factors. Size of vertices, thickness of edges, and color of faces denote the size of

first-, second-, and third-order effects, respectively. (B–D) Posterior distributions of standardized coefficients for selected variables. HDIs for (B) all first-order variables,

(C) most influential second-order, and (D) third-order variables (inner bounds, 50% HDIs; outer bounds, 99% HDIs). Horizontal scale represents the odds multipliers

for risk of RA for one standard deviation increase in value of the variables. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic.
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TABLE 4 | Summary of key findings for (A) first-order, (B) second-order, and (C)

third-order variables.

(A) Risk factor β̂ Comments

Age 1.0533–1.0765 • Aging increases risk for RA

• Most influential first-order effect

Sleep 0.9526–0.9768 • More sleep decreases risk of RA

BMI 1.0088–1.0308 • Higher BMI increases risk of RA

• Weaker first-order effect

BP 0.9856–1.0153 • No direct effect on risk of RA

ONH 0.9785–1.0032 • No direct effect on risk of RA

(B) Risk factor β̂ Comments

Age2 1.0527–1.0752 • Effect of increased age on RA risk is

greater at older ages

Age·BMI 1.0535–1.0770 • Age and BMI have the strongest

second-order interaction

Male·ONH 0.9171–0.9793 • Being male and ONH ethnicity

markedly reduces risk for RA

Age·BP 1.0421–1.0592 • Interaction of age and BP increases

risk of RA

BP·Sleep 0.9585–0.9824 • Higher BP further lowers RA risk

afforded by sleep

(C) Risk factor β̂ Comments

Age2·BMI 1.0562–1.0787 • Strong third-order interaction

between age and BMI

Age3 1.0511–1.0735 • Effect of increased age on RA risk is

greater at older ages

Age2·BP 1.0459–1.0645 • Third-order interaction between age

and high BP increases RA risk

Age·BMI·BP 1.0454–1.0621 • High BP further increases RA risk

from aging and high BMI

Male·ONH·Sleep 0.9319–0.9816 • Sleep adds to lowering RA risk

afforded by being male and ONH

Ninety-nine percent HDIs are shown for estimated regression coefficients on the odds

scale.

are shown by marginal effects plots for a few representative
variables in Supplementary Figure 2.

Apart from the effects of individual first-order variables,
we were interested to identify any influence of higher-order
interactions in RA prediction. Figure 5C enumerates the 14
most influential second-order variables observed in our study.
Age turns out to not only be the strongest first-order predictor
variable but also to have prominent second-order interactions
with several other variables, including BMI, BP, depression, sleep,
and smoking. The strongest second-order interaction effect was
found between age and BMI (median: 1.0648, 99% HDI: 1.0535–
1.0770), which is comparable to the influence of age (1.0642,
1.0533–1.0757) or three times the influence of BMI (1.0196,
1.0088–1.0306), considered individually (Table 4). Interestingly,
the second-order effect of age (1.0636, 1.0527–1.0752) is similar
in magnitude to its first-order effect, suggesting that the effect
of age on RA risk increases with age. We also observed several

second-order interactions to reduce the risk of RA. For example,
the combination of ONH ethnicity with male gender strongly
reduces the risk of having RA (0.9485, 0.9156–0.9797), even
though ONH does not have a significant influence in lowering
RA risk and male gender has a less prominent effect. This finding
suggest the second-order interaction with male gender could
underlie low RA prevalence observed among ONH ethnicity
(Figure 3B). Sleep demonstrates an interesting interaction effect
on RA. While increased sleep hours was found to lower the
risk of RA, its second-order effect with age increased the risk
significantly, suggesting an altered role of sleep on the body’s
immune system with aging.

Ourmodel was also able to reveal the existence of strong third-
order interactions. Figure 5D lists 14 most prominent third-
order interactions where we find the frequent appearance of a few
variables, with age and BMI being most common. Other factors
involved in strong third-order interactions are gender, ONH
ethnicity, sleep, depression, and BP. Similar to the second-order
interactions, these third-order interactions are seen to either
increase or decrease the risk of RA (Figure 5D and Table 4). In
particular, for interactions posing high risk, we often observe
age and BMI, either as a third-order variant of the interaction
between these variables, or in combination with a third variable
such as BP, sleep, or depression. By contrast, the coexistence of
ONH ethnicity with male gender in a third-order interaction
prominently reduces the risk of RA when associated with sleep,
BMI, BP, or IPR as the third variable. Thus, variables such
as sleep or BP, when involved in third-order interactions, can
both increase or decrease the risk of RA, suggesting a complex
interplay of underlying physiological mechanisms.

3.3.1. Range of Interactions: Age vs. BMI
The finding of several prominent second- and third-order
interactions in our model further motivated us to investigate
the range of interactions for an individual risk factor. In this
direction, we focused on comparing age and BMI, two variables
that demonstrated the strongest higher-order interaction
(Figure 6). Our analysis shows that these two variables have
very different interaction profiles. Age demonstrates strong
second-order interactions with multiple comorbidities (BMI, BP,
and depression), sleep, and smoking, all of which increase the
risk of RA (Figure 6A). In contrast, second-order interaction
effects to BMI are moderate to weak (except with age) and,
depending on the interacting variable, increases or decreases the
RA risk (Figure 6B). The third-order interactions for age and
BMI follow a similar pattern as observed in the second-order
interactions, except the combination of male and ONH ethnicity
reduces RA risk (Figures 6C,D). We hypothesize that general
changes in body physiology accompanied with aging cause
other risk factors to have a greater impact on RA, resulting in
these interaction effects. In contrast, high BMI potentially elicits
specific influence in the pathophysiology of interacting risk
factors, increasing or decreasing the magnitude of the effects.
Together, these results confirm that the interactions of a risk
factor with other risk factors are highly specific in nature and are
dependent on the variables considered.
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FIGURE 6 | Higher-order interactions of age and BMI. (A,B) Posterior distribution of standardized coefficients for all second-order interactions of age (A) and BMI (B).

(C,D) Posterior distribution of standardized coefficients for a selection of 40 third-order interactions involving age (C) and BMI (D). Inner bounds and outer bounds

represent 50% HDIs and 99% HDIs, respectively. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic. Horizontal scale shows odds multipliers for

risk of RA for a one standard deviation increase in value of variable.

3.3.2. Influence Through Interactions: BP and ONH

Ethnicity
Finally, we wanted to explore the higher-order interactions for
risk factors that did not show a significant first-order effect.

Among all first-order effects, only BP and ONH category had
99% HDIs that contained one (Figure 5B). Identifying the most
influential second-order interactions for BP or ONH category
reveals that 12 out of the top 13 involve BP (Figure 7A). The
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FIGURE 7 | Posterior distributions of most relevant interactions that include either BP or ONH ethnicity as one risk factor. (A) 13 most influential second-order

interactions and (B) 30 most influential third-order interactions are shown. Inner bounds represent 50% HDIs and outer bounds represent 99% HDIs. Standardized

coefficient estimates are shown. MA, Mexican-American; OH, Other Hispanic; ONH, Other Non-Hispanic. Horizontal scale shows odds multipliers for risk of RA for a

one standard deviation increase in value of variable.

only interaction involving ONH category included in this list (it
was also the strongest interaction) is with male gender, strongly
lowering the risk for RA. In contrast, the posterior distribution of
the interactions of BP indicate that the risk could both increase
or decrease depending on the specific interaction. For example,

the risk can increase from interaction with age, depression, and
BMI, while sleep and male gender reduce the risk. Interestingly,
we found the interaction effects of BP with individual risk
factors to be similar to their first-order effects. Thus, high BP
is expected to enhance the effect of an interaction between risk
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factors on RA risk. The third-order interactions corroborate well
to the second-order interactions with BP occupying 29 of the
top 30 interactions (Figure 7B). The effect follows the pattern
demonstrated by the interaction between the other two factors.
While hypertension is generally considered as a comorbidity of
RA, there is a lack of consensus on the true association between
RA and hypertension (57). Our finding that BP does not have a
significant first-order effect but has prominent interaction effects
with coexisting conditions, offers a potential explanation for the
varying results reported in the literature.

4. DISCUSSION

In this work, we have developed a Bayesian regression model
to characterize the risk of RA from common comorbidities,
demographic, socioeconomic, and behavioral factors that are
known to associate with RA. Apart from providing high
predictive accuracy, our model is able to capture the effects
of individual variables as well as the important higher-order
interactions between them. Consistent with previous literature,
known RA risk factors such as depression, high BMI, and
smoking are also found to be predictors of RA in our model.
Additionally, our model shows that age is not only a key
predictor for RA, but also has strong interaction effects with
several other variables; prominent among them are BMI, BP,
depression, and smoking. Interestingly, some variables such as
ONH ethnicity have weak influence as a single-order variable,
but their combination with certain other variables (male gender
in case of ONH ethnicity) could elicit a prominent higher-order
interaction. The knowledge of these strong interactions will help
to determine if a person is at a higher or lower risk of RA when
both conditions coexist.

One of our primary objectives in this study was to
identify and elucidate the effects of important higher-order
interactions between risk factors in the prediction of RA. The
main challenge in performing such a study comes from the
exponential increase in the number of synthetic variables as
more higher-order interactions are considered, correspondingly
increasing the computational cost. This limitation led us to
restrict our study to a maximum of third-order interactions.
Our implementation of FAMD further reduced the number
of predictor variables analyzed during regression, substantially
lowering the requirement for computation. FAMD also allowed
the consideration of both categorical and continuous risk factor
variables in the model.

In our model, we used feature selection to select an optimal
subset of synthetic variables. This step was introduced to not
only improve the model’s predictive ability but also to obtain
a greater precision in determining the effect of risk factors
on RA. When studying the manifold interactions between
these risk factors, increased precision from feature selection
helps to address increases in posterior variances resulting from
dramatic increases in the number of variables being analyzed (see
Supplementary Figure 1). We implemented a wrapper method
for feature selection. However, there are alternative approaches,
the most common being filter methods (58). Filter methods

employ a ranking system to determine the most relevant
variables before any prediction is performed (59), some examples
of which include the Pearson correlation coefficient, Fisher
score, and mutual information (58). Filter-based approaches
generally perform faster than wrapper methods since they do
not require the predictive model to be run simultaneously.
However, because of this, they do not necessarily return the
optimal subset of features for prediction (59). Additionally, some
filter methods are prone to selecting redundant features (59),
while wrapper methods find the optimal subset based on their
performance in the predictive model and do not encounter
this issue. Thus, employing a wrapper approach for feature
selection allowed us to determine the most important subset
of synthetic variables for prediction, and subsequently enabled
more precise estimates of the effects of interactions between risk
factors on RA. One downside of wrapper methods is that they
are generallymore computationally expensive than filtermethods
and implementation of techniques based on exhaustive searches
can become computationally infeasible for large datasets (59).
To overcome this limitation, we implement a wrapper approach
using a GA, a type of evolutionary algorithm, and is capable of
providing high-quality solutions with reasonable computational
effort (60).

Although GA is a robust method for problems involving
subset-selection over a large search space, there are alternatives,
most notably the Least Absolute Shrinkage And Selection
Operator (LASSO) method (61). The presented approach can be
interpreted as a heuristic direct search for the best-fit solution
using the minimum number of non-zero regression coefficients
(“best subset selection”), or an ℓ0-regularized optimization
problem. The LASSO amounts to the relaxation to the best-fit
solution with aminimum absolute-sum of regression coefficients,
or an ℓ1-regularized optimization problem.While the discussions
about the trade-offs between true best-subset and relaxed best-
subset (LASSO) methods are available in the literature [see (62)
for an exhaustive list of references], a comparison on this specific
problem should be performed in future studies.

Our rationale for using a Bayesian logistic regression model
along with feature selection through GA is to achieve a balance
between computational efficiency and information obtained. The
use of Bayesian inference provides the advantage of getting
full posterior information. When compared with decision-tree-
based prediction models such as classification and regression
trees (CART), logistic regression model allows for a better
interpretation of the effects of the individual predictor variables.
It also offers a substantial computational advantage when there
are a large number of predictors as in the present work.

Existing RA models primarily use genetic, environmental,
and behavioral risk factors as predictors (35–37, 41). Karlson
et al. reported a logistic regression model that uses a weighted
GRS representing the aggregated effects of HLAs and SNPs
associated with RA, age, sex, and smoking to predict RA that
achieved an AUC of 0.660–0.752, depending on the dataset
used (35). Subsequent works using the same model framework
but including updated or additional predictor variables such
as GRS incorporating newly validated RA risk alleles, exposure
to silica, alcohol intake, education, parity, and some of the
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major interactions between predictors exhibited a similar
classification performance (36, 37). A different model using
genetic risk factors and smoking data, and determining risk
through computer simulation and confidence interval based
risk categorization achieved a higher discrimination ability of
seropositive RA from control with AUC of 0.837–0.857, although
the model is evaluated for male gender alone (41). Although
genetic risk factors are demonstrated to be important in RA
prediction in these models, our model does not include them
considering the potential applicability in peripheral and rural
health infrastructures where such advanced genotyping will
unlikely be available for patients. Instead, common comorbidities
and demographic variables, such as ethnicity, were incorporated
in our model as predictors. The promise of our model in
predicting RA is demonstrated by a high predictive accuracy
in comparison to previous studies, especially when only a
smaller subset of first-order variables are considered (see
Supplementary Table 2). We speculate that a conflation of RA
with other forms of arthritis in NHANES datasets could prevent
our model achieving substantially higher predictive abilities after
incorporation of higher-order effects. This conflation potentially
results from self-reported diagnosis of RA and other arthritis
in NHANES, and is reflected by a higher proportion of RA in
the population than expected from the existing literature (5)
(Supplementary Table 1).

Our results suggest that our model could achieve high
predictive accuracy from the first-order variables alone when
an appropriate set of risk factors are selected. While model
predictive performance might not improve significantly by
incorporating higher-order interactions in such a scenario,
identifying the strong interactions could provide important
clinical insight. Furthermore, in situations where health
resources are highly constrained with severely limited data
availability, higher-order interactions could play a significant
role in achieving a sufficient degree of predictive accuracy. Our
model could also be applicable to predict other chronic diseases
that multiple, potentially interacting, factors are known to be
associated with.

Even though NHANES provides a rich dataset of risk
factors associated with RA, one limitation of the study comes
from the self-reported nature of RA diagnosis, which tend to
inflate the numbers through false positive diagnosis of other
form of arthritis (63). Although a meta-analyses inferred that
self-reported diagnosis is sufficiently accurate for large-scale
epidemiological studies (64), the model could be made more
robust by future validation and optimization with patient data
where more rigorous criteria for RA diagnosis, such as the one
provided by the American College of Rheumatology, is used (65).
The ability to implement sample weights in the model could
also marginally improve the model performance. The second
limitation comes from the cross-sectional nature of the NHANES
data, where the old and new RA cases cannot be discriminated.
Furthermore, the comorbidities, socioeconomic and behavioral
risk factors coexisted with RA in this data, and thus it could
not be temporally resolved whether RA appeared before or

after the manifestation of these risk factors. This restricts
our model’s prediction results on the NHANES dataset to be
better interpreted as correlation rather than causation, essentially
identifying risk factors and risk interactions associated with
RA. We expect the model accuracy to improve along with the
ability to infer a causal relationship by training with longitudinal
data where the diagnosis of RA can be studied against a
population with existing risk factors. Furthermore, Bayesian
logistic regression model assumes a simple linear relationship
between the predictors and the log-odds of having RA, however,
the relationship could be more complex in reality. Although
consideration of higher order interactions partially addresses this
limitation, a better understanding of the relationship between
risk factors and RA could help to construct a more accurate
model in the future.

In summary, we have developed a model to predict
RA from comorbidities, demographic, socioeconomic, and
behavioral risk factors. The model demonstrated a high
predictive accuracy in comparison with other models reported
in the literature. Moreover, our model was able to identify
important second- and third-order interactions between the
risk factors, which may have important clinical relevance
and stimulate further research to understand the mechanisms
underlying such interactions. Since the model prediction utilizes
patient information commonly available in a regular healthcare
set-up, it has the future potential for translation to the
clinical setting.
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