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Tuberculosis (TB), an airborne infectious disease caused byMycobacterium tuberculosis

complex (MTBC), remains a global health problem. West Africa has a unique

epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the

geographical restriction of M. africanum to the sub-region makes West Africa have an

extra burden to deal with a two-in-one pathogen. The region is also burdened with low

case detection, late reporting, poor treatment adherence leading to development of drug

resistance and relapse. Sporadic studies conducted within the subregion report higher

burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive

and robust tools for routine surveillance as well as to understand the mechanisms

of DRTB and transmission dynamics for the design of effective control tools, cannot

be overemphasized. The advancement in molecular biology tools including traditional

fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for

genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature

of pathogens, circulating strains and their spread as well as prompt detection of the

emergence of new strains. It also offers the opportunity to monitor treatment and evaluate

interventions. Furthermore, genomic epidemiology can be used to understand potential

emergence and spread of drug resistant strains and resistance mechanisms allowing the

design of simple but rapid tools. In this review, we will describe the local epidemiology of

MTBC, highlight past and current investigations toward understanding their biology and

spread as well as discuss the relevance of genomic epidemiology studies to TB control

in West Africa.

Keywords: genomic epidemiology, tuberculosis, West Africa, Mycobacterium tuberculosis complex,

Mycobacterium africanum, tuberculosis control

INTRODUCTION AND BACKGROUND

Tuberculosis Historical Trends and Current Burden
Tuberculosis (TB) is a disease of antiquity and eradication of it has been man’s dream throughout
history. Before the 19th century, very little was known about the causative pathogen and disease
mechanisms. During the 17th to 19th centuries, reports indicated that 1 in every 5 adults had TB
and mortality was 900 deaths per 100,000 population in the western world. TB accounted for 20%
of all human deaths at the time (1). The history and perspective of TB was changed dramatically
on March 24, 1882, with presentation by Robert Koch titled, Die Aetiologie der Tuberkulose, to the
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Berlin Physiological Society where Dr. Koch demonstrated the
etiology of the disease and presentedMycobacterium tuberculosis
as the causative agent (2).

The identification of the causative pathogen paved the
way for several studies aimed at understanding the biology
and the development of control tools including therapy.
Antimycobacterial treatment began with the isolation of
streptomycin (first isolated from Streptomyces griseus in 1944
by Albert Schatz, Elizabeth Bugie and Selman Waksman)
followed in the 1950s and 60s by isoniazid and rifampicin
(1). Nevertheless, TB persisted and does remain one of the
leading causes of death among adults by a single infectious
disease. TB affects millions of people annually so much so that
in 1993 it became the first infectious disease to be declared
a global health emergency by the World Health Organization
(WHO). According to WHO estimates, about a quarter of
the world’s population are latently infected with the causative
microorganism (3), thus, creating a pool of future active cases.
Globally, in 2019 alone, an estimated 10 million new TB cases
occurred, out of which 1.4 million died of TB making TB still
the number one infectious disease killer by a single agent (4).
Although the WHO African region is home to only 14% of the
world’s population, in 2019 it reported a quarter (25%, 2,460,000)
of the global TB incidence, and currently has the highest HIV-
associated TB cases and case fatality rates (4). This makes sub-
Saharan Africa the most burdened region based on case to
population ratio. Three of the 17West African countries (Nigeria,
Liberia, and Sierra Leone) are among WHO’s list of 30 high TB
burden countries globally. In addition, Nigeria, Liberia, Ghana,
and Guinea Bissau also add up to WHO’s list of the 30 high
TB/HIV burden countries in the world. In 2019, 9 out of the 17
West African countries had TB incidence rate of>99 per 100,000
population per year compared to global incidence of 130 per
100,000 population per year.

To reduce this high TB burden, the WHO put in a strategy
known as the “End TB Strategy” in 2014 with set targets to reduce
the absolute number of TB deaths and TB incidence by 90 and
80% respectively by 2030 and 95 and 90% respectively by 2035
(5). The End TB strategy was unanimously endorsed in May
2014 by all members of the WHO and the United Nations (UN)
who proceeded to adopting the UN Sustainable Development
Goal (SDGs) in September 2015. The End TB strategy outlines
three pillars including; (1) an integrated, patient-centered care
and prevention, (2) bold policies and supportive systems, and
(3) intensified research and innovation (5). Generally, the
control strategy calls for improving diagnostic, intervention, and
research tools to facilitate achieving the set targets. Currently, the
annual rate of global TB incidence decline is about 2%, and this
is far lower than the target of 10% set by the End-TB and SDG
strategies. Also, per the End TB strategy, between 2015 and 2020,
the total number of TB incidence rate and deaths were expected
to have been reduced by 20 and 35%, respectively; however, only
9 and 14%, respectively were achieved.

The Causative Agent of Tuberculosis
Tuberculosis in mammals is mainly caused by 9 genetically
related mycobacterial species comprising Mycobacterium

tuberculosis sensu stricto (Mtb), M. africanum (Maf), M. bovis,
M. mungi, M. microti, M. caprae, M. pinnipedii, M. suricattae,
and M. orygis together referred to as theM. tuberculosis complex
(MTBC) (6–9). The members of the MTBC are intracellular
pathogens of mammals whose primary niche is the lungs (6, 10–
15). Despite their close genetic relatedness, the MTBC differ
in host specificity, although there are occasional cross-species
infections (Figure 1). The main human pathogens are Mtb and
Maf together referred to as human-adapted MTBC (hMTBC)
(6, 12, 13). The animal adapted MTBC (aMTBC) comprisingM.
bovis mainly infects cattle and sheep, M. caprae infects goats, M.
microti infects rodents, M. pinnipedii infects sea seals and sea
lions,M. mungi infects Mangoose, Dassie bacillus infects Dassies,
M. suricattae infects meerkats, and Chimp bacillus infects
Chimpanzees whereasM. orygis infects antelopes (6–11, 16).

Maf is endemic in only West-African countries and is
responsible for about 50% of TB cases in some of the countries
(12, 17–19). Thus, in addition to dealing with the general burden
of TB, West Africa has an extra burden to deal with a two-in-
one pathogen.

Control of Tuberculosis and Its Challenges
The traditional methods for TB control depend on vaccination,
early case detection of the affected using both clinical and
laboratory-based tests followed by antimicrobial treatment of
confirmed cases. TB vaccination has however, largely failed the
fight against adult TB because the only WHO approved M.
bovis—bacille Calmette-Guérin (BCG) vaccine administered to
over 90% of newborns and in use since 1921 offers mainly
protection against disseminated TB in children under 5 years
as its efficacy wanes with time (20, 21). The current TB burden
could be reduced considerably with a potent vaccine that is able
to either induce clearance of latent infections or protect against
new infection or both. Thus, early case detection followed by
appropriate treatment remains the better option for TB control.
Nevertheless, due to severe stigmatization, TB cases delay in
reporting to the formal sector case management (22), which
contributes to the high case fatality report by some of the
countries including Ghana (23).

Laboratory methods used for diagnosis of TB include sputum
smear microscopy, nucleic acid based assays, and culture. Smear
microscopy prepared directly from sputum specimens is the
most widely used test for diagnosing TB in West-Africa, though
slowly being replaced by Gene Xpert. Molecular based tests
are becoming the preferred test for diagnosing TB as most of
them can simultaneously detected drug resistance. Two most
widely used assays within the region are the Gene Xpert R©

MTB/RIF assay (Cepheid, USA) and the line probe assay (LPA)
developed by Hain life sciences (GmbH, Nehren, Germany).
The Gene Xpert which simultaneously detect TB as well as
rifampicin (RIF) resistance directly from sputum has replaced
direct sputum microscopy as the primary tool for diagnosing
TB in countries like Ghana (3, 4, 24). The LPA which offers a
wider spectrum of test including the ability to test for resistance
to RIF, isoniazid (INH) fluoroquinolones (FQs), and injectable
aminoglycosides (AMG) (GenoType MTBDRsl) (3, 25) is more
used in second/third level laboratories.
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FIGURE 1 | Members of the Mycobacterium tuberculosis complex. (A) Human adapted Mycobacterium tuberculosis complex (hMTBC) (B) Animal adapted

Mycobacterium tuberculosis complex (aMTBC).

The West-African regions follows the WHO approved case
classification for anti-TB therapy. Drug sensitive active TB cases
are treated with a 6-month multi-drug therapy which includes
INH, RIF, pyrazinamide (PZA), and ethambutol (EMB) (26)
which has∼85% treatment success (4). However, there are recent
reports of the emergence and high burden of drug resistant TB in
the regions (27–30). Drug-resistant TB remains a public health
threat. Treatment for drug resistant TB is quite cumbersome
requiring at least 9 months (9–20 months) administration of
relatively more toxic and expensive drugs such as FQs and
AMGs sometimes in combination with linezolid, bedaquiline,
and delamanid (4).

Challenges against TB control include socio-economic factors
(such as weak health systems, increased urbanization and stigma
leading to late reporting); pathogen related factors (such as
emergence of drug resistant strains); lack of political will to
commit funds and resources for control activities and the HIV
epidemic. Lack of cheap but effective sensitive diagnostic tools
and limited knowledge of the genome biology of the causative
pathogen as well as the transmission dynamics of circulating
strains are other equally important factors that hinder TB control.
Nevertheless, traditional methods for evaluating TB control
programs relies mainly on the number of cases detected and
how many were cured, neglecting very crucial questions such as:
the duration of infectivity, the frequency of reactivation, and the
risk of progression among the infected contacts or the risk of
transmission. Various molecular typing tools have been used in
molecular epidemiological investigations for studying circulating
MTBC strains to aid in TB control (31–33). However, whole

genome sequencing (WGS), which has been made possible by
the advent and increase in next generation sequencing (NGS)
technologies offers the ability to study the genome of MTBC.
WGS is crucial for genomic epidemiological investigations which
is important for in-depth insight of the nature of pathogens,
detecting circulating strains, monitoring resistance, evaluating
interventions, and tracking the evolution of the pathogen hence
providing a headway to achieve the End TB strategy (5). The SDG
and End TB Strategy targets set for 2030 cannot be met without
intensified research and innovation. In subsequent sections, we
describe in detail some tools for probingMTBC genome, the local
epidemiology ofMTBC, highlight past and current investigations
toward understanding their biology and spread as well as discuss
the relevance of genomic studies to TB control in West Africa,
the only sub-region that has to deal with a two-in-one pathogen.

GENOTYPING TECHNIQUES FOR
EPIDEMIOLOGICAL STUDY OF
MYCOBACTERIUM TUBERCULOSIS

COMPLEX

Since the early 1990s, several genotyping tools have been
proposed for the study of genetic diversity among the MTBC.
These tools have been found to be discriminatory enough to
distinguish unrelated strains as well as identify closely related
strains. Genotyping of MTBC offers several advantages. In
particular, it helps to distinguish between new infections and
reactivated cases as well as identify predominant genotypes.
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The classical genotyping methods that have been used to
understand genetic diversity among MTBC include large
sequence polymorphism (LSP) typing (34), single nucleotide
polymorphism (SNP) typing (35), spacer oligonucleotide typing
(spoligotyping) (36), insertion sequence 6110 (IS6110) restriction
fragment length polymorphism (IS6110 RFLP) typing (37) and
mycobacteria interspersed repetitive unit—variable number of
tandem repeats typing (MIRU-VNTR) (38) and currently, WGS
(39, 40).

Large Sequence and Single Nucleotide
Polymorphism Typing
Large sequence polymorphisms (LSPs) and single nucleotide
polymorphisms (SNPs) are phylogenetically robust and stable
molecular markers for strain identification. They are unique
irreversible events and less prone to distortion by selective
pressure due to lack of horizontal gene exchange in MTBC and
thismakes them less prone to convergent evolution (12, 41).Most
importantly, LSPs also known as regions of differences (RDs)
(34) have been used to define several discrete strain lineages
within the hMTBC specific for different human populations and
geographical regions and unravel the evolutionary scenario of
ecotypes of MTBC (6, 42). SNPs have also been used to study
the biology of the MTBC as a pathogen with very restricted
genetic diversity (35). However, these typing tools do not allow
the calculation of genetic distances and also cannot completely
resolve all deep-rooting branches of the MTBC phylogeny (43).

Spoligotyping
This tool was developed in 1997 by Kamerbeek et al. (36)
and is based on polymorphisms in the clustered regularly
interspaced short palindromic repeats (CRISPRs) region of
MTBC. Spoligotyping is the most frequently used PCR-based
approach for studying the phylogeny of MTBC in high
incidence areas. Spoligotyping is simple, cost-effective, and
high-throughput with accurate and reproducible results within
2 days. However, it is less discriminatory; it targets only a
single genetic locus, covering <0.1% of the MTBC genome.
Its direct application on clinical samples without the need for
prior culture and easy interpretation and computerized binary
(present/absent) data format makes it suitable for molecular
epidemiological studies. Direct (from sputum samples) and
indirect (using cultured isolates) spoligotyping are both efficient
in studying the phylogeny of MTBC, however, in regions with
high prevalence of polyclonal infection such as sub-Saharan
Africa where all MTBC lineages are present, it is recommended
to rule out mixed infection by combining MIRU-VNTR and
spoligotyping for more accurate results (44).

IS6110-RFLP
The first genotyping method developed in the early 1990s by
van Embden et al., to be used for strain classification was RFLP
based on IS6110 insertion sequence (IS6110-RFLP) (37). Initially,
considered as the gold standard for transmission studies, this
method has been replaced by other methods for various reasons:
it is labor intensive, requires high quality DNA, sophisticated and
expensive computer software to analyse, experienced personnel

of high technical expertise to interpret the results and most
importantly, it is not discriminatory enough for strains with
6 or less IS6110 copy numbers like some strains of M. bovis.
Nonetheless, it paved the way for an in-depth understanding of
the diversity among MTBC before the development of the more
recent methods.

MIRU-VNTR Typing
This is one of the most widely used typing tool and is based on
tandem repeat elements dispersed in intergenic regions of the
MTBC genomes and copy number diversity (38). Currently, it has
become the most reliable and efficient conventional genotyping
system for TB transmission studies and has replaced IS6110-
RFLP. This method has been widely adopted and successfully
used in a variety of TB molecular epidemiological studies to trace
on-going chains of TB transmission, differentiate relapse from
re-infection cases and detect laboratory cross-contamination (43,
45) due to its reproducibility, portability, high discriminatory
power, and standardization (33, 43, 45–49). However, it is labor-
intensive due to a high number of individual PCRs required
and less informative in areas with restricted MTBC lineages
(43, 50–52).

Whole Genome Sequencing as a Typing
Method
WGS is increasingly becoming the preferred technique for TB
research. WGS determines the complete DNA sequence of an
organism’s genome at a single time and can provide several
answers at a single time, making it the ideal tool for studying
the pathogen. With WGS springing up, molecular epidemiology
has gradually evolved to become genomic epidemiology. Several
studies have applied large-scale WGS to different aspects of TB
research; to accurately infer phylogeny (39, 40), to study the
biology of the MTBC, and also to study chains of transmission
(53, 54) and disease outbreaks (55). Furthermore, WGS has been
used to identify drug-resistance associated mutations including;
finding mutations compensating for the fitness defect associated
with rifampicin resistance (56–58) and rapidly identify drug
resistance mutations of an XDR-TB patient (59). These studies
demonstrate the potential for future routine applications ofWGS
in research and genomic epidemiology. However, the use ofWGS
for large-scale applications especially in endemic areas is limited
by its cost and the needed specialized expertise for analyses. A
drawback of the current use of WGS in most TB research is
that sequencing is mostly carried out on cultured isolates and
analyzed using the dominant alleles present without considering
within-host diversity. This can however be circumvented by
investing in culture-free metagenomics-based approaches.

PHYLOGEOGRAPHY OF THE MTB AND
MAF

Similar to other monomorphic bacterial pathogens such as M.
leprae and Bacillus anthracis, MTBC exhibits low DNA sequence
diversity and lack of horizontal gene transfer compared to other
bacteria (35).
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FIGURE 2 | Maximum-likelihood phylogeny of the Mycobacterium tuberculosis complex using whole genome sequencing. The phylogeny is rooted on M. canettii and

bootstrap values shown for nodes. The traditional hMTBC color coding of the first 7 lineages (L1-L7) were used whereas animal adapted members are given the color

black. The newly described lineages, L8 and L9 are colored orange and light green respectively [adapted from Coscolla et al. (40)].

The hMTBC were split into 7 main phylogenetic lineages
(L) using specific LSPs and SNP markers (42, 60). Lineage 1,
L2, L3, L4, and L7 are classified under Mtb whereas L5 and L6
are under Maf. Two additional lineages namely L8 (61) and L9
(40) have been recently identified resulting in 9 phylogenetic
lineages of the hMTBC (Figure 2). Nevertheless, L1 to L6
are the main phylogenetic lineages based on the number and
proportion of characterized isolates. Using the currently available
highly discriminatory genotyping tools, several sub-lineages, and
genotypes have been identified among these main phylogenetic
lineages of the hMTBC (40, 62–66).

Analyzing the diversity of the hMTBC in conjunction with the
country of isolation led to the discovery of different distribution
patterns of the various lineages across the globe (12). Whereas,
Mtb lineages with the exception of L7 (found at the Horn of
Africa) are globally ubiquitous (prominent among them being
L4), those of Maf (L5 and L6) are found in West Africa (67).
Thus, in addition to dealing with the general burden of TB, West
Africa has an extra burden to deal with a two-in-one pathogen.
Although Maf is unique to West Africa, its prevalence varies by
country. Usingmolecular genotyping results, the prevalence of L5
increases from West to East and appears highest in Benin (39%)
and Ghana (21%), while that of L6 increases from East to West,
highest in Guinea Bissau with 51% of smear-positive TB caused
by L6 (67).

The observed associations between hMTBC lineage and
country of origin under cosmopolitan clinical setting as well as
between pathogen lineage and ethnicity within country point

to a potential host-pathogen coevolution of the hMTBC and
humans (42, 68, 69). Based on this geographical distribution
pattern of hMTBC lineages, two groups namely specialists
(limited to specified geographical locations) and generalists
(found everywhere) have been proposed (70). L4 is generally
described as a generalist lineage whereas L5 and L6 are specialists.
Nevertheless, some distinct L4 sub-lineages, are restricted to
specified geographical settings including the Uganda, Cameroun
and Ghana genotypes (70). It is also possible that the disparate
geographical spreading of hMTBC genotypes maybe explained
by historical eventualities such as emerging of specific genotypes
in regions that later championed colonization and globalization
(39, 70, 71). Nevertheless, the potential contribution of biological
traits that promote coevolution of specific hMTBC genotypes and
certain human populations cannot be understated as evidenced
by the San Francisco study which found associations between
hMTBC lineage and country of origin of the affected TB
patients (42).

GENOME BIOLOGY OF THE MTBC AND
ITS SIGNIFICANCE TOWARD THE
CONTROL OF TB IN WEST AFRICA

The annotated H37Rv genome revealed a genome size of
4.4 Mbp containing ∼4,000 genes. The annotated genes
include those encoding proteins involved in intermediate
metabolism and respiration (877; 22.0%), lipid metabolism
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(225; 5.7%), information pathways (207; 5.2%), virulence,
detoxification and adaptation (91; 2.3%), cell wall and cell
processes (517; 13.0%), regulation (188; 4.7%), supposedly
conserved hypothetical functions (911; 22.9%) and unknown
functions (607; 15.3%). Non-protein-coding regions including,
genes encoding stable RNAs (50; 1.3%), insertion elements and
remnants of bacteriophages (137; 3.4%) and those rich with
PE (Pro-Glu) and PPE (Pro-Pro-Glu) were also identified. The
MTBC has extremely high number of genes involved with fatty
acid metabolism, especially those associated with β-oxidation of
fatty acids which are over 100 (2.5%) compared to 50 (1.2%)
genes found to perform the same function in E. coli K-12
(72, 73). This large number of the MTBC enzymes dedicated
to fatty acid catabolism enhances its ability to thrive in tissues
of the infected host, where fatty acids are the major source of
carbon (72). Additionally, the presence of glycine rich proteins
of the PE (74) and PPE (71) families is unique to the members
of the MTBC. Actual functions of these PE/PPE genes are
not clearly deciphered. However, similar genes in M. marinum
have been associated with virulence. Furthermore, antigenicity
of some localized PE subfamily of proteins called PGRS
(polymorphic GC-rich repetitive sequence) with conserved PE
domain followed by Gly-Gly-Ala or Gly-Gly-Asn have been
found which underscores the potential implication of these genes
in the ability of the MTBC to cause disease.

Comparative genomics analysis of MTBC strains shows little
to no evidence of horizontal gene transfer in either hMTBC
or aMTBC strains (43, 75–78). This has been attributed to the
evolved intracellular adaptation leading to the typical clonal
nature of members of this complex compared to most non-
mycobacteria and some atypical mycobacteria including M.
abscesses and M. avium (39, 43, 79). Genome diversity within
the MTBC thence arise mainly from SNPs comprising insertions,
deletions, and substitutions and LSPs including duplication
and/or transposition of mobile genetic elements as well as
deletion of genetic elements accounting for the different host
adaptations, disease phenotypes, and response to interventions
(76, 80).

Despite lack of evidence of horizontal gene transfer within
the MTBC, recent comparative genomics of the MTBC showed
substantial strain diversity among the different members which
could have functional implications especially in West Africa
where the highest diversity of the MTBC is found (40, 81–87).
Comparing the first Maf whole genome sequence (L6 strain
GM041182) to H37Rv revealed the presence of a unique sequence
RD900 encoding a protein involved with trans-membrane
transportation of macromolecules. This sequence is also present
in all so-called “ancient” lineages of the MTBC including L1,
L5, L6, and L7 but independently lost in all “modern” lineages
including L2, L3, L4, and M. bovis. Conversely, the Maf genome
shares a number of uniquely lost genes with M. bovis but not
Mtb including genes for biosynthesis of some vitamins arising
from pseudogenization. In addition, the L6 genome has an intact
copy of the gene (iniA) capable of increasing its susceptibility to
antibiotics that are not active againstMtb (88, 89). It has also been
shown that, all classical hMTBC strains have a conserved mpt40
gene which is missing from the genomes of all classical aMTBC

an indication of specific host adaptation (90) a discovery that
has been incorporated into a rapid nested assay for differential
diagnosis of TB (91).

The effects of genomic diversity among bacterial pathogens
such as Escherichia coli, Neisseria menigitidis, Haemophylus
influenzae, Bordetella, and Streptococcus species are well-
documented (92–97). In these species, some strains are more
likely to cause invasive disease than others though expression
of distinct virulent toxins (93). No such genetic marker (s)
has been identified for the MTBC albeit infection by different
genotypes results in a range of clinical phenotypes ranging
from asymptomatic infection through localized diseased lungs to
different forms of disseminated disease (98, 99). However, it is
likely that specific MTBC genotypes have distinct genetic traits
which influence the immune response elicited by the host, and
subsequently the outcome of the host-pathogen interaction (100,
101). This assertion is supported by findings from in vivo and ex
vivomodel studies involving different MTBC lineages, indicating
that Mtb lineages such as the L2 are more virulent compared to
the West-African specific lineages, L5 and L6 (11, 45, 102, 103).

Clinical studies comparing Mtb and Maf (mostly L6),
found statistical association between Mtb infection and
early progression to active pulmonary TB disease relative to
Maf, suggesting that Mtb is more virulent compared to Maf
(67, 98, 104–106). Numerous genotype-specific mutations in
genes of functional categories such as intermediate metabolism
and respiration, cell wall and cell processes, lipid metabolism,
regulatory proteins, information pathways and virulence,
detoxification, and adaptation could be responsible for the
differential presentation of infection by different lineages.
Comparative target gene sequence analysis of MTBC lineages
found that approximately two-thirds of all SNPs in coding genes
are non-synonymous SNPs (nsSNPs) thus underscoring the
potential implications of the limited genomic diversity within
the MTBC compared to other bacteria (13, 74, 79, 107). Other
than SNPs, the reductive evolution of the MTBC involving
the genomic deletion of blocks of specific genomic regions
including phylogenetic markers can involve blocks of diverse
functional genes including but not limited to those associated
with immunogenicity and/or host evasion (12, 108, 109).
This observation is attributed to the deletion of RD1 a genetic
evolutionary event similar to what transpired leading to the
generation of the only WHO approved TB vaccine M. bovis
BCG vaccine from continuous in vitro passage of M. bovis. The
RD1 encodes the esx1 locus which is responsible for the type VII
secretory system driving the secretion of germane T cell antigens
ESAT-6 and CFP-10 associated with pathogenicity of the MTBC
(110–112).

Recent comparative genomics analysis of MTBC including
large number of Maf genomes have revealed many insightful
lineage-specific genomic events. For instance, different pairwise
SNP distances within lineages (76, 84), different average pairwise
nucleotide diversity of annotated genes (84), lineage-specific, and
within-lineage accumulation of amino acid mutations (84, 85,
87, 105) some of which could potentially affect the applicability
of some control tools (83, 85). Additionally, in sillico pan-
genome analysis of hMTBC fromWest Africa identified impaired
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expression of mpt64 and mlaD genes specifically among L6.
Whereas, the mpt64 encodes the immunogenic protein which
is the basis of the mpt64 rapid TB diagnostics currently in
use, the mlaD encodes a mammalian cell entry protein. Albeit
there was no evidence of impaired expression of mpt64 among
L5, an amino acid mutation I43N within the gene was found
specifically among L5. These findings may potentially explain
the low sensitivity of mpt64 -based diagnostics in West Africa
where L5 an L6 cause up to 50% of TB (83, 85, 113) as well
as the reported slow progression of Maf infection to disease
relative to that of Mtb (98). Also, a couple of Maf specific amino
acid mutations were found within the esx-1 secretory system
which drives secretion of T cell antigens ESAT-6 and CFP-10
associated with virulence in the MTBC (114). Interestingly, the
ESAT-6 and CFP-10 are the backbone of the many interferon
gamma release assays used for diagnosis of TB (115) and some
potential TB vaccines in different phases of development (116,
117) which could potentially affect the applicability of these
interventions in West Africa. Furthermore, essential genes of the
MTBC irrespective of lineage were found to be highly conserved
and under purifying selection. However, when comparing T
cell epitopes, genotypes that are widely distributed such as L4
sub-lineage LAM were significantly diverse compared to T cell
epitopes of specialist genotypes such as L5 and L4 Uganda
genotypes (40, 70, 84). Unexpectedly, T cell epitopes of L6 which
is described as a specialist pathogen due to its restriction to West
Africa were under positive selection contrary to those of L5 which
is also restricted to West Africa. This observation coupled with
the statistical association of L5 with ethnicity in West Africa and
association of L6 with HIV/AIDS suggest that L5 and L6 may be
restricted toWest Africa by different biological processes (18, 68).
Thus, L6 could potentially be an opportunistic pathogen with an
unknown environmental reservoir specific to West Africa (84).

In spite of these indications, exactly how MTBC genomic
diversity influences disease progression and presentation as well
as the distribution of various lineages and their potential impact
on control of TB remain poorly understood. This calls for
additional research that seeks to comparatively assess the clinical
and ecological implications of MTBC genomic diversity using
strain collection that encompass MTBC isolates from every part
of the globe toward efficient control of TB.

MTBC SURVEILLANCE AND
TRANSMISSION IN WEST AFRICA

Surveillance activities geared toward understanding MTBC
transmission are necessary to complement conventional control
efforts to allow the establishment of good preventive strategies,
appropriate therapy, and a better understanding of the pathogen
biology thereby contributing to the development of future
control tools and ultimately helping eliminate TB. These
surveillance activities are specifically needed (1) To correctly
identify, characterize and track MTBC lineages/strains; (2) To
detect risk factors associated with the disease; (3) To understand
MTBC person-to-person transmission dynamics, which has been
studied extensively in developed countries of North America and

Europe as well as other parts of the world and has been useful
for identification of outbreaks as well as most at risk groups
(33, 48, 118–120) for targeted control activities and; (4) To track
TB strains among recurring TB patients and provide indications
of the cause of secondary case source (121–123), for appropriate
treatment, evaluation of performance and epidemiology (32,
124). To effectively control TB in West Africa, it is therefore
paramount to undertake such investigations in a population-
based scale which will contribute to knowledge on factors that
enhance spread of the disease in the sub-region.

The molecular typing tools discussed earlier have not only
been used to study MTBC biology but also for surveillance
purposes through molecular epidemiological investigations.
Although the typing tools possess varying discriminatory power
(32, 125–129), they have been used widely in advanced countries
to help monitor MTBC spread especially among prisoners and
cross country travelers (130–133). In West Africa, findings from
surveillance studies have revealed in-depth knowledge of the
varying distribution of Mtb and Maf (134, 135) and has called
for further studies to investigate their transmission dynamics
within respective geographical areas. This has a great public
health value considering that members of the MTBC do not
all have the same disease phenotype hence the need to survey
to obtain knowledge of circulating genotypes. Some interesting
observations has been made over the years from surveillance
activities conducted in West Africa. For instance, as identified
elsewhere (136–141), an association between Beijing strains of
L2 and drug resistance has been reported in Benin including
the identification of a possible streptomycin-resistant Beijing
outbreak (142, 143) and similarly, through surveillance activities
conducted in Ghana, the Ghana genotype of L4 has been linked
to drug resistance (19, 144). The spread of difficult-to-treat
drug resistant strains are also monitored through surveillance
activities (31, 132, 145, 146). Until recently, drug resistant clones
were thought to be less fit and less likely to transmit from
person to person; however recent surveillance studies in Ghana,
Nigeria, and other parts of the world have documented evidence
of transmission of both INH resistant strains and MDR even
though not involving large clusters (53, 118, 147, 148). There is
therefore the need to identify and control such difficult-to-treat
drug resistant clones to stop their spread through surveillance
activities. WHO currently supports the inclusion of NGS to
provide detailed information on drug resistance across multiple
gene regions directly from sputum specimens, however theWHO
is yet to review and approve current protocols (4). Also, through
surveillance activities, zoonotic TB spillover has been observed in
West Africa with indications that individuals who are in direct
constant contact with livestock and/or dairy products are at
major risk of contracting zoonotic TB (19, 149, 150). Finally,
among others, surveillance activities in the sub-region has led to
the observation that the West African restricted Maf specie has
reduced transmissibility (45), has decreased sensitivity to some
available diagnostics (83), has poor progression to active disease
(98, 151), has poor treatment outcome (152, 153) and has been
found to be associated with some endemic ethnic groups (18, 68).

With the advent of new genotyping techniques, surveillance
activities are made more meaningful through MTBC
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transmission studies. The MIRU-VNTR typing tool has over the
years been widely adopted and together with epidemiological
data used in a variety of TB transmission studies for the detection
of recent TB transmission and outbreaks due to its portability,
standardization, reproducibility, and high discriminatory power
(31, 33, 45–49, 154, 155). However, only few West African
studies have employed this tool for transmission studies to
identify genetic and geographic TB clusters (45, 105, 135). The
discriminatory power of this largely adopted MIRU-VNTR
typing tool may not be sufficient to distinguish unrelated
strains for some geographical settings (126) especially in West
Africa with the most diverse MTBC lineages, hence for TB
transmission studies it is recommended that WGS, which is by
far the ultimate tool for strain differentiation, be used to make
decisive conclusions. Data generated fromWGS offers the ability
to accurately identify recent TB transmission and also to trace
the direction of transmission between epidemiologically linked
cases (156). However, this tool has not been readily utilized for
MTBC transmission studies in West Africa probably because
of the huge cost and expertise needed to analyze the generated
data. This may not be a problem in the near future as WGS is
gradually becoming less expensive. The recent increase in NGS
technologies coupled with the competition among available
sequencing platforms and the availability of simpler data analysis
tools have made WGS an attractive molecular tool used in
many surveillance and transmission investigations. Globally, the
first report of an effective use of WGS for MTBC transmission
investigation was in 2011 from Vancouver which involved the
delineation of two unrelated transmission events among a cohort
of drug users having identical MIRU-VNTR profiles following
which it has been used in a large array of studies (148, 157–161).
WGS has been useful in detecting unsuspected outbreaks hence
it should be used not only as a research tool but as a surveillance
tool to aid in providing the necessary guided steps to track,
monitor, and control MTBC strains.

There exist varying reports on the transmissibility of members
of the MTBC (45, 98). However, limited surveillance activities
have suggested that Mtb transmits better thanMaf (45, 162). This
is probably because Maf is thought to be attenuated compared
to Mtb (67, 113, 163). Although it is argued that Mtb is fitter
than Maf, and with time it will outcompete the Maf population,
this may not be true as two studies from the Gambia and Ghana
have proven otherwise by observing a constant prevalence of Maf
over a period of 7 and 8 years, respectively (19, 152). However,
decline in Maf prevalence have been reported in a number of
studies from Guinea-Bissau, Côte d’Ivoire, and Cameroon (164–
168). Some of these studies employed biochemical means for
classification and perhaps might have misclassified the strains.
There is therefore the need to invest more resources in using
higher resolution tools such as the WGS for MTBC surveillance
and hence transmission. UnderstandingMTBC transmission will
contribute to knowledge on factors that enhance the spread of the
disease, which is useful for developing preventive interventions
and may have implications for the development and deployment
of new TB vaccines and diagnostics. For instance, hotspots of
TB transmission identified through a recent study in Ghana
(53) offered the TB control program to direct some of their

limited resources to targeted population groups for increased
awareness and enhance screening activities. Also, using WGS,
there is reported evidence of person-to-person transmission of
Maf lineage 6 strains fromMali (87) confirming the propensity of
the Maf species to also transmit (45).

Finally, through molecular surveillance activities, TB relapse
are now correctly defined. Formally, all individuals who get a
secondary episode of TB are referred to as having relapse. By
definition, a disease is said to have relapse if the old infection
bounces back. This is however not true for all secondary episodes
of TB knowing that some individuals do come back with totally
different strains compared to the previously infecting strain; such
cases are technically referred to as exogenous re-infections rather
than relapse. A secondary TB episode can be referred to as relapse
only if the previous infecting strain is the same as the current one.
Thankfully, current MTBC genotyping tools make it possible in
most instances to distinguish between relapse and re-infection.
This is possible because of the assumption that if strains from
both episodes are genotypically/gnomically indistinguishable,
it suggests relapse whereas distinguishable strains suggest re-
infection. Predominance of relapse over re-infection indicates
high-quality public health practices and a low risk of local
transmission. Many studies have employed genotyping tools like
MIRU-VNTR, IS6110 RFLP, and WGS technique to explore
relapse and re-infection among TB patients (121–123, 169–
174). However, very few of these studies originated from West
Africa. Majority of the few previous studies conducted in Africa
have only employed large DNA-sequence based typing assays
(ie. MIRU-VNTR and IS6110 RFLP) which can potentially
be confounded by convergence evolution. This means that
established relapse cases may not actually be relapse events
hence we advocate for the use of WGS which is more robust
and relatively free from convergence evolution. Using WGS,
it was possible to accurately detect relapse from a Ghanaian
cohort; this study identified a couple of individuals who were
previously infected with drug sensitive strains but later had TB
recurrence harboring drug resistant strains (121). This shows the
possibility to track such recurring cases and highlights the need
to foster genomic epidemiology to aid early detection of drug
resistance emergence to provide an effective TB control. Such
surveillance activities carried out using WGS data are currently
not absolute and has a few limitations as the common practice
has been to make judgements based on sequencing one isolate
per individual at each time point neglecting the possibility of
within-host bacteria diversity. However, it is possible to detect
mixed infections (175). It is worth noting that the confidence in
differentiating relapse and re-infection can be reduced without
considering the various bacterial populations that may exist
at a given time point. We acknowledge that such within-host
diversities do exist, and current and future studies should
consider it in their investigations.

MECHANISM OF DRUG RESISTANCE
EMERGENCE AND EVOLUTION

The control of tuberculosis has been hampered by the emergence
of drug resistance globally which threatens to make TB
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FIGURE 3 | The number of notified MDR/RR-TB cases by WHO member states from 2015 to 2019.

untreatable (4, 176). Drug resistant TB in the Africa region has
been amajor threat to the achievement of the goals ofWHO’s End
TB Strategy and the SDGs in the region (4). The spread of these
resistant strains mimics the pre-antibiotic era. According to the
2020 Global TB Report, about 0.5 million individuals developed
rifampicin-resistant TB (RR-TB) and 78% of this number were
confirmed as multi-drug resistant TB (MDR-TB) cases (4). The
drug resistance TB cases contributed 3.3% of all new TB cases
and 17.7% of previously treated people (4).

The threat posed by drug resistant TB strains can be
mitigated by gaining a better understanding of the mechanism
of the emergence of these strains and their evolution. With the
recent advances in bacterial genomics using NGS, the molecular
mechanisms of emergence, fixation, and transmission of drug
resistant TB are being unraveled (177). However, there is the
need to further assess the complexity of the emergence of drug
resistant strains that have become amajor challenge to the control
of the disease. Comparative genomic studies have also shown
that strain diversity could also be a major factor heightening the
threat of TB drug resistance (40, 178, 179). This section seeks
to throw more light on the advances made toward deciphering
the mechanisms of drug resistance especially among the West
African genotypes of MTBC and to provide new directions for
future studies.

There is paucity of data on TB drug resistance in sub-
Saharan Africa which has always called for active surveillance to
determine the true burden of DR in West Africa and Africa as
a whole (178). The WHO initially reported the burden of drug
resistance in West Africa based mainly on projected estimates.
An active surveillance conducted by the West African Network
of Excellence for Tuberculosis, AIDS and Malaria (WANETAM),
on isolates from 2009 to 2013 showed an unexpectedly higher
MDR-TB of 6% for new TB cases as compared to the 3.5%WHO
estimate in 2013 (180). Although the WHO estimated 20.5%
MDR-TB for retreatment cases (classified as patients who have

been previously treated for TB and have reported again with the
disease), the network reported 35% for the eight West African
countries (28, 180). In another study that screened isolates from
the eight West African countries from 2012 to 2014, the authors
also reported the same 6% MDR-TB for new cases and 34%
for retreatment cases (30). This shows the prevalence of drug
resistance in West Africa has been fairly constant and multi-
drug resistance has become an emerging health challenge inWest
Africa. The same trend is seen in the WHO Africa region where
the number of notified MDR/RR-TB cases have been constant
over a 5-year period (Figure 3).

Several studies have linked specific lineages/sub-lineages with
drug resistance (179, 181). A typical example is the Beijing
sub-lineage of MTBC which is associated with MDR-TB in
Asia (182, 183). The propensity for some of MTBC genotypes
to harbor resistance toward anti-TB drugs have been reported
in the sub-region. For instance, the Ghana sub-lineage of L4
which is mainly restricted to West Africa has been found to
be associated with drug resistance in Ghana (144). Comparative
genomics analysis of hMTBC from Ghana revealed that INH
resistant Mtb and Maf were significantly associated with katG
and inhApro mutations, respectively (144). In a separate study,
a univariate analysis revealed that L6 was less likely to be
associated with INH resistance (18). In support of this, a most
recent comparative genomics analysis of Maf has shown that
L5 has a high genetic inclination toward development of drug
resistance compared to L6 (40). West Africa is unique in its
MTBC genotypes and evolution of drug resistance which calls
for further molecular investigation. Although a number of the
resistant isolates reported in the sub-region were sequenced and
analyzed for the presence of mutations associated with drug
resistance, there is still a lot that were only characterized by
phenotypic methods (18, 28, 30, 144).

The number of WHO States with at least one reported
case of XDR-TB has been increasing over the years (Figure 4).
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FIGURE 4 | The number of WHO member States with at least one confirmed case of XDR-TB.

FIGURE 5 | The number of notified XDR-TB case from 2015 to 2019.

This confirms the spread of XDR-TB globally. The number
of reported XDR-TB cases has been on the rise with
that of Africa on a slight decrease (Figure 5). The DR
picture for Africa might look different for different parts of
the region.

The WANETAM reported the circulation of pre-XDR-
TB, which is MDR-TB with additional resistance to either a
fluoroquinolone or an aminoglycoside, among retreatment cases
in all the eight countries in 2016 without any record of XDR-
TB. Interestingly, only Ghana and Togo had reported pre-XDR
TB among new cases. It was not surprising when Ghana reported
its first XDR-TB case in 2018 (29). Togo, together with Burkina-
Faso and Niger had already reported at least one XDR-TB case
in 2011 (184). This calls for more genomic studies in West-
Africa to understand the evolution and spread of DR-TB inWest-
Africa.

FUTURE PERSPECTIVE

Despite these evidence of genomic diversity among the MTBC
supported by phenotypic data including variable outcome of
TB infections, differences in macroscopic morphology, niacin
production, and inhibition by pyrazinamide (185, 186), most
research supporting global interventions are largely based on
limited and biased collection of isolates. The presence of a
unique TB causing bacteria restricted to West-Africa makes
it imperative for more genomic studies in the sub-region to
improve the understanding of the biology of Maf and the
functional implications of genomic diversity between lineages of
Maf and that of Mtb.

As has been detailed above, genomics and bioinformatics,
though relatively new in biomedical disciplines, they are very
useful tools for diseases surveillance and have a role to play in
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the control of infectious diseases including tuberculosis. WGS
of MTBC can be used in routine care settings for species
identification, determination of drug resistance profiles and to
complement epidemiological source investigation. Although few
research works have used these tools in West-Africa to date, they
are increasingly being used especially in universities and research
institutions. Nevertheless, due to cost and infrastructural as well
as expertise demands, its usefulness has not been felt in public
health intervention programs. Some implementation challenges
include funding for infrastructure as well as expertise for WGS in
many research settings and even greater challenges in the context
of the clinical settings. Major efforts need to be made in building
human capacity as well as infrastructure investment in national
public health reference laboratories to improve health care in
high burdened countries. Moreover, the cost of WGS is coming
down drastically and there are available simplified/portable
platforms such as the minion that is field friendly and less
expensive. The establishment of WGS in routine settings such
as regional and national public health reference laboratories of
the national health system will need to be done in a way that
is relevant to the local health priorities. It is anticipated that
current capacity building being championed by programs such as
the African Centers of Excellence being financed through World
Bank Loans, DELTAS financed by Wellcome Trust through the
African Academy of Sciences will enhance implementation of
WGS as part of routine health service surveillance activities,
which improve health delivery in West African countries such
as Ghana. This is evidenced in the contribution of some of the
centers in the sequencing efforts of SARS-CoV 2 within the
region (187).

The highest incidence and impact of antimicrobial
resistance (AMR) is experienced in resource-poor settings
(188). Underlying factors promoting AMR include misuse
of antimicrobials, lower access to alternative antibiotics and
the prevalence of multidrug-resistant bacterial strains (189).
The slow growth nature of the MTBC negatively impacts the
use of culture for routine surveillance of DR, hence, making
molecular detection the better option. Routine and systematic
surveillance of AMR infections is key to inform policy decisions
and public health interventions to counter AMR. WGS and

targeted sequencing offer the opportunity for the identification
of the causative pathogen, to understand the genetic basis
of resistance, as well as pathogen evolution and population
dynamics at different spatial and temporal scales. It also offers
the opportunity to probe the whole genome to detect not only
susceptibility to a single antibiotic but multiple antibiotics at
the same time. It is envisaged that potable sequencing platforms
will be established at least in national and supra national
reference laboratories within the region to support the DR
surveillance efforts.

The use of WGS has a great prospect toward improved
individual case management of infectious and non-
communicable diseases. Advancement in simplified,
high-throughput genomic technologies will in future assist
West-Africa to sequence the whole exome or genome of a person
at a price that is affordable for some health-care systems. More
services based on these technologies will enhance host-directed
therapies appropriate to individual patients with probing
limited to analysis of specific (sets of) genes of clinical value
(190, 191). WGS in future will be useful in West-Africa for
evaluation of interventions such as vaccination for preventive
policies through enhanced assessment of disease and drug
resistance transmission dynamics. Furthermore, it will improve
pathogen detection, especially with the emergence of new and
un-culturable infections as well as biological risk prediction.
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