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Acinetobacter baumannii is an important nosocomial pathogen, which is multidrug

resistant (MDR). Acinetobacter baumannii has become a major threat to public health

worldwide due to its ability to easily acquire resistant genes. In order to analyze its

epidemiology characteristics and the genetic evolution, A. baumannii isolates obtained

from a Chinese tertiary hospital in the past 12 years (2008–2019), 295 isolates of

non-repetitive A. baumannii, were recovered from patients and wards environments. The

resistance genes were analyzed using antimicrobial susceptibility testing. The genetic

relatedness of 295 isolates was identified by multilocus sequence typing (MLST) and

eBURST analysis. It was found that the antibiotic-resistant and carbapenemase-resistant

genes of all the 295 MDR A. baumannii in the hospital have not changed significantly over

the past 12 years; all of them were resistant to multiple antibiotics except the polymyxin

E and tigecycline. The results of drug-resistant genes showed that the detection rates of

carbapenemase-resistant genes blaOXA−23, blaTEM−1, and blaOXA−66 were 97.6, 75.3,

and 71.9%, respectively, which were detected almost every year from 2008 to 2019.

Additionally, 16s rRNA methylation enzyme gene armA, aminoglycoside-resistant gene

ant(3")-I, and class I integrase gene could also have a high positive rate. By MLST,

these isolates were assigned to 12 sequence types (STs), including ST369, ST208,

ST195, ST191, ST368, ST530, ST469, ST451, ST229, ST381, ST543, and ST1176.

eBURST analysis showed that 9 STs with ST208 as the founder genotype belonged to

Group 1 except for ST229, ST530, and ST1176. Therefore, most MDR A. baumannii

isolates had a relatively close genetic relationship. Notably, the predominant ST208

and ST369 at the early stage changed to ST451 in 2019, indicating that the complex

and diverse genetic background of the prevalence of A. baumannii isolates in the

hospital. Overall, further epidemiological surveillance and genetic evolution analysis of A.

baumannii are required, which can provide new strategies for the prevention and control

of A. baumannii infections.

Keywords: multidrug-resistant Acinetobacter baumannii, resistance genes, sequence types, molecular

epidemiology, genetic evolution
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INTRODUCTION

Acinetobacter baumannii, a Gram-negative and non-
fermentative bacterium, is an important opportunist pathogen in
hospitals. It can cause a wide range of severe nosocomial
infections, including ventilator-associated pneumonia,
bloodstream infections, skin and soft tissue infections, wound
infections, urinary tract infections, and meningitis (1).

Acinetobacter baumannii is found almost exclusively in the
hospital environment; it can easily colonize the skin surface,
respiratory tract, and digestive tract of patients (2). Moreover,
another concern for A. baumannii is the drug resistance. A large
number of studies showed that A. baumannii presents resistance
to multiple antimicrobial agents, including carbapenems, and
multidrug resistance (MDR) is very common (3). Recently,
extensively drug-resistant (XDR) and pandrug-resistant (PDR)
A. baumannii isolates have rapidly increased (4). Therefore, the
World Health Organization (WHO) has assigned A. baumannii
as a critical priority pathogen posing a great threat to public
health, and toward which new antibiotics are urgently needed.

Although there are a good deal of studies on the outbreaks
caused by A. baumannii worldwide, medical environments and
drug and disinfection strategies for A. baumannii infection
are different in different regions and hospitals, leading to the
different selective pressures on this bacteria; as a result, there are
certain differences in bacterial dominance types and resistance.
In the present study, A. baumannii isolates over the past 12 years
(2008–2019) have been analyzed for the molecular epidemiology
and evolution characteristics in a tertiary hospital in Shandong
province, China. The epidemiology analysis of A. baumannii is
helpful for understanding its genetic variation and providing
insights into the treatment and control of this bacterial infection.

MATERIALS AND METHODS

The study was carried out in accordance with the approved
guidelines of the Ethics Committee of Taian City Central
Hospital with written informed consent from all subjects. All the
subjects gave a written informed consent in accordance with the
Declaration of Helsinki.

Acinetobacter Baumannii Isolates
Two hundred and ninety-five isolates of non-repetitive A.
baumannii were isolated from clinical samples collected during
a routine checkup by medical professionals and the wards
environments from October 2008 to October 2019. During
the 12 years period, 195 isolates were recovered from the
sputum, 86 isolates were from the wards environments, and
9, 3, and 2 isolates were from cerebrospinal fluid, wound,
and urine, respectively. These samples were collected during a
period when A. baumannii was relatively prevalent clinically.
As for wards distribution, most isolates (64.7%) were collected
from intensive care unit (ICU), and 29.2% isolates were from
ICU environments. A small number of isolates was from
other wards, including nephrology ward (NW), health care
ward (HCW), and cardiology ward (Table 1). On the whole,
295 isolates were from patients (sputum, cerebrospinal fluid, T
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and urine) and wards environments, including pillow slips,
quilts, stethoscopes, infusion pumps, ventilators, monitors,
nurse/doctor cuffs, wristbands, blood pressure monitors, bedside
tables, and others used by patients. The detailed isolation
information of MDR A. baumannii isolates from 2018 and 2019
are shown in Supplementary Table 1.

Bacterial Identification and Antimicrobial
Susceptibility Testing
Bacterial identification was performed by WalkAway 96 PLUS-
NC50 combo panel (Beckman, United States) following the
instructions of the manufacturer. Antimicrobial susceptibility
testing was performed by three different methods: the sensitivity
of meropenem and cefotaxime was determined by the disk
diffusion method, the sensitivity of tigecycline and polymyxin
E was determined by the Etest method (AB Biodisk, Solna,
Sweden), and the sensitivity of other antimicrobial agents was
detected using the WalkAway 96 PLUS-NC50 combo panel. The

TABLE 2 | The detection primers of integrase and integron genes.

Gene names Primer sequence (5′
→ 3′) Product size (bp)

Class I integrase gene P1: CCGAGGATGCGAACCACTTC 373

P2: CCGCCACTGCGCCGTTACCA

Class II integrase gene P1: CACGGATAGCGACAAAAAGGT 789

P2: GTAGCAAACGAGTGACGAAATG

Class III integrase gene P1: GCCTCCGGCAGCGACTTTCAG 433

P2: GATGCTGCCCAGGGCGCTCG

Class I integron variable P1: GGC ATC CAA GCA GCA AG Unknown

region P2: AAG CAG ACT TGA CCT GA

criteria of the susceptibility of the PLUS-NC50 combo panel,
polymyxin E, meropenem, and cefotaxime were adapted from the
Clinical and Laboratory Standards Institute (CLSI; http://clsi.org/
standards/). The criteria of the susceptibility of tigecycline were
adapted from the U. S. Food and Drug Administration (http://
www.fda.org.uk/sitemap.aspx).

Detection of Antimicrobial-Resistant
Genes
Bacterial DNAs were extracted and the primers of the related
resistance genes were designed as described previously (5–8),
including carbapenemase-resistant genes blaOXA−23, blaOXA−24,
blaOXA−48, blaOXA−50, blaOXA−58, blaOXA−60, blaOXA−66,
blaOXA−197, blaKPC, blaTEM−1, blaNDM−1, and blaIMP−4; the 16s
rRNA methylase-resistant genes armA; and the aminoglycoside-
resistant genes ant(3")-I, aac(3)-I, aac(3)-II, aac(6′)-I, aac(6′)-II,
and aph(3′)-VI. In addition, the detection primers of integrases
and integron genes were designed and synthesized, the specific
sequences are shown in Table 2.

Multilocus Sequence Typing
Seven housekeeping genes (gltA, gyrB, gdhB, recA, cpn60, gpi,
rpoD) were amplified and sequenced to determine the genotypes
of all isolates. DNA sequence variations and sequence types (STs)
were analyzed using the multilocus sequence typing (MLST)
database for A. baumannii (http://pubmlst.org/abaumannii).
MLST was performed using the Oxford scheme as previously
described (9), and eBURST method was used for the analysis of
the novel alleles and genetic evolution (http://www.phyloviz.net/
goeburst/).

TABLE 3 | The antimicrobial susceptibility testing of A. baumannii isolates to 15 antibiotics over the past 12 years.

Antibiotics 2008–2009

(n = 10)

2010–2011

(n = 46)

2012–2013

(n = 42)

2014

(n = 41)

2015–2016

(n = 55)

2017

(n = 15)

2018

(n = 27)

2019

(n = 59)

Susceptibility Susceptibility Susceptibility Susceptibility Susceptibility Susceptibility Susceptibility Susceptibility

[n (%)] [n (%)] [n (%)] [n (%)] [n (%)] [n (%)] [n (%)] [n (%)]

Amikacin 0 5 (10.9%) 22 (53.4%) 2 (8.0%) 1 (1.8%) 2 (13.3%) 1 (3.7%) 4 (6.7%)

Gentamicin 0 2 (4.3%) 0 2 (8.0%) 1 (1.8%) 0 1 (3.7%) 4 (6.7%)

Tobramycin 0 5 (10.9%) 22 (53.4%) 2 (8.0%) 1 (1.8%) 1 (6.7%) 1 (3.7%) 4 (6.7%)

Ceftazidime 0 0 0 0 0 0 0 0

Ceftriaxone 0 0 0 0 0 0 0 0

Cefepime 0 0 0 0 0 0 0 0

Piperacillin/tazobactam 0 0 0 1 (4.0%) 0 0 0 0

Cefoperazone/sulbactam 0 6 (13.0%) 1 (4.8%) 1 (4.0%) 3 (5.5%) 0 0 0

Meropenem 0 0 1 (2.4%) 1 (4.0%) 0 0 0 0

Imipenem 0 0 1 (2.4%) 1 (4.0%) 0 0 0 0

Levofloxacin 0 0 0 2 (8.0%) 0 5 (33.3%) 0 0

Ciprofloxacin 0 0 0 2 (8.0%) 0 0 0 0

Cotrimoxazole 0 1 (2.2%) 0 0 2 (3.6%) 0 8 (29.6%) 2 (3.4%)

Tigecycline 10 (100%) 28 (60.9%) 25 (59.5%) 41 (100%) 41 (74.5%) 15 (100%) 27 (100%) 59 (100%)

Polymyxin E 10 (100%) 46 (100%) 42 (100%) 41 (100%) 55 (100%) 15 (100%) 27 (100%) 59 (100%)
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TABLE 4 | The profiles of the carbapenemase genes of 295 MDR A. baumannii isolates.

Periods The number of isolates Carbapenemase genes

blaOXA-23 blaOXA-66 blaOXA-197 blaNDM-1 blaIMP-4 blaTEM-1

2008–2009 10 + + − − − −

2010–2011 1 + + − + + −

5 − + − − + −

40 + + − − − −

2012–2013 1 − + − − − +

34 + + − − − +

7 + + − − − −

2014 28 + − + − − +

7 + + − − − +

5 + + − − − −

1 − + − − − +

2015–2016 50 + − − − − +

5 + − − − − −

2017 15 + + − − − +

2018 27 + + − − − +

2019 59 + + − − − +

Sum. 295 288 212 28 1 6 222

“+” indicates the carbapenemase gene was detected; “−” indicates the carbapenemase gene was not detected; “S” indicates the isolate was susceptible to the antibiotic; “R” indicates

the isolate was resistant to the antibiotic.

RESULTS

Susceptibility Testing
The sensitivity of all A. baumannii isolates recovered from
2008 to 2019 to 15 antimicrobial agents was shown in Table 3,
all of them exhibited an MDR phenotype, being resistant
to three or more classes of antibiotics, such as amikacin,
gentamicin, ceftazidime, ceftriaxone, piperacillin/tazobactam,
imipenem, meropenem, levofloxacin, and ciprofloxacin, and the
resistance of isolates to these drugs has not changed much over
the past 12 years. However, all 295 MDR A. baumannii isolates
were sensitive to polymyxin E, indicating that this antibiotic
had a good therapeutic effect on A. baumannii in the hospital.
In addition, these isolates were highly sensitive to tigecycline,
although the sensitivity declined during the years 2010–2013
(59.5–60.9%) and 2015–2016 (74.5%).

Drug-Resistant Genes
Asmany as 288 isolates (97.6%) carried blaOXA−23 gene, followed
by blaTEM−1 (75.3%) and blaOXA−66 (71.9%) genes, which were
detected almost every year from 2008 to 2019. The drug-
resistant gene blaOXA−197 was detected in 28 isolates in 2014,
blaNDM−1and blaIMP−4 genes were only detected in 2010–
2011, the corresponding numbers of isolates were 1 and 6,
respectively (Table 4). Other carbapenemase genes were not
detected in any of these isolates. The 16s rRNA methylation
enzymes gene armA can be detected every year, and the total
250 isolates carried this resistant gene over the past 12 years
(Table 5). The aminoglycoside-resistant gene ant(3")-I can also
be detected every year, and the number of A. baumannii isolates
harboring this gene was the most, accounting for 88.1%, followed

TABLE 5 | The profiles of the 16s rRNA methylation enzymes gene of 295 MDR A.

baumannii isolates.

Periods The number of

isolates

16s rRNA methylation

enzymes gene armA

2008–2009 10 +

2010–2011 40 +

6 −

2012–2013 16 +

26 −

2014 36 +

5 −

2015–2016 54 +

1 −

2017 13 +

2 −

2018 26 +

1 −

2019 55 +

4 −

Sum. 295 250

by aac(6")-I (41.7%) and aac(3)-I (32.2%). However, all A.
baumannii isolates carrying aac(3)-I gene appeared before 2016,
and aac(6")-I was predominant in A. baumannii isolates from
2017 to 2019 (77.2%) (Table 6).

Furthermore, Classes I, II, and III integrase genes of several
MDR A. baumannii isolates from 2014 to 2019 (197 isolates)
were detected. The results showed that 170 isolates carried Class
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TABLE 6 | The profiles of the aminoglycoside resistant genes of 295 MDR A. baumannii isolates.

Periods The number of isolates Aminoglycoside resistant genes

ant(3")-I aac(3)-I aac(6′)-I aac(3)-II aac(6′)-II aph(3′)-VI

2008–2009 5 + − + − − −

2 − − − − − −

2 + + − − − −

1 + − − − − −

2010–2011 31 + + − − − −

6 + − − − − −

1 + − − − − −

1 + + − + − +

1 + − − − + −

1 + + − + − −

5 − − − − − −

2012–2013 33 + + − − − −

6 + − + − − −

1 + + + − − −

1 + − − − − −

1 − − − − − −

2014 27 + − − − − −

5 + + − − − −

7 − + − − − −

2 − − − − − −

2015–2016 2 + + + − − −

12 + + − − − −

13 + − + − − −

16 + − − − − −

1 − − + − − −

11 − − − − − −

2017 14 + − + − − −

1 − − − − − −

2018 26 + − + − − −

1 − − − − − −

2019 55 + − + − − −

4 − − − − − −

Sum. 295 260 95 123 2 1 1

TABLE 7 | The MLST result of 295 MDR A. baumannii isolates.

Periods The number of isolates MLST type

ST ST ST ST ST ST ST ST ST ST ST ST

369 208 195 191 368 530 469 451 229 381 540 1,176

2008–2009 10 2 2 1 − 2 − 2 − 1 − − −

2010–2011 46 2 24 − − 5 − 4 7 − 4 − −

2012–2013 42 6 29 − − 7 − − − − − − −

2014 41 23 13 4 − − 1 − − − − − −

2015–2016 55 14 21 11 − 2 − − 6 − 1 − −

2017 15 3 2 7 − 2 − − − − − 1 −

2018 27 2 − 15 − − − − 9 − − − 1

2019 59 − − − 1 − − − 58 − − − −

Sum. 295 52 91 38 1 18 1 6 80 1 5 1 1
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I integrase gene (Intl1), with a positive rate of 86.3%, but none
of them contained Classes II and III integrase genes. The PCR-
positive products of eight isolates of Class I integrase gene
were sequenced and confirmed its accuracy. Additionally, we
further detected the integron variable regions of some MDR A.
baumannii isolates that were positive for class I integrase genes.
It was found that there were no drug-resistant genes in the 500,
750, and 1,000 bp segments, while the 1,500–2,200 bp segments
contained aacC1, aadA1, aacA4, catB8, and arr3 genes. Among
them, aacA4 and aadA1 were aminoglycoside-resistant genes,
and catB8 was a chloramphenicol-resistant gene. These results

indicated that the Class I integrase genes of MDR A. baumannii
isolates from this hospital may mainly mediate aminoglycoside
and chloramphenicol resistance.

Multilocus Sequence Typing
A total of 12 STs were detected for the 295 MDR A.
baumannii isolates by MLST molecular typing, including ST369,
ST208, ST195, ST191, ST368, ST530, ST469, ST451, ST229,
ST381, ST540, and ST1176. As shown in Table 7, ST208 was
predominant in all A. baumannii isolates (30.8%); then ST451
(27.1%), ST369 (17.6%), ST195 (12.9%), and ST368 (6.1%); and

FIGURE 1 | eBURST analysis of 295 MDR Acinetobacter baumannii isolates. It was found that these 12 STs could be divided into three groups. ST369, ST208,

ST195, ST191, ST368, ST469, ST451, ST381, and ST540 belonged to Group 1, and ST208 was the central type. ST229 belonged to Group 2, and ST530 and

ST1176 constituted Group 3.
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the remaining STs were few, with 1–6 isolates. Notably, the
STs of all A. baumannii isolates from 2008 to 2019 showed
a certain change. In 2010–2016, the number of ST208 was
highest (44.8%, 87/194) and the isolation rate of ST208 in
this period accounted for 95.6% (87/91) of the total ST208 in
12 years, especially it was predominant in 2010–2013. During
2014–2016, the prevalence of ST369 gradually increased. In
2017–2018, ST195 was the dominant ST in the hospital, but
in 2019, ST451 was predominant. These results demonstrated
that the predominant STs of A. baumannii isolates are different
in different periods in the hospital, indicating the diverse and
complicated genetic background of A. baumannii isolates in
the hospital.

In order to analyze the genetic evolution of 295 MDR A.
baumannii isolates, eBURST method was performed. As was
shown in Figure 1, these 12 STs could be divided into three
groups. ST369, ST208, ST195, ST191, ST368, ST469, ST451,
ST381, and ST540 belonged to Group 1, with the founder
genotype ST208. ST229 belonged to Group 2, and ST530
and ST1176 constituted Group 3. Therefore, most MDR A.
baumannii isolates obtained in this study were of Group 1,
and they had relatively close genetic relationship. Moreover,
some representative isolates were selected for pulse field gel
electrophoresis analysis (Supplementary Figure 1), and it was
found that MDR A. baumannii isolates with the same ST
and obtained from the same year were not exactly the same
clone, indicating the relative complexity of prevalent MDR A.
baumannii isolates in this hospital.

DISCUSSION

Acinetobacter baumannii has recently been considered the
most critical pathogen for posing a great threat to public
health. In order to systematically summarize and investigate
the prevalence and genetic evolution of A. baumannii and
prevent the outbreak and patient-infections caused by MDR
A. baumannii, we retrospectively analyzed the molecular
epidemiology characteristics of 295 A. baumannii isolates in a
tertiary teaching hospital for 12 years (2008–2019), including
drug resistance, drug-resistant genes, and STs. In the present
study, 295 A. baumannii isolates were mainly recovered from
sputum, cerebrospinal fluid, and ICU wards environments,
among which 195 isolates were from sputum and 86 were
from ICU wards environments. As for the distribution of
wards, 295 isolates were mainly from ICU (277), including ICU
environments. Other wards, such as NW and HCW, had a few
isolates. These results demonstrated that ICU was always the
ward with themost serious nosocomial infection ofA. baumannii
(10–12), indicating that regular disinfection of the ICU and air
environment is necessary.

The emergence of MDR A. baumannii has brought great
challenges to clinical treatment. Fifteen antibiotics were used for
susceptibility testing in this study, and the result showed that
all A. baumannii isolates exhibit MDR phenotypes. In terms of
time axis, there was no significant change in the resistance of
MDR A. baumannii in the hospital over the 12 years from 2008

to 2019. Generally, except for tigecycline and polymyxin E, these
isolates were almost resistant to all available antimicrobial agents,
including imipenem and meropenem. The main mechanism of
carbapenem resistance in MDR A. baumannii is the acquisition
of carbapenem-hydrolyzing oxacillinase-encoding genes. Of
these, blaOXA−23 carbapenemase-resistant gene was by far the
most widespread in most countries (13), and it was found
that blaOXA−23-producing A. baumannii isolates disseminated
widely in China or Asian (14–16). In our study, the detection of
resistant genes showed that the most common carbapenemase-
resistant gene was blaOXA−23 (288 isolates) in all A. baumannii
isolates, followed by blaOXA−66 (212), which nearly could be
detected in all periods except 2015–2016, indicating that these
two drug-resistant genes might be the main reason for bacterial
carbapenem resistance. Additionally, blaTEM−1 is the most
largely known and classic β-lactamase. It was reported that the
expression of blaTEM−1 β-lactamase positively correlated with the
minimum inhibitory concentration of sulbactam, and transfer
of the blaTEM-1 gene into a susceptible A. baumannii strain
resulted in resistance (17). Recently, Yang et al. collected 2,197
A. baumannii isolates from 27 provinces in China, found that
the resistance rate for cefoperazone–sulbactam was 39.7%, and
demonstrated that blaTEM−1 with four tandem copies structure
played a key role in this resistance phenomenon (18). Meanwhile,
Han et al. proved that blaOXA−23and blaTEM−1genes were more
conducive to resistance to carbapenems in A. baumannii (19). In
the current study, blaTEM−1 gene had been detected in all isolates
since 2012, and the overall positive rate of this resistance gene
was 75.3% (222/295), meanwhile, the cefoperazone–sulbactam
resistance rate of the 295 MDR A. baumannii isolates was up to
94.5%, and both had a certain correlation relationship. Further
genome sequence analysis of ST451 in 2019, there was only one
copy of TEM-1 in the MDR A. baumannii isolates in the study,
indicating the specific molecular mechanism of the resistance of
A. baumannii to cefoperazone–sulbactam might be diversity. As
an important resistance gene of A. baumannii, only one isolate
carried blaNDM−1 in 2010–2011, however, given its distribution
worldwide, enhanced monitoring is needed (20, 21). In addition,
A. baumannii isolates carried several aminoglycoside-resistant
genes and gene for 16s rRNA methylation enzymes, of which
ant(3")-I and armA could be detected every year. Overall, these
drug-resistant genes should be further monitored to understand
their structure and analyze the characteristics of drug resistance.

It has been reported that ST208 and ST195 were the
predominant epidemic types of MDR A. baumannii in China
(22, 23). In this study, the STs of A. baumannii isolates have
undergone a significant change over the past 12 years, the
epidemic STs changed from ST208 and ST369 at the early
stage (2008–2016) to the predominant ST451 in 2019 after the
transition of ST195 (2017–2018). Lee et al. reported that the
outbreak of XDR A. baumannii ST451 carrying MDR genes
occurred in South Korea (24). Moreover, there have been
outbreaks of A. baumannii ST451 in countries around China in
recent years, such as Thailand and India (25–27), and ST451 was
also isolated from patients with bloodstream infection, causing a
certain mortality (28), so the prevalence of A. baumannii ST451
requires more attention. In order to understand the molecular
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characteristic and the transmission route of ST451 outbreak,
one ST451 (Ab1) isolated from the environment and another
ST451 (Ab2) from a patient in 2019 were selected for the genome
sequence (Supplementary Figure 2). The results showed that
the average nucleotide identity of both isolates was >99.9%,
indicating that the ST451 MDR A. baumannii that caused an
outbreak in 2019 were the same clone. Therefore, although there
were 59 ST451 A. baumannii isolates, all isolates may be the
same clone. Moreover, the STs of MDR A. baumannii isolates
changed, but the antibiotic susceptibility of ST451 isolates did
not change significantly, indicating that there was no significant
relationship between the STs of the isolates and drug resistance.
We thought that the drug-resistant phenotypes of bacteria were
mainly related to the drug-resistant genes. According to eBURST
analysis, ST451 and ST208 belonged to Group 1, and they had
a close genetic relationship. The detection also showed that the
drug-resistant genes carried by ST451 were similar to those
carried by ST195 and ST208 earlier. The prevention and control
strategy adopted by the hospital was to remove all patients from
the wards for disinfection, and to disinfect or replace the medical
supplies used by the patients. Moreover, we also found that MDR
A. baumannii–infected patients with respiratory tract infection
were easy to pollute the surrounding environments. When the
bed sheets and pillowcases of patients were seriously polluted,
MDRA. baumannii could be detected within 1.5mwhen patients
turned over. Therefore, the safe distance between patients should
be increased to 3m as far as possible to prevent cross-infection.

On the whole, the resistance and resistant genes of the
prevalent MDR A. baumannii isolates in the hospital have not
changed significantly over the past 12 years. However, almost
all MDR A. baumannii isolates carried multiple antibiotic-
resistant genes, and the predominantMDRA. baumannii isolates
have evolved from ST208 and ST369 to ST451. Therefore, it is
of great significance to further strengthen the epidemiological
surveillance of A. baumannii, analyze its genetic evolution,

and provide new strategies for the prevention and control of
nosocomial infections caused by MDR A. baumannii.
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