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Background: An increasing number of Chinese elderly women stay at home and act

as grandchildren sitters. In consequence of the frequent load-bearing, chronic lumbar

fatigue probably caused a higher risk of lumbar degeneration, fatigue, and injury which

has become one of the most important aging and health problems in China. In this study,

a multi-mode lumbar finite element model (FEM) with specific bone mineral density (BMD)

were developed and validated for further spine injury prevention and control.

Methods: The material properties of lumbar vertebra were modified according to

degenerated bone mineral density, and geometry was adjusted based on intervertebral

disc height. The motion of lifting children was simulated by a 76 year-old Chinese

women’s FEM, and the stress distribution was calculated and predicted.

Results: The pressure of L5-S intervertebral disc in the bending 3-year-old dummy

lifting posture was significantly higher than the same posture without lifting, the maximum

effective stress of endplate cartilage in the upright child lifting posture was 1.6 times that

of the bending without lifting posture. And the fatigue risk limitation frequency of the

upright with dummy posture was predicted with the functional equation of fatigue and

stress which was deduced by genetic algorithm, which combined with the effective stress

of lumbar vertebrae spongy bone calculated from FEM.

Conclusions: The child-lifting motion could increase the risk of lumbar degeneration,

fatigue, and injury in elderly women, and they should keep below the frequency limit of

the motion of lifting children in their daily life. This study could put forward scientific injury

prevention guidance to Chinese elderly women who lift children in daily life frequently.

Keywords: reverse engineering, injury prevention, aging and health problems, spine fatigue limitation frequency,

lumbar degenerative disease, public health, left-behind elderly
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INTRODUCTION

Grandparent-raising refers to the situation where children are
raised up by grandparents alone, or mainly by grandparents
while parental rearing only plays a minor role. This phenomenon
has attracted more and more investigators’ attention (1–5).
Grandparent-raising is influenced by cultural differences and
mainly exists in East-Asian countries, especially in China.
Because traditional culture in these countries emphasizes family
harmony and collective happiness in the whole family, it is a
common phenomenon that children are taken care of by their
grandparents instead of their parents (1, 5, 6). Moreover, in these
families, it is usually the responsibility of women to take care of
children (5). During the course of babysitting, the action of lifting
children, which involves bending, flexing, and the uprightmotion
of the lumbar region, is inevitable and repeated frequently. In
the view of biomechanics, those movements increased load-
bearing on the lumbar vertebra and soft tissues. Because of the
characteristics of the lumbar vertebra in elderly women, such
daily lifting behavior is likely to increase the risk of lumbar fatigue
(7, 8). With severe population aging and baby booming caused
by the implementation of the second-child policy in China, more
and more elderly women are at the risk of lumbar fatigue due to
such daily behavior.

Different from injury of other parts of the human body
(e.g., intervertebral disc protrusion) (9), lumbar fatigue, also
called the silent epidemic, is usually asymptomatic and is easily
neglected by the public (10). Most lumbar vertebral fractures
are caused by common actions in daily life (8), movements
like bending and lifting light objects are likely to increase the
risk of lumbar vertebral fractures (7). Osteoporotic vertebral
fracture is common in the elderly, representing a serious
event, causing reduced activity or bedridden status with high
mortality and morbidity rates, imposing a heavy burden on
public health and social development (11). Due to the high
misdiagnosis rate of this silent epidemic in clinical imaging
examination (12–15), most elderly women with minor lumbar
problems fail to get the doctors’ warning and still frequently
perform movements of bending, flexing, and lifting motions
in raising their grandchildren, which leaves a latent danger of
further serious damage. Therefore, it is crucial to predict and
quantitatively evaluate the risk of such daily movements before
serious lumbar injury occurs.

Some research efforts have been focused on applying the
finite element model (FEM) to predict the degenerative disorder
of lumbar/cervical spine and detect lumbar stress during
operations (16–18). In addition, the use of the genetic algorithms
in the quantitative evaluation of the body’s tolerability to
injury has made significant progress (19, 20). Based on these
improvements, our study first developed a FEM based on two
main characteristics of lumbar spine in elderly women, i.e.,
the decreased bone mineral density (BMD) and the reduced
intervertebral space. Secondly, based on the measured result of
the lumbar activity range of volunteering experiment subjects
when they are lifting a dummy representative of a 3-year-old,
we used FEM to set the range of motion and then calculated
and predicted the muscle force and effective stress response of

the intravertebrae disc, endplate cartilage in bending without
lifting, bending with lifting a 3-year-old child, and upright with
lifting 3-year-old child respectively. Thirdly, according to the
fatigue-frequency curve of the lumbar spongy bone (21), we
used the genetic algorithm to predict the frequency limitation
of bending and upright posture with lifting corresponding to
the effective stress of vertebrae spongy bone, then proposed a
frequency limitation of such daily liftingmovement and provided
a quantitative reference for lumbar protection in elderly women
who get involved with daily grandparent raising.

METHODS

Description of the Finite Element Model
The FE model includes: vertebral body, intervertebral discs,
main ligaments, and muscles (as shown in Figure 1A). Most
anatomical geometry of the model comes from the CT scanning
of 75-year-old women without clinical symptoms of lumbar
degeneration. Lamellar thickness is 0.5mm and resolution is
512 × 512. Then MIMICS software (Version 12.0, Materialize
Inc., Leuven, Belgium) was used for the three-dimensional
reconstruction. The intervertebral disc, endplate cartilage, and
ligament were reconstructed according to anatomical position
and reference from the radiologist. In order tomake the FEmodel
more consistent with the morphological characteristics of the
target population, we adjusted the intervertebral space according
to Shao’s study (22). Elastic modulus of cancellous bone was
adjusted according to the BMD of Chinese women population in
Wu’s report (23). The BMD was calculated based on equation (1)

BMD(age) = 0.317+ 0.486 • age− 0.0011 • age2

+0.0000066 • age3 (1)

Herein age was 60, and young’s modulus was calculated by
equation (2)

E = 24 • BMD− 3.73 (2)

Young’s modulus of vertebrae spongy bone for Chinese elderly
women was obtained, as shown in Appendix Data 1.

Validation of the Lumbar FE Model Without
Muscle
Since there is not available cadaver experimental data of the
muscle for validation, in order to ensure the biofidelity of our
model, we removed the muscle, then the lumbar FE model was
validated by comparing its predictions with range of motion
(ROM) observed in vitro under the flexion (8Nm), extension
(6Nm) loading condition without preloading (24). The same
as the description of the experiment in vitro, the boundary
condition of the lumbar FE model without muscle was set
identically with experiments in vitro, as shown in Figure 1B.

Muscle Model Setting (Muscle Function
Description)
In order to simulate the movement of an elderly woman
in the process of lifting a child, the main muscles that
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FIGURE 1 | Integral map of lumbar spine model (A) and the lumbar spine FE model [(B) excluding muscle].

maintain the stability of the trunk and waist when load-
bearing were added into the model: Erector spinae, rectus
abdominis, internal oblique muscle, external oblique muscle,
lumbar major muscle, quadratus lumborum and multifidus.
The psoas, multifidus, and quadratus lumborum muscle groups
are reported to act as stabilizers of the lumbar spine. The
erector spinae and the abdominal muscles are the primary
locomotors of the spine. The parameters of the material
properties are in the attachment (I–II), referring to the findings
of Christophy (25). We referred to spine surgeons in Xiangya
3rd hospital when deciding the muscle starting and stopping
points. The material parameters were converted according to
PCSA (physiological cross-sectional area) and maximal force
with equation (3), herein σ was the maximum engineering stress,
Fmax was the maximum force, the PCSA was the physiological
cross-sectional area.

σ =
Fmax

PCSA
(3)

These variables were utilized as parameters of the fiber element
parameter in LS-DYNA (LS-DYNA3D 971, LSTC, Livermore,
CA, USA), as shown in Appendix II, and calculated in finite

element model simulations. Similar settings were used to
simulate the neck muscle response in the front impact study by
Matthew’s group (26).

Volunteer Experiment and the Simulation
of an Elderly Woman Lifting a Child
In order to simulate the motion trajectory of an elderly woman
lifting a child, a high-speed camera imaging system (Redlake
MotionXtra HG-LE, DEL Imaging Systems, LLC. Chesshire.
CT, US) was used to obtain the lumbar spine track in the
process of volunteers lifting a dummy representative of a 3-
year-old, as shown in Figures 2A,C. A standard 3-year-old child
model (weight 16 kg, height 115 cm, P3 child dummy, Hunan
SAF Automobile technology Co. Ltd, China) was used in this
experiment. After labeling on the lumbar spine of the volunteers
(Labeling spot was located on Spinous), video with a speed
of 200 frames per second was recorded. (The characteristics
of the volunteers: Age 76, 159.3 cm, 60.4kg, which is near the
approximate the median of Chinese elderly women). The posture
of the FE model was adjusted, as shown in Figures 2B,D, the
range of motion of lumbar FE model was set identically to
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FIGURE 2 | FEM mechanical simulation of volunteers lifting dummy. (A) Bending posture with lifting 3-year-old dummy, (B) Lumbar FEM adjusted posture according

(A,C) Upright posture with lifting 3-year-old dummy, (D) Lumbar FEM adjusted posture according (C).

the volunteer’s experiments. Three postures were simulated,
the stress of the lumbar spine was calculated and predicted
under bending without lifting posture, bending with lifting 3-
year-old child posture, and upright with lifting 3-year-old child
posture, respectively.

Fatigue Curve
Repetitive loading lower than ultimate loads may cause failure
(21), which presents a certain functional relationship between the
action frequency and maximum stress. In this study, an equation
was deduced from low cycle and high cycle fatigue studies with
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FIGURE 3 | FEM simulation compared to the in vitro experiments data.

a genetic algorithm, as shown in equation (4). Herein σeff was
effective stress, the unit was kPa, N was the number of cycles
to failure.

N = 1525− 3.38 • σ
0.56
eff (4)

Based on the effective stress of vertebral spongy bone calculated
from the 2.4 section, the combined genetic algorithm and the
equation (4), our study quantitatively predicted the limited
frequency of the lumbar vertebral spongy bone during the
movement of elderly women lifting children.

RESULTS

ROM Results Compared to in vitro

Experiments
As shown in Figure 3, the ROM predicted by the lumbar FEM
were in good agreement with the in vitro results at all segmental
levels (24), except the L5-S1 ROMpredicted was 13.7◦, which was
slightly above the in vitro result 9.43± .5◦.

FE Model Prediction of the Soft Tissue in
Bending, Bending With 3-Year-Old Baby,
and Upright With 3-Year-Old Child Posture
The experimental result showed that the maximum erector
spinae tension was 4.32 kN, 4.9 kN, and 3.7 kN, in the bending

without lifting weight, the bending with lifting 3-year-old child,
and upright with 3-year-old child posture respectively, as shown
in Figure 4. The calculated maximum intradiscal pressure was
located in L5-S, which were 3.56 Mpa, 5.38 Mpa, and 1.47
Mpa, in the bending without lifting weight, the bending with
lifting 3-year-old child, and upright with 3-year-old child posture
respectively, as shown in Figure 5. The maximum effective stress
contribution of endplate cartilage was located in posterior edge of
L5 up and down endplate cartilage, which were 16.55 Mpa, 23.58
Mpa, and 26.55 Mpa in the bending without lifting weight, the
bending with lifting 3-year-old child, and upright with 3-year-old
child posture respectively, as shown in Figure 6.

The detailed sagittal views of the effective stress in lumbar
vertebrae spongy bone were shown in Figure 7, as the vertebrae
spongy bone was the primary compression-bearing structure. In
the bending without lifting posture, the maximum effective stress
of vertebrae spongy bone was located in the lateral posterior
part and the vertebral pedicle of L5, which was 26.3 Mpa.
When the 3-year-old child was lifted, the maximum effective
stress contribution of the vertebrae spongy bone was moved into
the middle posterior part and vertebral pedicle of L5, which
was 38.5 Mpa, an increase of 46.3% compared to the bending
without lifting weight posture. More increments occurred in the
upright with 3-year-old child posture, the maximum effective
stress contribution of the vertebrae spongy bone was moved
into the bottom part and vertebral pedicle of L5, which was
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FIGURE 4 | The muscle force contribution of bending without lifting weight posture (A), the bending with lifting 3-year-old child posture (B), and upright with

3-year-old child posture (C).

FIGURE 5 | The maximum intradiscal pressure of bending without lifting weight posture (A), the bending with lifting 3-year-old child posture (B), and upright with

3-year-old child posture (C).

53.8 Mpa, an increase of 39.7% compared to the bending with
lifting posture. In spongy bone, the cycle to failure was intimately
correlated to the effective stress, according to the cycle of

failure vs. and the stress curve, the cycle to failure of lumbar
vertebrae spongy bone in three different postures were shown
in Table 1.
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FIGURE 6 | The effective stress of endplate cartilage in bending without lifting weight posture (A), the bending with lifting 3-year-old child posture (B), and upright with

3-year-old child posture (C).

DISCUSSION

Computer simulation could be used to better understand the
mechanical and biology change in vivo by the prediction of
the three-dimensional finite element method recently (27). To
analyze the mechanical effect of the daily baby lifting motion
on the Chinese elderly women, a lumbar finite element model
with the unique geometry of Chinese elderly women was
developed in this study. The muscle force, intradiscal pressure,
and effective stress of endplate cartilage and vertebrae in three
critical motion postures were calculated. In this section, we will
assess mechanical change on the lumbar soft tissue degeneration
and the risk of vertebrae spongy fatigue in the daily baby-lifting
motion of Chinese elderly women, based on our predicted results
and the previous reports.

The Mechanical Change on Soft Tissue
and Relevant Lumbar Degenerations
Before and after lifting, the maximum muscle force in bending
posture has no significant change, the primary tense muscles
were erector spinae, psoas major, quadratus lumborum, obliquus
internus abdominis, obliqus externus abdominis, and rectus
abdominis. After upright with lifting of 3-year-old baby, the
muscular tension of erector spinae was relaxed, the maximum
muscle force was decreased 24.5%. Ekholm measured that
the erector spinae tension was 3.9 kN in lifting 12.8 kg with

straight knees, and decreased 20.4% compared to lifting 12.8 kg
with bending posture (28). Our muscle analysis result was in
good agreement with the previous lumbar loading kinematic
study, which will improve the biofidelity of this FE modeling
and provide a more accurate prediction to muscle kinematic
response analysis.

After lifting a 3-year-old child, the calculated intradiscal
pressure was 1.51 times that of the bending without lifting
posture, compared to after upright with 3-year-old child posture,
the calculated intradiscal pressure in bending posture with the
same loading was 2.38 times that of upright posture. As Sato
measured the in vivo volunteer introdiscal pressure in different
body postures, the different postures had a significant influence
on intradiscal pressure, the intradiscal pressure in bending
posture was reported to be 2.45 times that of the upright posture
in the same loading (29). As the increased intradiscal pressure
was considered as the primary impact factor of intervertebral
disc degeneration in old age population (30). Collectively, the
bending posture will cause the intradiscal pressure to increase,
the increased intradiscal pressure will increase the risk of lumbar
degeneration, typically the elderly women who frequently lift
babies in a bending posture, this bending loading-bear posture
might expedite the intravertebrae disc degeneration of the
elder women.

In three different postures, the maximum effective stress
of endplate cartilage is both located on the upper and lower
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FIGURE 7 | The vertebrae effective stress contribution in bending without lifting weight posture (A), the bending with lifting 3-year-old child posture (B), and upright

with 3-year-old child posture (C), the A’, B’, and C’ were the detailed sagittal view of spongy bone of (A–C) respectively.

TABLE 1 | The corresponding cycle to failure of three postures were deduced from

the effective stress according to the cycle number to failure vs. the stress curve.

Posture Maximum effective

stress (Mpa)

Corresponding

cycle to failure

Bending without lifting weight posture 26.3 515

Bending with lifting 3-year-old child

posture

38.5 275

Upright with 3-year-old child posture 53.8 18

endplates of L5. After lifting a 3-year-old child in a bending
posture, the maximum effective stress of endplate cartilage is
increased to 1.42 times that of the bending without lifting
posture. More incrementally, upright with lifting 3-year-old
child posture, was 1.6 times that of in the bending without
lifting posture. As Adams reported, the repeated increase of
endplate cartilage compression will cause the change of stress
contribution in adjacent intravertebrae disc, and the annulus
fibrosus cell appeared metabolically abnormal (31). Taken all
together, these results suggested that the cyclic lifting motion of
a 3-year-old child in daily life will aggravate the degeneration of
intravertebrae disc.

Fatigue Risk Caused by Mechanical
Loading of Spongy Bone
Equivalent stress distribution of lumbar spongy bone: When the
old woman is not lifting children, posterior vertebral pedicle of

L4–L5 bears the largest force, which is 26.3 Mpa. When the old

woman was bending and lifting a child, the effective stress on
this part significantly increased by 44.3%. A larger increment

occurred when the subject is standing upright after lifting a child

and the effective stress reaches 53.8 Mpa. This is consistent with
Pollintine’s finding (32, 33). This change in stress suggests that

when elderly women lift a child and finally reach the state of
being upright, the pressure on posterior vertebral pedicle reaches
its peak. After conferring to fatigue data (21), we found that in

the case of bending without lifting, the fatigue limit is rather
high, which is 515 times, so no obvious fatigue risk exists in this
situation. The fatigue limitation frequency of the bending with
lifting 3-year-old child posture is 275 times. Basically, a few risks

of fatigue exist in this situation as well. In the case of upright with
lifting a child, the corresponding fatigue limitation frequency of

maximum load-bearing in the posterior vertebral body is low to

18 times. The result suggests that if themovements of upright and

lifting a three-year-old child is done over 18 times continuously,
the posterior vertebral body and pedicle spongy bone of L4–L5
will face the risk of fatigue failure.

However, it should be noted that the fatigue curves we referred
to are based on in vitro experiments of cadaverous spongy bone.
Nevertheless, the material properties of in vivo and in vitro
spongy bone are different. Taylor’s study found that spongy bone
in vivo can self-repair the injury caused by stress fatigue (21).
Thus it can be speculated that in vivo spongy bone has a higher
fatigue tolerance than in vitro spongy bone. However, since there
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is no reference data about the relationship between the load-
bearing of in vivo spongy bone and its fatigue, our calculation is
based on the in vitro data. Therefore, the risk frequency (18 times)
in this study can only be considered as a conservative reference
value for the limiting frequency of the lifting child movement in
elder women.

Actually, the lifting movement which our study focused on is
called Knee Straight Lifting (KSL), the fracture risk of which is the
highest among all common kinds of lifting movements (7). For
Chinese women over 55 years old, lumbar loading is a high-risk
factor for lumbar degeneration (11). Mechanical and biological
factors, which were interconnected and amplified each other (34,
35), were considered the primary roles of lumbar degeneration.
In this study, the lifting baby motion will accelerate the lumbar
degeneration and increase the risk of fracture in the following
ways: increasing intervertebral disc pressure, increasing endplate
cartilage pressure, and fatigue failure of vertebral spongy bone
due to the repeated loading-bear. Increasing bone strength
and avoiding high-risk action are two approaches to prevent
such risk. This study provides a reference for elderly women
in China and East Asia, which is trying to avoid continuous
straight-standing action in the dailymovement of lifting children.
In a word, the frequency of KSL movement especially with
burden should not be too much. The experimental model and
stress analysis fully considered several closely related factors:
BMD degeneration (23), muscle movement (25), ligament
material parameters, and patient-specific skeletal geometry of
asymptomatic elderly women. The article aims to simulate
the biomechanical characteristics of Chinese elderly women as
accurately as possible and quantitatively analyzes the movement
of lifting children, which happens frequently in Chinese elderly
women. The study possesses following characteristics. First, we
added the main muscles and ligaments of the waist into the
model, which helps to simulate the dynamic process of lifting a
child with higher biofidelity. Second, in the motion simulation,
the model simulated the process of lifting a child according to
the result of high-speed photography in volunteers’ experiments.
Thirdly, the fatigue property of vertebral spongy bone was taken
into consideration. We combined the research result with fatigue
curve and get the fatigue limit frequency of vertebral part bearing
the most pressure and quantified the effect of such pressure on
the vertebral body’s fatigue failure.

CONCLUSIONS

Although China started its transformation earlier than other
socialist countries, it is still undergoing social changes. Especially
after the three-child policy change, more children would be left
with their grandparents who have to provide support for their
8-to-6-working son or daughter, which commonly happens in
China. Moreover, it is usually the responsibility of women to take
care of children. And now, China is facing new ramifications
from the three-child policy. More and more elderly Chinese
women who act as stay-home grandchildren sitters are difficult
to bear for the increasing expenditure of medical costs. The
reform of medical insurance system and the process of medical
privatization in China have resulted in medical treatment prices

which have increased the difficulties of plenty of elderly women’s
capability to access healthcare. This study obtained the frequency
limit of lifting childmovement in the case of lumbar degeneration
and put forward scientific guidance to elderly Chinese women
especially for those aged over 75 years. With the deterioration
of the aging problem in China and the increasing number of
newborns, our study has practical significance to protect the
lumbar health of elderly women.

Risk factors and mechanisms of injury-related health
problems are of the most stubborn but most easily neglected
issues in older Chinese people. We do hope that the multi-
modal risk analysis of lumbar degeneration, fatigue, and
injury based on FEM/BMD could put forward scientific injury
prevention guidance to elderly Chinese women who are lifting
lift children in daily life frequently, not only providing evidence
for improving the health status of elderly women but also
raising the women’s health standard and improve the ability
to prevent injury, as well as further explore the factors
affecting the injury-related health problems of the elderly in
China, which will also make a positive contribution to healthy
aging globally.
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