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Background: Several recent studies reported a positive (statistical) association between

ambient nitrogen dioxide (NO2) and COVID-19 transmissibility. However, considering

the intensive transportation restriction due to lockdown measures that would lead

to declines in both ambient NO2 concentration and COVID-19 spread, the crude or

insufficiently adjusted associations between NO2 and COVID-19 transmissibility might

be confounded. This study aimed to investigate whether transportation restriction

confounded, mediated, or modified the association between ambient NO2 and

COVID-19 transmissibility.

Methods: The time-varying reproduction number (Rt) was calculated to quantify the

instantaneous COVID-19 transmissibility in 31 Chinese cities from January 1, 2020, to

February 29, 2020. For each city, we evaluated the relationships between ambient NO2,

transportation restriction, and COVID-19 transmission under three scenarios, including

simple linear regression, mediation analysis, and adjusting transportation restriction as

a confounder. The statistical significance (p-value < 0.05) of the three scenarios in 31

cities was summarized.

Results: We repeated the crude correlational analysis, and also found the significantly

positive association between NO2 and COVID-19 transmissibility. We found that little

evidence supported NO2 as a mediator between transportation restriction and COVID-

19 transmissibility. The association between NO2 and COVID-19 transmissibility appears

less likely after adjusting the effects of transportation restriction.

Conclusions: Our findings suggest that the crude association between NO2

and COVID-19 transmissibility is likely confounded by the transportation restriction in

the early COVID-19 outbreak. After adjusting the confounders, the association between

NO2 and COVID-19 transmissibility appears unlikely. Further studies are warranted to

validate the findings in other regions.
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INTRODUCTION

Since the coronavirus disease 2019 (COVID-19) was first
reported in December 2019 in China, the cumulative cases
and death cases, as of May 2021, have been over 160
million and 3.4 million, respectively (1). In response to
the rapid transmission of COVID-19, many authorities
enforced lockdown measures regionally aiming to restrict
the social contact and limit the virus transmission to
reduce the morbidity and mortality caused by COVID-19
(2). In China, intensive non-pharmaceutical interventions,
including city lockdown measures, have been implemented
at both the provincial and city levels about three weeks
after the first cases were reported, i.e., by the end of
January 2020.

Recent evidence shows that the city lockdown measures,
especially for transportation restriction, have resulted in a
reduction in the levels of air pollution, including nitrogen
dioxide (NO2) (3–5). Ambient NO2 is mainly generated
from fossil fuels burning through automobile exhaust and
industrial emissions. Several studies indicate that NO2 positively
associates with the COVID-19 transmissibility (6–9), though
results were not always consistent (10, 11). An experimental
study found NO2 exposure increased the expression of
angiotensin-converting enzyme 2 (ACE2), which might lead to
increased susceptibility to virus infections (12, 13). Exposing
to a higher concentration of NO2 also lead to respiratory
functionality damage, including decreased levels in lung
volume and expiratory flow (14). Given that the impact
of transportation restriction on ambient NO2 and COVID-
19 transmissibility have been well understood (15, 16), we
speculate that the statistical association between ambient
NO2 and COVID-19 transmissibility obtained from previous
evidences may be undermined without considering the effect of
transportation restriction.

This study aimed to explore whether transportation
restriction during the implementation of COVID-19 lockdown
measures would modify the association between ambient NO2

on COVID-19 transmissibility in different scenarios.

METHODS

Data
Daily counts of cumulative COVID-19 deaths for each
Chinese city were obtained from the China National Health
Commission and the Chinese provincial health agencies. Cities
with cumulative cases over 100 on February 5, 2020 were
included in our analysis. The study period was set from January
1, 2020 to February 29, 2020. Daily mean concentrations
of NO2 during the same period were obtained from the
China National Environmental Center. Information on the
date and control measures of ‘the first-level response’, i.e.,
when the transportation restriction was implemented, was
collected from the government website or official media
of each province. We set a time-varying binary variable
(i.e., 0 and 1) before and after the date of lockdown for
each city.

FIGURE 1 | Directed acyclic graphs of Scenario 1, Scenario 2, and Scenario

3. Scenario 1 shows the possible association between NO2 and COVID-19

transmissibility; Scenario 2 shows the direct association between

transportation restriction and COVID-19 transmissibility as well as the indirect

association mediated by NO2; and Scenario 3 shows that the possible

confounding of transportation restriction on the association between NO2 and

COVID-19 transmissibility.

COVID-19 Transmissibility
We adopted the time-varying reproduction number (Rt) to
quantify the instantaneous COVID-19 transmissibility in each
Chinese city (17). Following the estimation framework developed
in previous studies (17–19), the epidemic growth of COVID-
19 was modeled as a branching process, and thus, Rt can be
expressed by using the renewable equation as follows:

R(t) =
C(t)

∫

∞

0 w
(

k
)

C
(

t − k
)

dk
,

where C(t) is the number of COVID-19 cases at the t-th date.
The function w(·) is the distribution of the generation time (GT)
of COVID-19. By averaging the GT estimates from the existing
literature (20–24), we considered w as the Gamma distribution
with a mean (±SD) value of 5.3 (±2.1) days. Slight variations in
the settings of the GT did not affect our main findings.

Statistical Analysis
We explored the role of ambient NO2 in affecting the R(t) with
three different scenarios. They included the following (Figure 1):
Scenario 1: simple linear regression (naïve scenario); Scenario 2:
mediation analysis; and Scenario 3: adjusting for confounding.

Scenario 1: Simple Linear Regression
The associations between air pollutants and epidemiological
outcomes at population scale are commonly explored by using
regression models, which link the two terms directly in one
formula with or without adjusting other common covariables
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(25). The ambient NO2 is found positively associated with the
COVID-19 transmissibility in recent literature (6). As for a
start-up, we repeatedly adopted the simple linear regression
models and reproduced the positive association between NO2

and COVID-19 transmissibility using the dataset in this study.
We attempted three schemes to quantify this association,
including: (i) univariate regression; (ii) multivariate regression
with temperature and relative humidity adjusted (26); and (iii)
Pearson and Spearman ranked correlations. To be consistent with
previous findings, a positive and significant association between
ambient NO2 and COVID-19 transmissibility was desired.

Scenario 2: A Mediation Analysis
In the hypothesized mediation framework, we considered
transportation restriction, ambient NO2, and COVID-19
transmissibility as the independent variable, mediator, and the
dependent variable, respectively. The assumption is based on
the well-studied evidence that (i) transportation restriction
causes a reduction in ambient NO2 (3) and (ii) transportation
restriction may also reduce the transmissibility of COVID-19
(15, 16). According to the mediation framework by the classic
requirements of Baron and Kennys (27), NO2 would be a
mediator to explain the relationship between transportation
restriction and COVID-19 transmissibility if the hypothesis
yielded in Scenario 1 was true.

We examined the mediation effects by two measurements,
which are as follows: (i) absolute mediation effect and (ii)
proportional mediation effect. If there exists an association
between ambient NO2 and COVID-19 transmissibility, the direct
association between transportation restriction and COVID-19
after considering ambient NO2 (indirect association) is expected
to reduce. Otherwise, the association yielded in Scenario 1 is
suspicious and unlikely to imply causality, but merely reflects the
relationship caused by transportation restriction.

Scenario 3: Adjusting Transportation Restriction as A

Confounder
In the situation that the mediation effect is not of statistical
significance, we suspect that transportation restriction might
confound the relation yielded in Scenario 1. We adopted the two
regression models to examine the adjusted association between
ambient NO2 and they are as follows: (i) multivariate regression
with transportation restriction adjusted and (ii) multivariate
regression with transportation restriction, temperature, and
relative humidity adjusted. Here, the adjusted association
indicates an impact on COVID-19 transmissibility that is solely
contributed by NO2.

The three different analytical scenarios are nested
progressively. Specifically, the estimating outcomes in Scenario 1
serve as the presumption of the modeling framework in Scenario
2. The estimating outcomes in Scenario 2 may support the
intuition of the formulation in Scenario 3.

We conducted statistical analysis across 31 selected cities,
and obtained the city-level statistical significance (p-value) in
three different scenarios. For regression models, p-values are
calculated by using the Student’s t-test. For mediation analysis
and non-parametric statistics, p-values are calculated by using

bootstrapping sampling with 1,000 runs of the simulation. All
tests are one-sided. A p-value < 0.05 is considered as statistical
significance. We summarized the percentage distribution of all
statistically significant p-values across all the 31 selected cities
yielded from our models for comparison.

All analyses were carried out using R statistical program
language (version 3.6.0) (28).

RESULTS

Of the 31 selected Chinese cities included in our analysis, 13
cities were fromHubei province and 18 cities from other regions.
The date of lockdown intervention in the included cities was
distributed from January 23, 2020 (e.g., Wuhan) to January 27,
2020 (e.g., Shenzhen). The ambient average concentration of
NO2 ranged from 14.0 µg/m3 (Enshi) to 47.3 µg/m3 (Tianjin)
during the study period.

The percentage distribution of p-values on the association
between NO2 and COVID-19 transmissibility by different
measurements across the 31 selected cities are summarized
in Table 1. In Scenario 1, 77.4–87.1% cities show that
the relationship between NO2 and COVID-transmissibility
reached statistical significance (p-value < 0.05) with regards to
either Pearson, Spearman correlation coefficients or regression
coefficients. In Scenario 2 where NO2 is treated as a
mediator between transportation restriction and COVID-19
transmissibility, we find that the p-value of either absolute effect
or proportional effect lost statistical significance in most of the
cities. In Scenario 3 where transportation restriction is treated
as a confounder in the regression model, little evidence about
the association between NO2 and COVID-19 transmissibility
is observed.

DISCUSSION

This study evaluated the association between NO2 and COVID-
19 transmissibility with and without considering the impact
of transportation restriction in the three different scenarios.
Our results did not support that NO2 was a mediator between
transportation restriction and COVID-19 transmissibility. We
did not observe that NO2 was independently associated with
COVID-19 transmissibility after adjusted for transportation
restriction either.

Our study adopted three hypothesis scenarios to evaluate the
association of NO2 and COVID-19 transmissibility by several
statistical approaches in each scenario. The results were stable in
both the analytic approaches and hypothesis framework. Instead
of using the daily number of cases as the outcome, we adopted
Rt to represent the disease transmissibility, which would avoid
autocorrelation among cases and avoid over interpreting the
association between environmental factors and COVID-19 (29).

Our result in Scenario 1 was consistent with the previous study
in China (9). However, the statistical model used in the previous
study was limited to the control of population movement
and transportation restriction due to the data availability. An
ecological study in Milan, Italy showed NO2 was inversely
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TABLE 1 | Summary of p-values of all N = 31 selected cities, and comparison of the percentage distribution of p-values by different measurements across the 31 cities.

Framework Measurement Covariable

adjustment

p-values (of N = 31 cities) Prop. of p-value < 0.05

(out of N = 31 cities)

First-quarter Median Third-quarter

Scenario 1 Correlation Pearson coefficient NA <0.001 0.003 0.012 83.9%

Spearman coefficient NA <0.001 0.002 0.027 87.1%

Naïve regression Regression coefficient No <0.001 0.003 0.014 83.9%

Yes <0.001 0.006 0.028 77.4%

Scenario 2 Mediation effect Absolute effect No 0.051 0.282 0.496 22.6%

Yes 0.060 0.210 0.387 16.1%

Proportional effect No 0.072 0.324 0.580 12.9%

Yes 0.174 0.288 0.621 6.5%

Scenario 3 Confounder adjustment Regression coefficient No 0.121 0.312 0.653 3.2%

Yes 0.201 0.408 0.625 6.5%

Covariable adjustment, adjusting for temperature and relative humidity.

Scenario 2, setting NO2 concentration as the mediator of indirect effect from the transportation restriction to the decline of COVID-19 transmissibility.

Scenario 3, setting the transportation restriction as the confounder of NO2 concentration and COVID-19 transmissibility.

For regression models, p-values were calculated by Student’s t-test.

For mediation analysis and non-parametric statistics, p-values were calculated by bootstrapping sampling with 1,000 runs of the simulation.

correlated with the total number of cases, daily new cases, and
total deaths of COVID-19 infections (30). However, the impact of
lockdown on NO2 and COVID-19 was not adequately evaluated.
In addition, this study may also be restricted due to the use of
aggregated number of COVID-19 cases for analysis (29).

Our results in Scenarios 2 and 3 showed that the association
between ambient NO2 and COVID-19 transmissibility yielded in
Scenario 1 might be spurious. We suggested that transportation
restriction served as a confounder in this association. Despite
earlier studies suggesting the adverse impact of NO2 and human
susceptibility on respiratory illness, including impaired function
in the immune system (12, 31) and respiratory system (14), we
did not observe the association of ambient NO2 for COVID-19
transmissibility in China. One possible explanation would be the
lack of indoor NO2 data. During the early outbreak period of
China, which was also the period of the Spring festival, people
were more likely to stay in household environments with closed
windows on such cold days. The chance of being exposed to
ambient NO2 might be less likely and its impact would be smaller
than the impact of transportation restrictions.

Our study has some limitations. First, the levels of
transportation restriction across provinces within China were
varied. For example, in the epicenter of Wuhan, Hubei
Province, rigorous transportation restriction was implemented
that prohibited all inter and intracity transport. In other cities
out of Hubei Province, border shutdown, restriction of intercity
travel, and intracity activities were implemented (32). The
variated measures of transportation restriction made the data
to be quantified challenging. We hence adopted a binomial
variable of lockdown to represent transportation restriction in
the analysis. Second, unmeasured factors, such as population
density, flow, and local economy levels, are potential confounders
which may be associated with transportation restriction and
R0 (33, 34). Our results showed the p-values from Scenarios 2
and 3 were less likely to be smaller than statistical levels across

cities, suggesting the impacts from unmeasured factors would
not change our primary conclusion. Third, since the outbreak
of COVID-19 in China occurred in the Spring festival and
authorities implemented lockdown measures at both provincial
and city levels, our results might not be generalizable to other
regions that may have different lockdownmeasures. The extreme
event that occurred in other countries, which might have an
influence on NO2 concentration, transportation restriction, and
COVID-19 spread, should also be considered (35). Further
studies are warranted to test our findings.

In summary, we find little evidence about the association
between ambient NO2 and COVID-19 transmissibility in
China. Timely transportation restriction effectively reduced the
transmissibility of COVID-19 during the early outbreak period.
Despite this, given the global pandemic of COVID-19, the impact
of ambient NO2 is still necessary to be evaluated in other regions.
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