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The number of proton therapy facilities and the clinical usage of high energy proton

beams for cancer treatment has substantially increased over the last decade. This is

mainly due to the superior dose distribution of proton beams resulting in a reduction

of side effects and a lower integral dose compared to conventional X-ray radiotherapy.

More recently, the usage of metallic nanoparticles as radiosensitizers to enhance

radiotherapy is receiving growing attention. While this strategy was originally intended for

X-ray radiotherapy, there is currently a small number of experimental studies indicating

promising results for proton therapy. However, most of these studies used low proton

energies, which are less applicable to clinical practice; and very small gold nanoparticles

(AuNPs). Therefore, this proof of principle study evaluates the radiosensitization effect of

larger AuNPs in combination with a 200 MeV proton beam. CHO-K1 cells were exposed

to a concentration of 10µg/ml of 50 nm AuNPs for 4 hours before irradiation with a

clinical proton beam at NRF iThemba LABS. AuNP internalization was confirmed by

inductively coupled mass spectrometry and transmission electron microscopy, showing

a random distribution of AuNPs throughout the cytoplasm of the cells and even some

close localization to the nuclear membrane. The combined exposure to AuNPs and

protons resulted in an increase in cell killing, which was 27.1% at 2Gy and 43.8% at 6Gy,

compared to proton irradiation alone, illustrating the radiosensitizing potential of AuNPs.

Additionally, cells were irradiated at different positions along the proton depth-dose curve

to investigate the LET-dependence of AuNP radiosensitization. An increase in cytogenetic

damage was observed at all depths for the combined treatment compared to protons

alone, but no incremental increase with LET could be determined. In conclusion, this

study confirms the potential of 50 nm AuNPs to increase the therapeutic efficacy of

proton therapy.

Keywords: gold nanoparticles (AuNPs), proton therapy, radiation therapy, radiosensitization effect, dose

enhancement effects, particle therapy, nanomedicine

INTRODUCTION

Approximately 50% of the patients with malignant tumors receive radiotherapy (RT) as part of
their initial cancer treatment (1). However, delivering a curative radiation dose to the tumor while
limiting the dose to surrounding healthy tissue, remains one of the biggest challenges in RT.
Furthermore, the physical location of the lesion may prevent effective and complete irradiation of

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.699822
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.699822&domain=pdf&date_stamp=2021-07-29
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cvandevoorde@tlabs.ac.za
mailto:mdekock@uwc.ac.za
https://doi.org/10.3389/fpubh.2021.699822
https://www.frontiersin.org/articles/10.3389/fpubh.2021.699822/full


Cunningham et al. Gold Nanoparticles and Proton Therapy

the tumor. Despite recent advances in treatment planning
and image-guided intensity-modulated RT, several new
treatment strategies are continuously being developed (2).
Particle therapy and novel radiosensitizers are part of these
recent developments, which offer the potential to augment the
therapeutic efficacy (2–5).

Gold nanoparticles (AuNPs) with a diameter of 100 nm or less,
have several properties that make them ideal radiosensitizers,
including their high atomic number (Z = 79), biocompatibility
and low cytotoxicity (6, 7). Several preclinical studies illustrated
that AuNPs are potent radiosensitizing agents (8–11). Most
studies focused on conventional RT with high-energy
megavoltage (MV) and low energy kilovoltage (kV) X-rays,
as reviewed in (4, 9, 11–14). Up until now, the radiosensitizing
effect of AuNPs are most pronounced for kV X-rays and while
there is a motivation to use this radiation quality in the clinic
alongside MV X-rays, its usage remains limited due to its shallow
penetration depth in the patient (12, 15).

The application of AuNPs as potential radiosensitizers in
particle therapy has recently gained momentum, reflected by
an increase in both simulation and experimental radiobiology
studies (16–18). The growing interest in this type of studies
is closely linked to the emerging number of proton therapy
(PT) facilities around the world, where the interplay with
nanomedicine could potentially further improve the treatment
outcome and enlarge the clinical scope. The rationale for the
clinical use of proton beams is primarily motivated by their
dosimetric advantage compared to conventional X-ray RT. In
contrast to X-rays which are characterized by a depth-dose profile
reaching a maximum after a short build-up of a few centimeters
with an exponential attenuation thereafter, protons have a depth-
dose profile with a low entrance plateau region that reaches a
maximum peak just before the end of the proton range. This
results in a depth dose curve with a sharp dose fall-off towards
the end, beyond which no radiation dose is deposited. The range
of protons depends on their initial energy and can be adjusted
to treat tumors at different depths (19). By combining several
proton beams of different energies, a spread-out Bragg Peak
(SOBP) can be obtained to cover the target volume. This allows
the positioning of the region of maximal energy within the
treatment target, while limiting damage to surrounding healthy
organs and tissues (20, 21). Due to the superior targeting, PT is
arguably most beneficial for the treatment of tumors in proximity
to critical organs at risk and for specific subsets of the population
who are more prone to develop late effects, such as pediatric
patients (22, 23).

The high-energy proton beams (60–260 MeV) that are used
in clinical practice and MV X-rays are both considered to be
low linear energy transfer (LET) radiation qualities. However, the
energy of the protons drops rapidly at the end of their range,
resulting in a higher ionization density and a corresponding
increase in LET (24). This translates into more complex,
unrepairable biological damage and an associated increase in
the relative biological effectiveness (RBE) in the distal region of
the SOBP (25, 26). However, despite evidence in support of a
variable RBE for clinical proton beams, a fixed RBE of 1.1 is still
adopted in clinical practice (27). This RBE of 1.1 indicates that the

biological effectiveness of high-energy protons to kill tumor cells
is only 10% higher than that of sparsely ionizing X-rays. From
this point of view, protons are less attractive for the treatment of
radioresistant tumors where heavier ions (such as carbon ions),
with a higher RBE, are proven to be up to four times more
effective than X-rays (28–30). Therefore, radiosensitizers, such as
AuNPs, are a promising approach to amplify the proton dose that
is delivered within the tumor tissue. Furthermore, the addition of
AuNPs may decrease the heterogeneity in tumor response, which
is caused by areas in the tumor microenvironment containing
cancer stem cells and regions of hypoxia.

At first, AuNPs were not expected to be effective
radiosensitizers in PT. Mainly due to the decrease in collision
stopping power of charged particles as a function of Z, in contrast
to the high photoelectric absorption with strong Z-dependence
of kV X-rays. However, charged particles are nevertheless able
to activate a non-linear avalanche of electron emissions from
AuNPs and surface plasmon excitations can result in a large
production of secondary electrons, which could also make
AuNPs effective radiosensitizers in PT (18). A growing number
of studies indicate that the Coulomb nanoradiator (CNR) effect
and the chemical damage by reactive species plays a major role
in the dose enhancement effects that are observed for high Z
nanoparticles and high-energy proton beams (31, 32). The first
biological assessments confirm the radiosensitization potential of
AuNPs in PT, but this line of research is only at its beginning. The
underlying mechanisms that are responsible for the observed
radiosensitization effects are not completely understood and
there are currently only a limited number of in vitro and in
vivo studies combining proton irradiation and AuNPs (33–43).
This in vitro study with larger 50 nm AuNPs was designed
as a proof of principle to investigate the uptake, cytotoxicity,
radiosensitization effect and the potential LET-dependence of
this effect, for a high-energy (200 MeV) clinical proton beam.

MATERIALS AND METHODS

AuNPs
Spherical AuNPs of 50 nm stabilized in a citrate buffer (Sigma-
Aldrich Co. LLC, St. Louis, Missouri, United States) were stored
at 4◦C to ensure stability over time and filtered through 0.2µm
filters (Whatman, Maidstone, UK) before addition to the cells
to ensure sterility. The size and stability of the AuNPs in
suspension was confirmed using Ultraviolet-visible (UV-visible)
spectroscopy, as previously described (44). AuNP colloidal
solutions were recorded as a function of wavelength using a
POLARstar R©Omega (BMG Labtech, Ortenberg, Germany) UV-
vis spectrophotometer from 400–800 nm at a path correlation of
2.94 and resolution of 1mm. More details and results on AuNP
characterization can be found in the Supplementary Material.

Cell Culture
CHO-K1 cells were kindly donated by the Medical University of
Southern Africa (passage 16) and originally purchased from the
American Type Culture Collection (ATCC) (Manassas, Virginia,
USA). This cell line was originally derived as a subclone from the
parental CHO cell line initiated from a biopsy of an ovary of an
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adult Chinese hamster by T. T. Puck in 1957 (45, 46). Since this
is a proof of principle study, this CHO-K1 cell line was selected
as it is often used in radiobiology studies and its radiosensitivity
was well characterized in previous studies at our institute
(47, 48). Cells were cultured in RPMI-1640 medium [(Gibco,
Dun Laoghaire, Dublin, Ireland) supplemented with 10% Fetal
Bovine Serum (FBS) (Gibco) and 1% Penicillin and Streptomycin
(Gibco)]. Incubation took place under standard cell culture
conditions at 37◦C in a humidified 5% CO2 atmosphere. The
CHO-K1 cells were periodically screened for Mycoplasma.

AuNP Uptake
To determine the quantity of AuNPs internalized by the cells,
inductively coupled mass spectrometry (ICP-MS) (7900 ICP-MS
Agilent, California, USA) was performed at the Central Analytic
Facility (CAF) of Stellenbosch University. CHO-K1 cells were
exposed to 2.5, 5 and 10µg/ml of 50 nm AuNPs and incubated
for 4 hours to mimic the exposure conditions of the proton
irradiation experiments. The CHO-K1 cells were then harvested,
counted, and exposed to aqua reagia (1:1 HNO3, HCL) to
dissolve the AuNPs. The quantity of gold atoms in solution was
detected in parts per billion (ppb) and subsequently converted to
a volume (pg/ml) normalized for the counted cell number. Based
on the outcome of these first uptake experiments, all consequent
experiments were performed with the highest concentration of
10µg/ml or 37µMAuNPs for 4 hours (unless stated otherwise).

Transmission electron microscopy (TEM) was performed to
visually confirm the presence of AuNPs within the CHO-K1 cells.
As described above, the adherent cells were treated with 50 nm
AuNPs and incubated. Cells exposed to the AuNPs were fixed
in 4% paraformaldehyde and then placed in a series of heavy
metal stains as described in (49, 50). Sections were visualized with
a Zeiss MERLIN Field Emission Scanning Electron Microscope
(FESEM) (Carl Zeiss, Oberkochen, Germany) operated at 6-
8 kV acceleration voltage with a 10 nA probe current, using
Backscattered Electron Detection. Electron images were captured
as TIFF files, using a pixel averaging noise reduction algorithm.

Cell Proliferation
The crystal violet assay was used to investigate the impact
of AuNPs on the cell proliferation of CHO-K1 cells in the
absence of proton irradiation. The difference in absorbance
(λmax) between crystal violet (570 nm) and 50 nm AuNPs is
about 10-60 nm, so spectral overlap can be excluded ensuring
that false negative/positive results are prevented. The cells were
seeded into three 96-well plates (Sigma Aldrich) at a density
of 2,500 cells/well (population doubling time of this cell line
is less than ±18 hours), allowed to adhere overnight, enter log
phase, and treated with 10µg/ml AuNPs for 4 and 24 hours.
Cell cultures without AuNP treatment were incorporated in
the experiment to serve as controls. Following the respective
incubation periods, the cells were stained according to the
methods described in (51). Briefly, cells were fixed in 1%
Gluteraldehyde (Sigma), washed with Phosphate Buffered Saline
(PBS), and stained with 0.5% Crystal Violet for 30 minutes.
Thereafter, the plates were rinsed with dH2O and after drying
overnight, 0.1% Triton-X 100 was used to solubilize the crystal

violet and lyse the cells to extract proteins and other cellular
organelles. The plates were at 570 nm using a POLARstar R©

Omega UV-vis spectrophotometer (BMG Labtech, Ortenberg,
Germany) and the optical densities (OD570) recorded for each
well. The average OD570 of the non-treated control cells at 4
and 24 hours was set to 100% to determine the percentage of
viable, proliferating cells after exposure to AuNPs at the same
time points.

Proton Irradiation
The irradiations were performed with the 200 MeV passive
scattering clinical proton beam line at NRF-iThemba LABS.
For these experiments, the 200 MeV proton beam coming
from the Separated Sector Cyclotron (SSC) was degraded to
a modulated proton beam with a 50mm SOBP, R50 range in
water of 120mm and a circular field size of 100mm diameter
was used (with an incident energy of roughly 120 MeV).
All cell irradiations were performed in a Perspex phantom
consisting of individual plates of various thicknesses which were
placed upstream of the cells to obtain measurement positions
at different water equivalent depths (WED) with increasing
dose averaged LET (LETd) values as previously measured in
(48). The physical depth-dose profile of the proton beam was
measured with a MarkusTM ionization chamber (model 30-
329) to determine the output factors (Gy/MU) at the different
positions that were used for the cell irradiations (Figure 1).
A monolayer of CHO-K1 cells was irradiated in a T25 cell
culture flask (NEST Biotechnology Co., Ltd., Wuxi, China)
perpendicular to the beam direction. For each assay, two sets
of culture flasks containing CHO-K1 cells were irradiated, one
with, and one without AuNPs exposure prior to irradiation.
The media of all the culture flasks was replaced with new
media just before irradiation, to ensure that only the AuNPs
that were taken up by the cells would be responsible for the
observed effects.

Colony Survival Assay
CHO-K1 cells were seeded at a density 750 000 cells in T-25
flasks and allowed to attach overnight. Half of the cell culture
flasks were treated with AuNPs, while the other half was left
untreated. Following the incubation period of 4 hours, cells
were harvested, counted, and seeded in triplicate into 60mm
petri-dishes (Greiner Bio-one, Kremsmunster, Germany). This
ensured that cells could internalize AuNPs for the allotted
incubation period prior to irradiations and that only effects of
internalized AuNPs were considered as AuNPs were not left to
react in media during irradiation. The seeding of cells whether
pre- or post-irradiation have been shown to have negligible
effects on cell behavior and data output (52). The petri-dishes
were irradiated in the middle of the SOBP (Figure 1) with
doses ranging from 2 to 8Gy to produce a full dose response
curve. After irradiation, the cells were placed at 37◦C in a
humidified 5% CO2 atmosphere to proliferate into colonies for
6 days (≥ 50 cells per colony), followed by fixation and staining
(0.01% amido black). The number of visible colonies were then
manually scored, where each colony is considered to represent
a surviving cell. Firstly, the plating efficiency (PE) (with and
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FIGURE 1 | Illustration of the five different irradiation positions with a

modulated 200 MeV proton beam with a 50mm spread-out Bragg peak

(SOBP) and a range of 120mm; with the corresponding Water Equivalent

Depth (WED) in the Perspex phantom and the increasing LETd values. Created

with Biorender.com.

without AuNPs) as described in (53) and denoted as equation 1
was considered:

PE =
number of colonies formed

number of cells seeded
× 100% (1)

In this study, there was a PEAuNP and a PEcontrol. Thereafter, the
surviving fraction (SF) was calculated for the different exposure
conditions according to equation 2.

SF =
number of colonies formed

number of cells seeded × PE
× 100% (2)

Experimentally obtained colony survival data was fitted using the
linear quadratic (LQ) model, represented in equation 3.

S = e−(αD−βD2) (3)

S represents the fraction of surviving cells for a dose (D)
expressed in Gray (Gy), and α and β are the model constants.

To assess the radiosensitization effect of 50 nm AuNPs on
proton irradiation, sensitization enhancement ratio (SER) was
calculated as outlined in equation 4.

SER =
Survival fraction without AuNPs (Control)

Survival fraction treated with AuNPs (AuNP Treated)

(4)

Additionally, the amplification factor (AF) was calculated at
different radiation doses ranging from 2 up to 8Gy, to evaluate
the amplification of radiation induced cell death. AF was
calculated from the fitted surviving curve as follows (equation 5).

AF =
SF

fitted curve
control

− SF

fitted curve
AuNPs

SF

Fitted curve
control

× 100% (5)

Cytokinesis-Block Micronucleus Assay
The cytokinesis-block micronucleus (CBMN) assay was used for
scoring micronuclei (MNi), reflecting chromosome breakage or
whole chromosome loss, because it is restricted to binucleated
cells (BN) that have undergone one cycle of cell division. This
prevents confounding effects caused by suboptimal or altered
cell division kinetics (54). The CHO-K1 cells were seeded (750
000 cells/T-25 flask) and allowed to attach overnight, followed
by treatment with AuNPs. Thereafter, the cells were irradiated
at different positions along the SOBP (Figure 1) with a radiation
dose of 2Gy. Sham-irradiated control flasks were included.
Immediately after irradiation, cytochalasin-B (2.25 ug/ml) was
added to the flasks. The cells were incubated for 24 hours,
trypsinized and centrifuged at 1000 rpms for 8 minutes and
Permeabilized with Potassium Chloride (KCl). Afterwards, the
cells were fixed in 10:1:11 Methanol/Acetic Acid/Ringer solution
overnight. The next day, the cell suspension was centrifugated
and further fixed with 10:1 Methanol/Acetic Acid solution. After
fixation, 30 µl of the fixed cell suspension was dropped onto
a glass slide according and stained in a 1% Acridine Orange
solution, followed by 0.1M Gürr Buffer and covered with a
coverslip. MNi were scored manually with a 20× objective in
approximately 500 binucleated cells per slide using an Axioscope
fluorescent microscope (Carl Zeiss). At least three slides were
scored per condition and the average values were calculated. The
assay was performed in biological triplicate.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism
(version 5.0). Statistical comparisons were performed by way
of paired t-test and/or one-way analysis of variance (ANOVA).
A significance level (α) of 0.05 was used in all tests, hence
P < 0.05 were considered statistically significant, p < 0.01 highly
significant and p < 0.001 extremely significant. Data is reported
as average values ± standard deviation (SD). All assays were
performed in biological triplicate.

RESULTS

AuNP Uptake
The uptake and localization of the 50 nm AuNPs in CHO-K1
cells was confirmed with ICP-MS and TEM respectively. For
the ICP-MS experiments, the cells were exposed to different low
concentrations of 50 nmAuNPs (2.5, 5 and 10µg/ml) for 4 hours,
based on concentrations and incubation times that were used
in previous studies (36, 55). A dose dependent uptake in the
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FIGURE 2 | Quantities of AuNP internalized per cell after a 4-hour incubation

with different concentrations of 50 nm AuNPs. ICP-MS results show the

dose-dependent uptake of AuNPs. The highest internalization of 50 nm AuNPs

was observed at a concentration of 10µg/ml (37µM). The error bars represent

the standard deviation of three biological replicates per concentration.

CHO-K1 cells was observed, with an increase from 0.31 ± 0.047
pg/ml for the lowest concentration up to 0.89 ± 0.044 pg/ml of
gold per cell for the highest concentration (Figure 2). The gold
uptake per cell increased by almost a factor 3 and therefore,
it was decided to select the highest concentration of 10µg/ml
(37µM) for the proton irradiation experiments. Additionally,
TEM provided visual confirmation of AuNP internalization
and showed a random distribution of AuNPs throughout the
cytoplasm of the cells, with some close localization to the nuclear
membrane but no nuclear entry was observed (Figures 3A–F).

Impact of AuNPs on Cell Proliferation
To determine the impact of the 50 nm AuNPs on the viability of
the CHO-K1 cells, cell proliferation was assessed with a crystal
violet assay at two incubation times of 4 and 24 hours. A minimal
impact on cell proliferation was observed in the cultures that
were exposed to 10µg/ml AuNPs compared to the non-treated
cultures at both time points (4 and 24 hours), with a non-
statistically significant decrease to 89.45 ± 13.87% and 93.87 ±

8.2% in the exposed cultures respectively.

Radiosensitization Effect of AuNPs
Evaluated With the Colony Survival Assay
The combined effect of AuNPs and protons on cell killing was
investigated by the colony survival assay. A paired comparison
revealed a statistically significant reduction in cell survival was
observed between the cells that were pre-treated with AuNPs
and irradiated with protons, compared to the cells that were
irradiated with protons alone (Figure 4) (p < 0.05). By fitting

FIGURE 3 | Confirmed uptake of AuNPs in CHO-K1 cells with TEM. Image (A)

represents three untreated control cells captured at a higher magnification

than panels (B-F), which represent cells that were exposed to 50 nm AuNPs.

Images (B–F) show that low numbers of AuNPs were taken up by the cells,

but were successfully internalized. AuNPs localized randomly into vacuoles

within the cells (B, C and D). AuNPs were also located within proximity to the

nuclear membrane (F) as well as integrated into the nuclear membrane of the

cells (D and E).

the linear quadratic model to the cell survival fractions, α-values
of 0.023 ± 0.017 and 0.125 ± 0.019 and β-values of 0.056 ±

0.002 and 0.044 ± 0.003 were obtained for protons alone and
protons combined with AuNPs respectively. The sensitization
enhancement ratio (SER) was calculated at 10 and 50% survival
as described in (35, 39), resulting in a SER values of 1.11 and 1.33
respectively. These results confirm the radiosensitization effect of
50 nm AuNPs, which resulted in an increased cell killing effect
with proton irradiation. Furthermore, the amplification factor
(AF) was calculated for the different radiation doses used in this
study, as previously described in (35, 37). The largest AF of 43.8%
was observed at a proton dose of 6Gy, while the AF at a clinically
relevant fractionation dose of 2Gy was 27.1%.

Evaluation of the LET-Dependence of AuNP
Radiosensitization Using the CBMN Assay
To explore whether the radiosensitization effect of AuNPs is
dependent on the LET of the proton beam, the CBMN assay
was performed at five different positions along the SOBP.
The CBMN assay was selected over the colony survival assay
for this evaluation, since it has a higher sensitivity to detect
slight changes in the radiosensitization effect. Induced MNi
frequencies are reported for this comparison, which means that
the average background MNi values were deducted from the
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FIGURE 4 | Surviving fractions of cells after the concurrent treatment with

various doses of protons, with (red) and without (blue) internalized 50 nm

AuNPs. All samples were irradiated in the middle position of the SOBP. The

values represent the average SF and standard deviation of three biological

repeats.

values obtained with proton irradiation. These values were 13.00
± 2.61 MNi/500 BN cells and 15.50 ± 6.47 MNi/500 BN cells
for the unirradiated samples without AuNP incubation and
with AuNP incubation respectively. There was no statistically
significant difference between both non-irradiated control values.
This confirms that the 4 hours incubation with 50 nm AuNPs
does not induce a cytotoxic effect on the CHO-K1 cells, which is
in line with the cell proliferation results. As expected, an increase
in chromosomal damage was observed with increasing SOBP
depth (or LET) in cells exposed to 2Gy proton irradiation in
the absence of AuNPs (Figure 5). Using the entrance plateau
position as a reference, the MN frequency showed a gradual
increase with a factor of 1.16 ± 0.30, 1.16 ± 0.11, 1.27 ± 0.26
at the proximal, middle and distal end of the SOBP; going up
to 1.45 ± 0.32 at the distal fall-off position. This confirms the
expected increase in DNA damage and RBE at the end of the
proton range.

Paired analysis showed that pre-incubation with AuNPs
significantly enhanced the chromosomal damage at all positions
along the SOBP when compared to the results obtained with
proton irradiation alone (p < 0.01). This finding supports the
radiosensitization effect of AuNPs observed with the colony
survival assay, but one should consider that the error bars on the
average MNi frequency are large at some positions. A statistical
analysis of the MNi results per individual position only shows
a statistically significant radiosensitization effect of AuNPs at
the entrance plateau, proximal SOBP and 80% Dmax position

(Figure 5). In addition, no incremental increase with LET was
observed for the combined treatment with AuNPs, so this proof-
of-principle study does not illustrate a potential LET-dependence
of the radiosensitization effect.

DISCUSSION

The combination of the excellent sparing of surrounding healthy
tissue with PT and the potential of AuNPs to enhance the
biological effect within the tumor, could offer a new opportunity
to increase the clinical efficacy of PT. While many questions
remain unsolved, the initial biological findings are encouraging
and boost future research efforts on the synergistic effects
of PT and AuNPs (16, 17). Since the pioneering experiment
of Hainfeld et al., the number of biological studies using
kV and MV X-rays are steadily growing (5, 9, 11, 12, 56–
61). The number of experimental studies that investigated the
radiosensitization effect of AuNPs in PT are currently still
limited, and are summarized in Table 1 (33–43). However, as
outlined in Table 1, the PT studies show considerable differences
in experimental conditions including variations in AuNP size,
shape, and functionalization as well as exposure conditions such
as incubation times, concentration, and proton beam energy.
This underlies the differences in experimental findings and
consequently impedes conclusions on the potential of AuNP
radiosensitization in PT.

The 4 hours incubation time in this study was based on the
findings of Chithrani et al., a foundational report for many AuNP
based experiments, where a significant uptake of 50 nm AuNPs
was observed via suspected endocytosis in the first 2 hours,
reaching a plateau after 4–6 hours (55). The same rationale was
applied in the study of Jeynes et al. who also used 50 nm AuNPs
(36). The relatively short incubation time was particularly helpful
to counter potential delays in beam delivery, which are inherent
to experiments at accelerator facilities. Previous studies showed
that AuNP update and cytotoxicity are cell type dependent, with
a preferential uptake by cancer cells in comparison to normal
cells (62–65). This brings us to one of the main limitations of the
current proof of principle study, since only one non-cancerous
cell type was used for this evaluation.

However, the size of the AuNPs might have an even larger
impact on the uptake than the cell type. Several studies reported
maximum uptake and retention within the cells for 50 nmAuNPs
(55, 63, 66, 67). The efficient suspected endocytic capabilities of
the 50 nm AuNPs are conjectured to be due to the similarity
in required vesicle size for the initial cellular entry of several
viruses (68). In this context, it is worth to mention that the
hafnium oxide nanoparticle NBTXR3 (Hensify R©), which also
has a size of 50 nm, is currently undergoing several clinical
trials (NCT02721056; NCT02379845) and making its way to
the clinic for combinations with RT as a radio-enhancer (69).
It is anticipated that nanoparticles up to 100 nm in diameter
enter the cells via clathrin-mediated endocytosis (70, 71). On the
contrary, AuNPs smaller than 30 nmmight leave the cell again by
passive diffusion (72, 73). However, nanoparticle internalization
can occur via a vast array of mechanisms (74, 75), and at
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FIGURE 5 | (A) The effect of protons and AuNPs on the MNi expression of CHO-K1 cells. Where (*) denotes p < 0.05, (**) = p < 0.01 and (***) = p < 0.001. (B)

Binucleated cells without MNi (proton alone). (C) Binucleated cells containing MNi (protons + 50nm AuNPs). The plotted values in the graph represent the average

number of MNi/500 BN cells and the respective standard deviation of three biological repeats. Created with Biorender.com.

TABLE 1 | Overview of the existing radiobiological studies which investigated the potential radiosensitization effects of AuNPs in combination with proton irradiation.

References Incoming proton beam energy

(radiation quality)

Gold nanoparticle size Concentration Incubation time

Polf et al. (33) 160 MeV (within SOBP region) ±44 nm AuNP phage

nanoscaffolds

1 ng/cell Not defined

Kim et al. (43) 45 MeV (within SOBP region) 2 and 13 nm AuNP 0.1–2 mg/ml Overnight

Kim et al. (34) 45 MeV (Bragg peak/entrance

plateau)

5 nm ligand coated AuNPs 100 or 300mg/kg

(in vivo)

1, 6, 12, 24 and

48 h

Penninckx et al.

(35)

1,3 MeV (LET: 25 keV/µm) 10 nm conjugated AuNPs 50 ug/ml 6 and 24 h

Jeynes et al. (36) 3 MeV (LET: 12 keV/µm) 50 nm conjugated AuNPs 5,5 ug/ml 4 h

Li et al. (37) <2 MeV (LET: 10 or 25 keV/µm) 5 and 10 nm amine

functionalized AuNPs

0,05 mg/ml 24 h

Li et al. (38) 1,3 MeV (LET: 25 keV/µm) ±40 nm Cetuximab AuNPs 5 ug/ml 30 min

Abdul Rashid et al.

(39)

150 MeV (within SOBP region) 1.9 nm AuNP nanoprobes 1 mMol/L Not defined

Torrisi et al. (40) 2.0 MeV 5 nm AuNP 5.5 × 10 13 NPs/ml 1 week

Enferadi et al. (42) 200 MeV (within SOBP region) 1.8 nm conjugated AuNP 90 µg (45µg/ml) 24 h

Liu et al. (41) 3.0 MeV 6.1 ± 1.9 nm coated AuNP 500 µM (41) Not defined

present, definitive conclusions cannot be made regarding the
precise mechanism of nanoparticle entry in this study, but it
is most likely by endocytosis. As a proof of principle study on
the potential radiosensitization effect of AuNPs in PT, uncoated,
standard AuNPs were used in this work. TEM micrographs
show AuNPs update in the cytoplasm of cells (Figure 3B) and
some AuNP were even located close to the nuclear membrane
(Figure 3D, E). However, the specific type of endocytosis that

was responsible for the uptake in this study requires further
investigation (76). Since several studies demonstrated that larger
AuNPs exhibit lower in vitro cytotoxicity compared to smaller
AuNPs (up to 5 nm), this provided an additional motivation to
select AuNPs with a size of 50 nm (77–79). The cell proliferation
results showed no significant in vitro cytotoxic effects in CHO-K1
cells after an incubation period of 4 hours. The low cytotoxicity is
in line with previous observations for 50 nm AuNP sizes (77, 80).
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Even after 24 hours, there was only a minimal, non-significant
decrease in cell proliferation observed in this study. However, it
is also important to take into consideration that larger AuNPs
will result in an increased self-absorption resulting in a loss of the
desired dose enhancement effect (32). It is therefore important
to look for the ideal balance between the gain in enhancement
due to the greater gold mass and the self-absorption, which will
also depend on how the AuNPs cluster within tumor cells and the
incident proton energies. Furthermore, the charge of the AuNPs
could also influence the result, as findings by Goodman et al.
showed that positively charged AuNPs were cytotoxic whereas
a later study by the same group showed no cytotoxicity with
negatively charged AuNPs (81). The charge of the AuNPs in
this study was negative (−35.1mV), possibly protecting the cells
against cytotoxicity.

Several simulation studies have investigated the potential dose
enhancement effects of AuNPs in PT in silico. One of the first
studies came from Walzlein et al., who explored the possible
dose enhancement at nanoscale level with monoenergetic proton
beams at energies of clinical interest (82). The study reported
a relevant increase in local dose around the nanoparticle,
which was mainly attributable to the production of low-energy
electrons (including Auger cascades). The Auger cascades are
limited to a very short nanometer range around the nanoparticle
which limit the chance of interaction with the DNA. Even
though the Auger electrons do not always reach the DNA, their
effects are not negligible (83). A comprehensive overview of
Monte Carlo studies on proton interaction with NPs can be
found in (16, 17, 84). Alternative biological mechanisms for
the observed AuNP radiosensitization have been hypothesized
over the past few years, such as enhanced reactive oxygen
species (ROS) production (12, 85). This biological, instead of
physical enhancement effect has recently been supported by the
in-silico findings of Fuss et al. (83) and Peukert et al. (86).
Although physical effects are not entirely outside of the realm
of possibilities, their dose enhancement effects are localized. It
is therefore expected that biological pathways are more likely to
play a key role in the observed effects. The results in this study are
closest to the Monte Carlo study of Martinez-Rovira and Prezado
where 4 and 50 nm AuNPs were irradiated with several proton
beam configurations (87). While a dose enhancement of 1.7 was
observed for the 50 nmAuNPs, the local dose enhancement effect
was negligible when a more realistic beam configuration was
used with the source further away from the target. Again, this
illustrates that physical effects seem to play a minor role in the
amplification of the biological effect and confirms that biological
and chemical processes may be responsible for the enhanced
radiosensitization in biological studies.

A statistically significant decrease in cell survival was observed
between the CHO-K1 cells irradiated with protons in the absence
of AuNPs and the irradiated cells containing AuNPs (Figure 4).
This finding supports the radiosensitization effect described by
Abdul Rashid and co-workers, in which an SER50 of 2.64 was
reported (39). However, this is considerably higher than the
SER50 of 1.33 in this study. The SER10 in this study was only 1.11,
while the study of Enferadi et al. reported a very similar SER10

value of 1.17 for a high energy proton (200 MeV) beam, however,

very small AuNPs (1.8 nm) and amurine glioma cell line was used
for the colony survival analysis (42). The AF was also calculated
in this study, which is an illustration of the enhance proportion
of dead cells in cultures with and without AuNPs that have
been exposed to proton irradiation. The AF value reported by
Li et al. was approximately 30% at 2Gy using 10 nm AuNPs is
relativelyclose to the AF at 2Gy of 27.1% for 50 nm AuNPs in
our study, while Enferadi et al. report and AF at 2Gy of 17.7%
(37, 42). Enferadi et al. calculated their highest AF value of 70.4%
at 6Gy, while the AF value in our study was also highest at
6Gy in our study, but only 43.8% (42). However, it is important
to note that the differences in cell lines, incubation times and
AuNP size, will result in cell uptake variations as well as observed
radio-enhancement effects. In addition, the LET of the proton
beam varies significantly, which contributes to the discrepancies
in different in vitro studies. As outlined in Table 1, there is very
little consistency in the methodology of the in vitro studies that
are published so far.

As expected, proton irradiation induced an incremental
increase in MNi frequency with increasing depth along the
proton SOBP and reached a maximum at the distal fall-of
position (Figure 5). This is a direct consequence of the increase
in ionization density with depth along the SOBP, which is also
reflected in the increasing LET values in Figure 1. When cells
were exposed to both AuNPs and protons, greater levels of
chromosomal damage were observed at all positions compared
to proton irradiation in the absence of 50 nm AuNPs. This
effect did not increase gradually with LET which contradicts
the previous observations of Li et al., where a LET-dependent
radiosensitization was observed between 5 and 10 nm AuNPs
(37). However, findings in this study are in line with the recent
study of Fuss et al., who reported a lower efficiency of AuNP
radio-enhancement at low particle energies close to the track-end
(83). To date, no complete explanation for the LET dependence
is available. In the present study, the radiosensitization effect
of the AuNPs on chromosomal damage is highest at the
entrance plateau and proximal SOBP position (Figure 5), which
confirms this hypothesis. Despite the fact that this study was
only performed with one cell line and designed as a proof of
principle study, it presents the first in vitro results on the potential
LET dependence of the AuNP radiosensitization effect with a
proton beam of therapeutically relevant energy. The LET values
in the current study are similar to the LET values applied by
Schlathölter et al. to investigate the nanoscale damage of 3 nm
platinum (Z = 78) and 5 nm gadolinium (Z = 64) nanoparticles
using plasmid DNA probes with a proton energy of 150 MeV
(88). The LET values of 0.44 and 3.6 keV/µm were representing
the radiation quality at the entrance and the end of the proton
track respectively, which are close to the LET values used in the
current study of 0.90 keV/µm at the entrance plateau and 2.28–
3.81 keV/µm in the SOBP (Figure 1). The beam quality used in
the current study is closer to clinical practice than the high LET
values applied in studies with low-energy proton beams listed
in Table 1. While low-energy proton beams can be used as a
substitute of high-energy proton beams to study radiobiological
effects in the distal fall-off region, it is important to take
some differences into consideration. The momentum spread
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(or energy spread) of the incident beam from an accelerator
increases with the beam energy and is therefore significantly
larger for high-energy beams compared to low-energy beams.
The straggling of the protons near the distal edge of the beam
also increases significantly as the beam energy increases. As a
result of these two factors, the distal fall-off of a high-energy
proton beam is considerably wider compared to a low-energy
beam. Furthermore, due to these two factors, the proton energy
spectrum for a high-energy proton beam is expected to be
broader at a given relative position in the distal falloff, resulting
in a lower fluence-weighted LET for a high-energy proton beam
compared to a low-energy beam (89). Additionally, the secondary
radiation field of a low-energy proton beam (≤8 MeV) differs
from a high-energy proton beam since inelastic nuclear scattering
processes and non-elastic nuclear reaction channels are closed
at these lower energies. It was decided to perform the colony
survival experiments in the mid-SOBP position (position 3 in
Figure 1). Due to the weighted superposition of proton beams
to form a clinical SOBP, we consider this position with its
corresponding LET to be a representative location to mimic
tumor response.

While the radiation quality in this study is more applicable
to clinical practice, it is paramount to note some limitations
of the current proof-of-principle study. The use of untargeted
AuNPs could be a limitation, however this “passive targeting”
approach has been applied by other groups (90, 91). In clinical
practice, this principle is based on the enhanced permeability and
retention (EPR) effect, which is attributable to the leaky tumor
vasculature and doesn’t require a targeted delivery mechanism to
accumulate AuNPs in the tumor. However, there are constraints
to this approach, including arbitrary targeting and inefficient
dispersion in the tumor. Additionally, not all tumors exhibit the
EPR effect and the AuNP uptake seems to be cell type dependent,
while only one cell line was used in this proof-of-principle study
(63, 92). Therefore, active targeting by functionalizing the surface
of AuNPs with suitable tumor specific ligands that have a specific
affinity to interact with the tumor cells, might be a more advisable
approach to obtain higher intra-tumoral concentrations of
AuNPs in vivo (93). This is another limitation in the current
study, since the TEM images show only a very low number of
AuNPs which are localized in the cells. However, these AuNPs
are freely distributed and not localized in endosomes. According
to Lin et al., the AuNPs freely distributed in the cytoplasm can
result in a higher dose enhancement than those aggregated inside
the endosomes because of lower internal absorption of secondary
electrons in the AuNPs (42, 94).Provisional in silico results show
that AuNP shell coatings lead to a decreased electron yield,
which may not be beneficial to the improvement of RT in the
presence of AuNPs (85). A recent in vitro study of Klebowski
et al. described the radiation enhancement effect of bimetallic
gold-platinum nanocauliflowers, with a highly developed surface
area and average size of 66 nm, for the treatment of colon cancer
with PT (95). A clinical proton therapy system (IBA Proteus C-
235 cyclotron) with a beam energy of 225MeV was used for these
experiments, which showed a significant reduction in cancer cell
viability compared to normal cells. Another alternative approach
is the application of iron oxide nanoparticles (FeO NPs) as

radiosensitizers. Their systemic toxicity is lower than gold or
carbon nanomaterials, since they are efficiently degraded to
ferritin, which can be assimilated by the body (96). A previous
study of Kim et al. showed an inferior radiosensitizing efficacy
of FeO NPs compared to AuNPs in combination with protons.
However, recent study with magnetosomes showed increased
radiosensitization (43, 97). The radiosensitizing potential of
magnetosomes was obtained with both X-ray and PT, both in
vitro and in vivo (97). Unfortunately, the proton beam energy is
not defined in the paper, but the description points to a clinical
proton beam line (energy > 45 MeV).

In conclusion, this study confirms the radiosensitization
potential of AuNPs in PT, which may enhance the therapeutic
efficacy of PT as a cancer treatment modality. However,
more biological studies are needed to confirm the LET
independence that was observed in this study and to identify
the underlying biological and chemical mechanisms that
are responsible for the radiosensitization of larger (50 nm)
AuNPs in PT. Finally, the lack of conformity amongst
biological assessments makes it difficult to correctly
compare findings from different groups. Future studies
into this field require standardization, including more careful
consideration of the selection of AuNP size, concentration and
irradiation conditions.
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