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Elite hospitals represent the highest level of Chinese hospitals in medical service and

management, medical quality and safety, technical level and efficiency, which are also

one of the important indicators reflecting high-quality medical resources in the region,

and their spatial allocation is directly related to the fairness of health resource allocation.

We explored the allocation pattern of high-quality resources and its influencing factors

in the development of China’s health system using geographic weighted regression

(GWR), Multi-scale Geographically Weighted Regression (MGWR), GWR and MGWR

with Spatial Autocorrelation(GWR-SAR and MGWR-SAR), spatial lag model (SLM), and

spatial error model (SEM). The results of OLS regression showed that city level, number

of medical colleges, urbanization rate, permanent population and GDP per capita were

its significant variables. And spatial auto-correlation of elite hospitals in China is of great

significance. Further, its spatial agglomeration phenomenon was confirmed through SLM

and SEM. Among them, the city level is the most important factor affecting the spatial

allocation of elite hospitals in China. Its action intensity shows a solid and weak mosaic

trend in the Middle East, relatively concentrated in some areas with medium intensity

and concentrated in the West China. Obviously, China’s elite hospitals are unevenly

distributed and have evident spatial heterogeneity. Therefore, we suggest that we should

pay attention to the spatial governance of high-quality medical resources, attract medical

elites in the region, increase investment in medical education in the scarce areas of elite

hospitals and develop tele-medicine service.

Keywords: elite hospital, spatial pattern, spatial heterogeneity, health resources, geographic weighted regression

(GWR)

BACKGROUND

Health is the universal desire and basic needs of human beings (1). Everyone has a
healthier right (2). Promoting and protecting health is indispensable for human well-being
and sustainable economic and social development (3). With the continuous improvement of
people’s living standards, people’s demand for high-quality medical resources becomes more
and more urgent. Due to the unequal supply of health service space (4), high-quality medical
resources cannot cover the entire population (2), which leads to the lack of access to health
service space and directly damages the right to health of some people. The imbalance in the
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allocation of health resources is not only a worldwide problem,
but also one of the major obstacles faced by China’s health
services (5). At present, China implements a vertical classification
system of medical institutions. The standard of hospital
classification is the evaluation index of hospital qualification
according to hospital function, facilities and technical force.
The whole country is unified, regardless of hospital background,
ownership, etc. According to the hospital grading management
standard, the hospital is determined to be three classes after
review, and each class is divided into level A, B and C. In this
study, we focus on the top medical institution in China, namely
Elite hospital (Class III C-level hospital), as the top medical
institution in China, which has great strategic significance for
medical and health allocation. At present, China is pursuing the
reform of the medical system (6–9). It is of great significance for
achieving health equity and protecting citizens’ right to health to
taking China as an example to study the spatial allocation of elite
hospitals, which can also provide a reference for other countries.

Meanwhile, most researches on the spatial allocation of
medical resources are implemented by means of geographic
information technology. This has become one of the frontier
hotpots in international health research (10–13). To our
knowledge, the research on the space problem of medical and
health resources are relatively rare and mainly focuses on the
following three aspects: the fairness of space allocation, space
accessibility and hospital location and evaluation. A longitudinal
time series study conducted in Tehran (1966–2011) measured
the inequality of hospital bed distribution and found that
inequality may persist over time and hinder policy initiatives
and major political changes (14). Gu also used the ArcGIS
network analyst extension module to evaluate the accessibility
and fairness of urban medical resources by using medical and
health related spatial data (15). A descriptive analysis conducted
a hospital Accessibility Study Based on network analysis model,
average center and standard distance in ArcGIS environment. It
was found that the hospitals were concentrated in the central
and southern areas of Kermansha (16). In addition, Shoman
evaluated the performance of Istanbul urban investment with the
spatial accessibility index to quantify the difficulty of reaching the
destination (17). A study in Istanbul, Turkey, used a set method
to measure the impact of various factors on the location of health
facilities (18). Kim developed an evidence-based decision support
system and enhanced it through geographic information system
(GIS). The systemmay overcome the shortcomings of robustness
and trend ability (19). The specific research methods mainly
include: applying the network analysis model, average center and
standard distance in the geographic information system (GIS),
combined with remote sensing technology or the 2SFCA (two-
step floating catchment area) method extended on the basis of
GIS (11, 20) and other methods.

The method above focuses on describing China’s spatial
pattern of medical resources, measurement of fairness and

Abbreviations: ESDA, Exploratory Spatial Data Analysis; GIS, Geographic

Information System; GWR, GeographicWeighted Regression; OLS, Ordinary least

Squares; SEM, Spatial Error Model; SLM, Spatial Lag Model; 2SFCA method,

Two-Step Floating Catchment Area method.

spatial accessibility, etc., while ignoring the focus on two types
of issues: (1) The above method lacked an explanation of
causality from a spatial perspective. The traditional regression
method uses ordinary least squares (OLS) for model estimation,
which requires the data to meet the assumptions of normality,
homogeneity of variance, and independence. However, due to the
geographical difference of each study area, the study area lacks
spatial homogeneity, and thus cannot satisfy the assumption
of homogeneity of variance. At the same time, because the
regions are not independent, but open to each other, there
must be a flow of factors, which cannot satisfy the assumption
of independence. Therefore, the existence of spatial effects
leads to deviations in OLS estimates. The spatial econometric
model can be compensated through the establishment of
statistical and econometric relationships between geographic
location and spatial connection, providing a new research
perspective and analytical work for revealing regional differences
and influencing factors (12, 21–23); (2) The above method
ignored spatial heterogeneity. Spatial heterogeneity is one of
the important properties of spatial data (24, 25), referring to
the non-stationary nature of spatial random processes. Ignoring
spatial heterogeneity may cause many problems, such as loss
of estimation efficiency, biased estimation, and saliency of
errors. Geographically weighted regression is an extension of
the ordinary linear regression model, which embeds the spatial
location of data into the regression equation. By establishing
the local regression equation at each point in the spatial range,
we can explore the spatial changes and related driving factors
of the research object at a certain scale and can be used to
predict future results. Because it takes the local effects of spatial
objects into account, its advantage is higher accuracy. Based on
the above considerations, on the basis of using the Exploratory
Spatial Data Analysis (ESDA) method to study the spatial pattern
of Chinese elite hospitals, this paper focuses on the analysis of
their influencing factors and spatial heterogeneity from the scale
of prefectural administrative units. The former uses a spatial
regression model, and the latter uses a geographically weighted
regression model, with a view to exploring the problems from a
spatial perspective, such as the imbalance of high-quality resource
allocation in the development of China’s medical and health
system and its influencing factors, so as to provide reference
of the high-quality medical resources allocation for China and
other countries.

METHODS

Research Methods
Exploratory Spatial Data Analysis (ESDA)
Our research used spatial autocorrelation to explore the spatial
pattern of elite hospitals. Spatial autocorrelation refers to the
statistical correlation between a certain attribute values where
the distribution of geographical things is different from the
spatial position. Generally, the closer the distance is, the greater
the correlation between the two values. Generally, Moran’s I
and Local Moran Index are introduced to measure the global
and local spatial correlation features. The former is a method
for global clustering test, which tests that the adjacent areas
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in the entire study area are similar and different (spatial
positive correlation, negative correlation), or independent of
each other; the latter is used to test whether there are similar
or different observations gathered in local areas. Global spatial
autocorrelation generally uses Moran’s I index (26). Moran’s
I index is between−1 and 1, and its calculation formula is
as follows:

I =
n

∑

i

∑

jWij(Xi − X)(Xj − X)

(
∑

i

∑

jWij)
∑

i (Xi − X)
2

(1)

In the formula: n is the total number of areas in the study; Xi

and Xj are the numbers of elite hospitals in areas i and j; Wij are
the spatial weight matrix, spatial adjacent is 1 and non-adjacent
is 0; X is the average value of numbers of elite hospitals. Perform
statistical tests on Moran’s I results, usually using Z-test:

Z(I) =
I− E(I)
√
var (I)

(2)

E(I) is the mathematical expectation, var (I) is the variance.
Local spatial autocorrelation refers to the Local Moran Index

(27) of a region to measure the degree of association between
Area I and its neighbors. The LISA in this study, as a local
measure of spatial autocorrelation (28), was used to identify
clusters (i.e., hot or cold spots) and outliers (e.g., regions of
neighborhoods with above or below the expected number of elite
hospitals). Note that the accumulation of j in the formula does
not include the Area I itself, that is, j6= i. A positive Ii (Ii > 0)
means a high value is surrounded by a high value (high-high),
or a low value is surrounded by a low value (low-low), which
means this element is a cluster; a negative Ii (Ii < 0) means a low
value is surrounded by a high value (low-high), or a high value is
surrounded by a low value (high-low), which means this element
is an outlier. In any instance, to be regarded as clusters and
outliers with statistical significance, the p-value of the element
must be small enough. The calculation formula is as follows:

Ii =
(Xi− X)

S2x

∑

j

[

Wij

(

Xj − X
)]

(3)

S2x =
∑

j
(Xj − X̄)/n (4)

In the formula: n is the total number of areas in the study. Xi

and Xj are the numbers of elite hospitals in areas i and j; Wij are

spatial weights, X are the average values of the numbers of elite
hospitals, S2x are the variances.

Spatial Econometric Method
This study mainly uses spatial regression models: Spatial Lag
Model (SLM) and Spatial Error Model (SEM)

(1) Spatial Lag Model (SLM) (29)

If the variable concerned has spatial correlation expressed by
spatial matrix, only considering its explanatory variable x is not
enough to estimate and predict the changing trend of the variable
reasonably. Therefore, the spatial lag model assumes the impact

caused by the appropriate spatial structure and can better control
the effect caused by this spatial effect.

Y = α + ρWY + βX + ε (5)

where W is the spatial weight matrix of the area; α is a constant
term; β are the regression coefficients, which reflects the influence
of the explanatory variables change on the explained variable;
ρ is the spatial autoregressive coefficient, which is used to
measure the spatial spillover effect of the explanatory variable
in the geographical vicinity; X is the explanatory variable; ε

is the random disturbance term, which is independent and
identically distributed.

(2) Spatial error model (SEM) (29). Spatial error model
describes spatial perturbation correlation and spatial
population correlation. The formula is as follows:

Y = α + βX + µ;µ = λWµ + ε (6)

where µ is the spatial autocorrelation error term, λ is the
autoregressive coefficient of the spatial error term, which
measures the degree of influence of the error term of the sample
observation value on the explained variable.

(3) Geographically Weighted Regression (30). This method is
based on the local regression analysis method and incorporates
the spatial location of the data into the regression parameters,
and uses the local weighted least square method to estimate
point-by-point parameters. The estimated parameters of each
spatial unit change with geographic spatial location, thereby
directly displaying the spatial heterogeneity of the research
object in the research area. Geographically weighted regression
can also be regarded as an extension of the traditional global
regression model. Its formula is:

yi = β0(ui, vi)+
∑

k

βk(ui, vi)xik + εi (7)

(4) Multi-scale Geographically Weighted Regression (MGWR)
(31). The estimated bandwidth (the number of prefecture-level
units used for local estimation) of each relationship in GWR is
the same, which has some limitations. The recently developed
multi-scale geographically weighted regression (MGWR)
improves the GWR, which relaxes the assumption of “same
spatial scale” and optimizes covariate specific bandwidth. Its
formula is:

yi = βh0(ui, vi)+
∑

k

βhk(ui, vi)xik + εi
(8)

(5) GWR-SAR and MGWR-SAR (32). We create a separate

GWR Model and MGWR model by adding the spatial

lag term in Equation (5) to the covariate and combining

the model’s multi-scale GWR term with the lag dependent

variable (MGWR-SAR). We used mgwr2.2 software for all
calibrations (https://sgsup.ASU.edu/SPARC/mgwr).
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Data Sources
The article takes China’s municipalities directly under the
Central Government, sub-provincial cities and prefectures as
the research objects (Excluding the data of Hong Kong Special
Administrative Region and Taiwan Region). The data of China’s
elite hospitals were obtained from the Chinese Hospital Level
Query System. As of December 31, 2017, China has included
706 elite hospitals. By downloading the latitude and longitude
of the elite hospitals, using ARCGIS10.2 and other software, the
geographic coordinates of the elite hospital are matched with
research regions above. The factors influencing the layout of
elite hospitals include economic factors, social factors, political
factors, historical factors, and physical geographical factors. The
indicators that characterize the level of economic development
include GDP per capita and urbanization rate, which comes
from the “2017 Statistical Bulletin of Economic and Social
Development” of each prefecture-level unit. The indicators
that characterize social factors mainly include population size
and density, the data of which coming from the “2017
Statistical Bulletin of Economic and Social Development” of
each prefecture-level unit. The indicators of historical factors
mainly include medical education, that is, the number of medical
universities or medical colleges, the data of which coming from
the directory of China Medical University (Medical College)
and the affiliated hospitals. The political indicator is the city
level, that is, the administrative level of the city. The data is
obtained from the list of municipalities directly under the Central
Government, provincial capital cities, and cities under separate
planning. Please refer to Appendix Table 1 for the definition and
source of all the above variables.

RESULTS

Exploratory Spatial Data Analysis of Elite
Hospitals in China
Spatial Allocation of Elite Hospitals in China
As of December 31, 2017, a total of 705 elite hospitals had been
included in the Chinese hospital ranking query system. From
a regional perspective, 283 elite hospitals were located in the
eastern coastal area, 166 were located in six central provinces, 171
were located in 12 provinces in the west, and 85 were located in
the three provinces of Northeast China. At the provincial level,
there were 10 provinces and autonomous regions in China with
30 or more elite hospitals, namely Guangdong (66), Jiangsu (38),
Sichuan (36), Hubei (35), Liaoning (34), Jiangxi (33), Hebei (32),
Shanxi (32), Heilongjiang (31), Beijing (30); four provinces had
five or less elite hospitals: Hainan (5), Yunnan (5), Ningxia (3),
Tibet (1). From the city level, there were 16 cities with 10 or
more elite hospitals, including 4 municipalities directly under the
Central Government, Beijing, Shanghai, Tianjin, and Chongqing,
and 12 provincial capital cities. Among them, Beijing, Shanghai
and Guangzhou had the largest number of elite hospitals, 30,
24, and 20 respectively, followed by Tianjin (17), Wuhan (17),
Xi’an (16), Hangzhou (13), and Taiyuan (13), Nanchang (13),
Nanjing (12), Chongqing (11), Chengdu (11), Guiyang (11),
Changchun (11), Harbin (10), Fuzhou (10); those with 5–10

FIGURE 1 | Spatial distribution of provincial unit scale.

FIGURE 2 | Spatial distribution of city-level unit scale.

elite hospitals There are 17 cities in total, namely Xining (9),
Shenyang (9), Foshan (9), Shijiazhuang (8), Nanning (8), Jinan
(7), Dongguan (7), Dalian (7), Shenzhen (6), Changsha (6),
Lanzhou (6), Hohhot (6), Urumqi (6), Zhengzhou (5), Wuxi
(5), Xiamen (5), Jilin (5). Overall, among China’s 361 prefecture-
level cities (excluding Hong Kong Special Administrative Region,
Macau Special Administrative Region and Taiwan), there are 232
cities with one or more elite hospitals. The remaining 129 cities
currently do not have elite hospitals. Cities are mostly distributed
in Tibet, Ningxia, Yunnan, Hainan, Xinjiang, Qinghai, Gansu,
Inner Mongolia, and other provinces.

Figures 1, 2 show the provincial and municipal spatial
allocation patterns of elite hospitals in China. The dotted symbols
in the figure indicate the number of elite hospitals. It can be
seen from the figure that the number of elite hospitals in China
has obvious spatial agglomeration. Elite hospitals are mostly
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TABLE 1 | Moran’s I statistical results of the allocation of elite hospitals in China.

Weights permutations = 9,999 Contiguity weight

(order = 1)

Distance weight

Queen Rook Threshold (550,000) K-nearest (4)

Moran’s I 0.0874 0.0874 0.0309 0.0925

E (I) −0.0028 −0.0028 −0.0028 −0.0028

Mean −0.0029 −0.0033 −0.0028 −0.0031

Sd 0.0315 0.0318 0.0139 0.0336

z-value 2.8690 2.8490 2.4281 2.8410

Pseudo p-value 0.0091 0.0093 0.0202 0.0093

FIGURE 3 | Moran scatter plot of China Elite Hospital.

concentrated in the central and eastern regions and northeast
regions, while the western region has fewer elite hospitals.

To accurately understand the influencing factors and spatial
effects of the allocation of elite hospitals, four spatial weight
matrices, including Queen’s case and Rook’s case, distance
threshold weight and K nearest neighbors, are used to define
the spatial relationship. By comparing the Moran’s I statistics
calculated by them, the most suitable weight matrix is selected.
See Table 1 for specific results.

It can be seen from the above analysis results that the Moran’s
I values of elite hospitals calculated by the four methods are
all positive, and the calculation results of the contiguity weight
matrix are relatively robust. In the correlation test, the p-value
of Queen is the smallest, and its significance is the strongest. In
addition, the queen contiguity matrix often has the advantage
of a closer correlation structure with the surrounding areas.
Therefore, it is selected to define the spatial relationship.

To further clarify the spatial allocation of Chinese elite
hospitals, Moran’s I statistic was used to measure the spatial
autocorrelation of Chinese elite hospitals. The value of the global
Moran’I statistic was 0.087 (Figure 3), which indicates that the

FIGURE 4 | LISA map of China Elite Hospital.

allocation of elite hospitals across the country was not random,
but a definite positive spatial autocorrelation. That is to say,
the allocation of elite hospitals in China was clustered and
cities with more elite hospitals were usually close geographically
and vice versa. Figure 4 and Table 2 described the local spatial
autocorrelation clustering phenomenon of elite hospitals in
China. The LISA chart demonstrated that the Beijing-Tianjin-
Hebei, Yangtze River Delta, and Pearl River Delta regions showed
significant high-high aggregation. There was an obvious low-
low autocorrelation in the northwest region, which makes an
important contribution to the overall positive autocorrelation
characteristics of the allocation of elite hospitals in China.
However, most cities in the central-eastern and northeastern
regions were not significant, and a small number of provincial
capital cities showed high-low clusters. In general, the spatial
autocorrelation of elite hospitals in China was obvious.

Analysis of Spatial Determinants of China Elite

Hospital
The OLS model was used for global regression analysis to
discuss the spatial allocation of elite hospitals in China and
its influencing factors. Based on reading relevant literature and
practical experience, as well as the availability of data, the
per capita GDP, urbanization rate, permanant population and
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TABLE 2 | Cluster statistics of elite hospitals.

Type Count Prefecture-level city unit

High-High 15 Beijing, Tianjin, Jinzhong, Chengde, Tangshan, Langfang, Cangzhou, Baoding, Nantong, Changzhou, Suzhou, Putian,

Zhongshan, Dongguan, Shenzhen

Low-Low 38 Tacheng area, Yili Kazakh Autonomous Prefecture, Aksu area, Kashgar area, Hotan area, Bayingoleng Mongolian

Autonomous Prefecture, Hami area, Ali area, Nagqu area, Lhasa City, Nyingchi area, Qamdo area, Yushu Tibetan

Autonomous Prefecture, Haixi Mongolian and Tibetan Autonomous Prefecture, Jiuquan City, Alxa League, Zhongwei

City, Guyuan City, Zhangye City, Baoshan City, Nujiang Lisu Autonomous Prefecture, Diqing Tibetan Autonomous

Prefecture, Dali Bai Autonomous Prefecture, Lincang City, Pu’er City, Changjiang Li Autonomous County, Baisha Li

Autonomous County, Danzhou City, Qionghai City, Qiongzhong Li and Miao Autonomous County, Tunchang County,

Baoting Li and Miao Autonomous County, Ledong Li Autonomous County, Wuzhishan City, Guoluo Tibetan

Autonomous Prefecture, Huangnan Tibetan Autonomous Prefecture, Gannan Tibetan Autonomous Prefecture, Ganzi

Tibetan Autonomous Prefecture

Low-High 9 Zhangjiakou City, Xinzhou City, Ankang City, Ziyang City, Huangshi City, Xuancheng City, Huizhou City, Jiaxing City,

Zhoushan City

High-Low 4 Urumqi City, Xining City, Lanzhou City, Yinchuan City

TABLE 3 | Results of variable collinearity test.

Variable Standard error VIF

City level 0.4153 2.1952

Number of medical colleges 0.1690 2.6779

Urbanization rate 0.0069 1.9974

Permanent population 0.0003 2.0249

GDP per capita 0.0003 1.9670

Population density 0.0002 1.6674

Altitude 0.0001 1.2622

population density of each region in 2017 are selected to reflect
the regional economic and social situation, and the indicators of
city level, number of medical colleges and altitude are selected to
reflect the regional political, historical and geographical factors,
and these variables are determined as explanatory variables.
The city level is a binary virtual variable, with 1 assigned to
municipalities directly under the Central Government, provincial
capital cities and cities listed explicitly in the state plan, and 0
assigned to other cities.

To avoid the huge deviation of regression results due to
the collinearity between explanatory variables, the method
expansion factor (VIF) is used to test the collinearity of
explanatory variables (the results are shown in Table 3). Among
all explanatory variables, the statistical significance coefficients at
the 5% significance level are GDP, city level, number of medical
colleges and urbanization rate. Among them, all VIF are lower
than 7.5, indicating that there is no collinearity relationship
between variables.

The regression results show that the five variables, GDP
per capita, city level, number of medical colleges, permanent
population and urbanization rate, are significant at the level
of 5%. At the same time, the regression coefficients of GDP
per capita, city level, number of medical colleges, permanent
population and urbanization rate are positive. This shows that
with the improvement of GDP per capita, the increase of the
number ofmedical colleges and permanent population, the rise of

city level and the improvement of urbanization rate, the number
of elite hospitals in the region will also increase. In addition, the
altitude did not pass the significance test. However, the Moran’s
I for OLS regression model shows a significant spatial effect
in the estimation residual. At this time, if the OLS method is
directly used, the parameter estimation is only consistent and
unbiased but not effective. Therefore, to analyze the spatial
influencing factors of the allocation of elite hospitals in China
more accurately, the corresponding spatial econometric models
SEM and SLM are constructed based on the OLS model for
further analysis (results are shown in Table 4). The results show
that the significance of the variables of city level, number of
medical colleges, GDP per capita, permanent population and
population density at 5% level and altitude at 10% level in
the SEM model still exists, but the significance of urbanization
decreases compared with OLS model. Moreover, the regression
coefficients of city level, the number of medical colleges and
urbanization rate decrease. The influence of altitude on elite
hospitals is negative, but not significant. There is little difference
in other coefficient estimations with OLS model. In the SLM
model, the significance of the variables of city level, number of
medical colleges, permanant population, urbanization rate and
GDP per capita still exists, and the regression coefficient of city
level and number of medical schools becomes larger, but the
significance of population density has disappeared. Compared
with the OLS model, both the SEM model and SLM model
increase R2, reduce AIC value. λ and ρ, measuring the coefficient
of the error term and spatial lag effect of the dependent variable,
were all positive at the significance level of 5%. Therefore, when
analyzing the factors affecting the allocation of elite hospitals,
it is correct and necessary to consider the spatial effect based
on the OLS model. The SEM and SLM model results confirm
that there is indeed spatial agglomeration in the allocation of
elite hospitals in China. GDP per capita, city level, number
of medical colleges, permanent population and urbanization
rate have significant positive impacts on the allocation of elite
hospitals. In addition, although the SEM and SLM models have
been improved compared with the OLS model, in the Lagrange
multiplier of the OLS regression model, LM (lag), robust LM
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TABLE 4 | Regression estimation results of three models.

OLS SLM SEM

Estimate Standard error Estimate Standard error Estimate Standard error

Intercept term −1.0775** 0.3489 −1.1898** 0.3424 −1.009** 0.3546

City level 3.4198** 0.4153 3.5789** 0.4088 3.3914** 0.3993

Number of medical colleges 2.0067** 0.1690 2.0133** 0.1650 1.9341** 0.1627

Urbanization rate 0.0160** 0.0069 0.0136** 0.0068 0.0122* 0.0070

Permanent population 0.0024** 0.0003 0.0023** 0.0003 0.0024** 0.0003

Population density 0.0003* 0.0003 0.0003 0.0002 0.0004** 0.0002

GDP per capita 7e-006** 0.0002 6.47e-006** 3.25e-006 9.31e-006** 3.40e-006

Altitude 3e-006 0.0001 5.0548e-005 0.0001 −9.0097e-006 0.0001

λ 0.2374** 0.7461

ρ 01331** 0.4468

R2 0.8203 0.8253 0.8266

AIC 1,324.1943 1,314.66 1,312.9

Moran’s I (error) 3.2361**

LM (lag) 9.9004**

Robust LM (lag) 3.1209*

LM (error) 8.7240**

Robust LM (error) 2.0446

Lagrange Multiplier (SARMA) 11.8449**

Log likelihood −648.33 −648.45

LR 9.0251** 8.7832**

**Represents 5% significance level, *Represents 10% significance level; binary queen contiguity weight matrix is used.

TABLE 5 | Geographical variability tests of local coefficients.

Variable F DOF for F test DIFF of criterion

City level 4.7353 2.937 330.014 −7.8764

Number of medical colleges 4.1662 2.419 330.014 −5.0514

Urbanization rate 1.6604 3.664 330.014 2.2508

Permanent population 6.5407 2.642 330.014 −12.140798

Population density 6.6972 2.014 330.014 −9.6638

GDP per capita 2.4049 3.345 330.014 −0.6333

Altitude 2.4942 4.203 330.014 −1.1906

DIFF of Criterion is positive, indicating that there is no significant spatial variation in variable coefficients.

(lag), and LM (error) are significant at 10% confidence level, but
the P-value of robust LM (error) test is >10% significance level,
that is, it is not significant. This further illustrates the necessity
of adopting the SLM model, which makes the explanation is
more convincing.

In the SLM model, the five variables, GDP per capita, city
level, number of medical colleges, permanent population, and

urbanization rate, are significant at the level of 5%. Meanwhile,

the regression coefficients of these five variables are positive,

consistent with the OLS regression results. On the one hand,
with the improvement of GDP per capita, the increase in the
number ofmedical colleges and permanent population, the rise of
city level and the improvement of urbanization rate, the number
of elite hospitals in the region will also increase. On the other
hand, the variable regression coefficients of city level, number

of medical colleges and city level in the SLM model become
larger. That is, in OLS regression, if the city level increases by
1, the number of elite hospitals increases by 3.4198; the number
of medical colleges increases by 1, the number of elite hospitals
increases by 2.0067. In SLM model, the city level increases by
1, the number of elite hospitals increases by 3.5789; the number
of medical colleges increases by 1, the number of elite hospitals
increases by 2.0133, which further illustrates the necessity of
adopting SLM model.

Analysis of Spatial Heterogeneity of Elite Hospitals in

China
The above ESDA analysis shows that the allocation of elite
hospitals in China shows a significant spatial dependence. To
more comprehensively and thoroughly explain the influencing
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TABLE 6 | Regression results of four models.

GWR MGWR GWR-SAR MGWR-SAR

Residual sum of squares 48.926 48.568 47.080 46.947

AICc 394.931 368.625 396.963 361.054

R2 0.866 0.867 0.870 0.871

Log likelihood −151.248 −149.910 −144.351 −143.839

TABLE 7 | Parameter estimates for the regression of number of elite hospitals using MGWR-SAR.

MGWR-SAR coefficient Saliency (95%) percentage of cities divided

Variable Bandwidth Mean Min Max P ≤ 0.05 (%) + (%) – (%)

Intercept term 362.000 0.012 0.002 0.012 0.000 100.000 0.000

City level 43.000 0.274 −0.036 0.812 60.606 100.000 0.000

Number of medical colleges 362.000 0.435 0.435 0.451 100.000 100.000 0.000

Permanent population 111.000 0.191 0.013 0.307 69.697 100.000 0.000

Population density 362.000 0.060 0.059 0.072 97.245 100.000 0.000

GDP per capita 318.000 0.083 0.021 0.136 94.766 100.000 0.000

Altitude 298.000 0.003 −0.072 0.031 4.132 100.000 0.000

factors of the spatial distribution of elite hospitals in China,
especially the spatial heterogeneity of prefecture-level cities, this
paper further uses geographical weighted regression for analysis.
Before that, this paper will first test the stationarity. The stability
test results are shown in Table 5.

It can be seen from Table 5 that the “diff of criterion” values
of all explanatory variables except urbanization rate are <0,
indicating that they are local variables, while the “diff of criterion”
value of urbanization rate is >0, indicating that urbanization
rate is a global variable. We will eliminate the global variable,
namely “urbanization rate,” to analyze the spatial heterogeneity
of local variables.

To explain the determinants of the spatial allocation of
elite hospitals in China more comprehensively, especially in
the spatial heterogeneity research at the prefecture-level city
scale, geographic weighted regression (GWR) is further used
to analyze the influence degree and spatial difference of the
seven determinants (city level, number of medical colleges,
permanent population, population density, GDP per capita,
and urbanization rate) selected in OLS model. When using
geographic weighted regression, to achieve the purpose of more
optimization, we use GWR, MGWR, GWR-SAR, and MGWR-
SAR models, respectively. The regression results are shown in
Table 6. The weight we select is the reciprocal of distance, the
model type is “Gaussian,” the spatial kernel type is “Adaptive
Bisquare,” the bandwidth type is “golden section,” and “AICc” is
selected as the optimization criterion. By comparing AICc term
and R2 term, it can be seen that AICc is the smallest and R2 is
the largest in MGWR-SAR model, indicating that MGWR-SAR
model is the best choice.

In the MGWR-SAR model, the termination criterion of
MGWR-SAR is 1.0e-05, and the number of iterations used
is 32. Table 7 lists summary statistics of the local parameter
estimates generated by MGWR-SAR, and they are displayed

FIGURE 5 | The spatial allocation of the local R2 of the MGWR-SAR model.

in full in Figures 5–10. The second column of Table 7 shows
the local variable name; the second shows the bandwidth
of each local variable; the third shows the mean (Mean),
minimum (Min), and maximum (Max) values of the local
parameter estimates of each covariate. The fourth column
indicates a classification of coefficients based on t-tests, adjusted
for multiple hypothesis testing (33), including the proportion of
significant coefficients (p ≤ 0.05), the proportion of significant
positive coefficients to significant coefficients (+), and the
proportion of significant negative coefficients to significant
coefficients (–).

The results show that the intercept term of all cities is not
significant. For two-thirds of cities, the impact of city level and
permanent population on elite hospitals is significant, and higher
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FIGURE 6 | Spatial distribution of regression coefficients of altitude.

FIGURE 7 | Spatial distribution of regression coefficients of GDP per capita.

city level or permanent population is related to higher elite
hospitals. For more than 90% of cities, population density and
GDP per capita impact on elite hospitals is significant, and higher
population density or GDP per capita is related to higher elite
hospitals. It is worth noting that the impact of the number of
medical colleges on elite hospitals is significant for all cities, and
the impact of the number of medical colleges on elite hospitals is
positive. Finally, the altitude of <5% of cities significantly affects
elite hospitals, and this impact is also positive.

To more clearly show the impact of GDP per capita,
permanent population, population density, altitude, number of
medical schools and city level on the spatial allocation of China’s
elite hospitals, we will explain it in detail through its spatial
allocation characteristic map.

First, the spatial difference of local R2: the maximum local
R2 is 0.9357, and the minimum value is 0.4709. There are
apparent spatial differences in local R2. As shown from Figure 5,
the model’s explanatory variables have stronger explanatory

FIGURE 8 | Spatial distribution of regression coefficients of population density.

FIGURE 9 | Spatial distribution of regression coefficients of permanent

population in MGWR-SAR model.

power to the north of Xinjiang and partial cities in Southwest
China than other regions. In contrast, the explanatory power to
Yunnan, Guangxi and some cities in Northeast China is relatively
weak, and the explanatory power to Zhangjiakou in Hebei is
the weakest. Therefore, according to the size of local R2, this
paper divides China’s prefecture level units into five levels: (1)
local R2 is between 0.4709 and 0.6645, mainly distributed in
some cities in Yunnan, Guangxi and Guizhou, Zhangye, Wuwei,
Qingyang, Longnan, Hanzhong, Yulin, Yan’an and Tongchuan in
Northwest China, Qiqihar, Suihua, Mudanjiang, Yichun, Jiamusi
and Jilin in Northeast China, Lhasa in Tibet, Bortala Mongolian
Autonomous Prefecture in Xinjiang, Baotou in Inner Mongolia,
Chengde and Zhangjiajie in Hebei, and Ganzhou in Jiangxi; (2)
Local R2 is between 0.6645 and 0.8125, mainly distributed in
Middle East China, such as most cities of Hainan, partial cities
in Jiangxi Hubei and Guangdong; in addition, regression values
of Lincang, Pu’er and Diqing Tibetan autonomous prefectures in
Yunnan and Shuangyashan, Jixi, Yanbian Korean Autonomous
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FIGURE 10 | Spatial distribution of regression coefficients of medical colleges

in MGWR-SAR model.

Prefecture, Baicheng in Northeast China are all in the interval;
(3) Local R2 is between 0.8125 and 0.8664, mainly distributed
in Baoding, Shijiazhuang and Xingtai in Hebei, Ulanqab and
Xing’an League in Inner Mongolia, Datong, Luliang, Changzhi
and Taiyuan in Shanxi, Bayingolin Mongolian Autonomous
Prefecture in Xinjiang, Harbin, Songyuan, Changchun, Tieling,
Shenyang, and Dalian in Northeast China, most cities in Sichuan
and Zhoushan, Ningbo and Taizhou in Zhejiang; (4) Local
R2 is between 0.8664 and 0.9076, mainly distributed in some
cities in Inner Mongolia, Shandong, Qinghai, Ningxia, Henan,
Anhui, Hunan, Hubei and Zhejiang, Hotan region in Xinjiang,
Ili, Karamay, Urumqi, Shigatse region, Naqu region and Ali
Region in Tibet and Hegang, Daxinganling region, Dandong,
Benxi, Baishan and Fushun in Northeast China; (5) Local R2

is between 0.9076 and 0.9357, mainly concentrated in Xinjiang,
Ordos and Chifeng in Inner Mongolia, Jiuquan in Gansu. In
addition, the regression values of Ganzi Tibetan Autonomous
Prefecture and Aba Tibetan and Qiang Autonomous Prefecture
in Sichuan, Golog Tibetan Autonomous Prefecture in Qinghai,
Shannan region, Nyingchi region and Changdu region in Tibet,
Chongqing and Shanghai are also relatively high, belonging to
this range. At the same time, the cities with high regression values
are also scattered in theMiddle East China. In particular, the local
R2 in Huai’an City, Jiangsu Province is the highest.

Secondly, the regression coefficient of altitude: altitude refers
to the vertical distance between the ground and the sea level.
Usually, the higher the altitude, the thinner the air, and the less
suitable for human habitation and life. As can be seen from
Figure 6, the maximum value of regression coefficient of altitude
is 0.0309 and the minimum value is−0.0721. The prefecture level
units with regression coefficient ranging from −0.0721 to 0.0070
are widely distributed (i.e., the distribution of the first three lower
coefficient grades in Figure 6), including the whole west, most
of the northeast and most of Middle South, while the prefecture
level units with regression coefficient ranging from −0.0070 to
0.0309 are mainly distributed in the Middle East and coastal

areas. Especially, the regression coefficients of Zhoushan, Ningbo
andWenzhou in Zhejiang,Weihai andQingdao in Shandong and
Zhangzhou, Shanwei and Jieyang in Guangzhou are pretty large.
However, in OLS regression, the regression results of altitude are
not significant, indicating that they have no great impact on the
spatial distribution of elite hospitals in China.

Third, the regression coefficient between GDP per capita,
population density and permanent population. It can be seen
from the OLS results above that although the GDP per capita
and population density have significant impacts on the spatial
distribution of elite hospitals in China, the regression coefficient
is small. The GDP per capita and population density positively
affect the distribution of elite hospitals, and their coefficients
are 6.54e-006 and 0.0003, respectively. From Figure 7, it can be
found that the GDP per capita level in some cities in Northeast
China, some cities in Southwest China, most cities in Gansu,
Ganzhou in Jiangxi, Nanping in Fujian, Yulin in Shaanxi, Yan’an,
Zhangjiakou and Chengde in Hebei, Wulanchabu, Baotou and
Bayannur in Inner Mongolia have large influence coefficients on
the distribution of elite hospitals. The impact coefficients of GDP
per capita in the western and eastern regions are small, especially
in some cities in Xinjiang, Tibet and Inner Mongolia, which is
basically in the range of 0.0212–0.0482.

Population density is the number of people per unit land
area, which is an essential factor to investigate the economic
development of a country or region and an important symbol
to measure the environmental pressure of a country or region.
Therefore, this paper puts population density into the analysis
framework. Figure 8 shows the spatial distribution of the
regression coefficient of population density of MGWR-SAR
model. It can be found that the regression coefficient of
population density is positive, which indicates that the increase
of regional population density will have a positive impact on
the number distribution of local elite hospitals. In addition,
comparing Figures 7, 8, it is found that the spatial distribution
of the population density regression coefficients is just opposite to
that of the GDP per capita regression coefficients. Specifically, the
coefficients of population density in the eastern region are large,
but those of GDP per capita are relatively low; while in most areas
inWest China, the coefficients of population density are large, but
the coefficients of GDP per capita are relatively small.

The permanent population refers to the population who
often lives at home or have been at home for more than 6
months throughout the year, with the characteristics of relative
stability. It can be seen from the OLS results above that the
permanent population also has a significant impact on the spatial
distribution of elite hospitals in China. Still, the regression
coefficient is also relatively small, which positively impacts the
distribution of elite hospitals with the coefficient of 0.0024.
From the spatial distribution map of the regression coefficient
of the resident population of the MGWR-SAR model (Figure 9),
it can be seen that the regression coefficients of the western
region are between 0.2211 and 0.2760, the grade of its influence
coefficients is in the middle and even high position. The strong
and weak effects of the regression coefficients of the resident
population in the central and southeast regions are inlaid. In
addition, the distribution of elite hospitals in China is related to
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the population size, but the relationship is not close. Population
density has little impact on the number distribution of elite
hospitals, which also lays a foundation for us to continue to find
more influential factors.

To sum up, the distribution of elite hospitals in China has a
certain relationship with social and economic development, but
the relationship is not close. The GDP level per capita, population
density and permanent population at the prefectural-city level
in China have little impact on the number distribution of elite
hospitals, indicating that other factors will have substantial effects
on the number distribution of elite hospitals in China.

Fourth, the regression coefficient of the number of medical
colleges: the OLS regression results above show that when other
explanatory variables remain unchanged, the number of medical
colleges increases by one standard unit and the number of elite
hospitals increases by 2.0067 standard units. The number of
medical colleges is the core variable to characterize medical
education. At present, there are few studies on the unbalanced
allocation of high-quality medical resources in China from the
perspective of medical education. By the end of 2017, 84 medical
universities or medical schools in China were mainly distributed
in the eastern region. Among the 361 prefecture-level city units,
19 cities have two or more medical schools, including six medical
colleges in Beijing and Shanghai, five or four medical colleges
in Guangzhou and Shenyang, and three medical schools in
Tianjin, Hangzhou and Changchun. Generally, there is at least
one Affiliated Hospital under the medical college. The hospital is
often the best local medical institution, which can explain that the
number ofmedical colleges is one of themain factors affecting the
allocation of elite hospitals in China. Still, the difference in the
number of medical colleges between regions leads to the spatial
characteristics of its influence coefficients on the allocation of
elite hospitals.

Through the analysis of MGWR-SAR model, it can be found
that the minimum impact coefficient in prefecture-level units
is 0.4346, and the maximum is 0.4511. It can be seen that
there are spatial differences in the impact of the number of
medical colleges on the allocation of elite hospitals in different
regions, although the spatial differences are pretty small. From
the spatial distribution of the regression coefficient (Figure 10),
the action intensity shows a trend of being stronger in the West
and weaker in the East: (1) The regression coefficients of the
whole Middle East region, Tacheng, Turpan, Changji, Urumqi,
Ili, Karamay, Bortala Mongolian Autonomous Prefecture, Kizilsu
Kirgiz Autonomous Prefecture in Xinjiang and Lhasa, Shannan,
Nyingchi and Changdu regions in Tibet are small, especially
the cities in the whole Middle East region. This shows that the
number of medical schools has little impact on the distribution
of elite hospitals in the Middle East, Xinjiang, and Tibet; (2)
The regression coefficients of cities under the jurisdiction of
Ganzi Tibetan Autonomous Prefecture in Sichuan, Altay region
in Xinjiang, Hami region, Aksu region, and Kashgar region
are between 0.4351 and 0.4356, indicating that the number of
medical colleges has higher impacts on the spatial distribution of
elite hospitals in these regions than cities under the jurisdiction
of the Middle East. However, they are lower than bayingol Hotan
region in Xinjiang, Ali Region and Naqu region in Tibet; (3)

The number of medical colleges has the greatest impact on
the distribution of elite hospitals in parts of Tibet, southern
Xinjiang and Alxa, Xilingol and Hulunbuir in Inner Mongolia,
and their regression coefficients are between 0.4356 and 0.4511.
The cities with large influence coefficients in Tibet are mainly
Ali Region, Naqu region and Xigaze region, and the cities with
large influence coefficients in Xinjiang are bayingol Mongolian
Autonomous Prefecture and Hotan region. Among them, the
maximum value of influence coefficient appears in bayingol
Mongolian Autonomous Prefecture in southern Xinjiang.

Finally, city level regression coefficient: there is relatively
little literature on the spatial allocation of high-quality medical
resources in China from the urban level. In this paper, the
research units are divided into two types: prefecture level units
and units above prefecture level. Units above the prefecture level
include municipalities directly under the central government,
provincial capital cities and cities specifically designated in the
state plan. According to experience, it can be judged that the
higher the city level is, the more elite hospitals there are.
The statistical results also confirm this judgment. According
to the OLS analysis results, the regression coefficient of city
level is 3.4198, which is much higher than other variables.
Therefore, the city level is the most crucial factor affecting the
spatial allocation of elite hospitals in China. From the spatial
distribution of the regression coefficient (Figure 11), its action
intensity shows a solid and weak mosaic trend in the Middle
East, relatively concentrated in some areas withmedium intensity
and concentrated in the West China. The specific performance
is as follows: the impact coefficients of provincial capital cities
or cities with higher urban levels in various provinces in the
Middle East region are the highest, such as Shanghai, etc.
In addition, Xi’an, as the capital city of Shaanxi Province in
Northwest China, has also a high impact coefficient at the
city level. The western region’s influence coefficient is in the
middle position, ranging from 0.1701 to 0.3386, while it is
low in Hainan, Bortala Mongolian Autonomous Prefecture in
Xinjiang, some cities in Hebei, some areas in Northeast and
Southwest China, Zhoushan, Ningbo, and Taizhou in Zhejiang.
Therefore, it is necessary to increase the investment in medical
resources in non-provincial capital cities, to weaken the impact
of city level on the uneven spatial allocation of elite hospitals
and then alleviate the uneven spatial allocation of high-quality
medical resources.

DISCUSSION

This article uses 2017 China prefecture-level unit data to describe
the inequality of spatial allocation in elite hospitals and explore
its determinants. We have drawn the spatial layout map, spatial
clustering map and spatial heterogeneity map of China’s elite
hospitals summarizing three main research findings.

First of all, despite the ongoing medical reform in China,
the spatial agglomeration of high-quality medical resources is
significant, and there is a serious inequality in its geographical
distribution. This study uses ESDA to identify the degree
of spatial agglomeration of elite hospitals in China, and
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FIGURE 11 | Spatial distribution of regression coefficients of the number of

city level in the GWR model.

uses Moran’I statistics to prove a significant positive spatial
autocorrelation, indicating that the allocation of elite hospitals
in China shows obvious spatial agglomeration. From a regional
perspective, elite hospitals are mostly concentrated in the
eastern coastal region (283), the central region (166) and
the northeast region (85); The Beijing-Tianjin-Hebei, Yangtze
River Delta, and Pearl River Delta regions are the most
significant high-high agglomeration areas in the country, while
the western region shows significant low-low agglomeration. At
the city level, elite hospitals are mainly distributed in the four
municipalities directly under the Central Government, Beijing,
Tianjin, Shanghai, and Chongqing, and near the capital cities
of the central and eastern regions. Elite hospitals in many
cities in the western region are relatively scarce. Prefecture-
level cities in high-high agglomeration areas not only have more
elite hospitals in this city, but also have more in neighboring
areas, while prefecture-level cities in low-low agglomeration
areas are just the opposite. It shows that the regional imbalance of
China’s high-quality medical resources is obvious. Some scholars
found that China’s health resources are mainly distributed in
economically developed regions (34), and 46.68% of the elite
hospitals are concentrated in the eastern coastal areas (35).
Even some studies (36) in China have directly confirmed
similar hot spot analysis results. Interestingly, even at the
prefectural-city level, the distribution of high-quality medical
resources still tends to areas with high economic level (37).
This imbalance is largely due to China’s long-term supply
side resource allocation, which tends to place a large number
of high-quality medical resources in economically developed
regions. However, underdeveloped areas, including rural areas,
are often located in remote areas with high operating costs
and poor local economic development, which lead to local
residents becoming victims of China’s health inequity. At the
same time, this explains to a large extent the phenomenon of
“difficult medical treatment” in China. Over the past 20 years,
the focus of China’s medical reform is to establish and improve

the medical insurance system. It is hoped that insurance can
improve the economic accessibility of health services, while
spatial accessibility is neglected. This is very detrimental to
patients’ equal access to quality medical services. With economic
development and family income growth, as well as the high
incidence ofmajor diseases, residents are increasingly demanding
high-quality medical and health services, hoping to seek medical
treatment in elite hospitals. A large number of patients are
chasing high-quality medical resources and health services across
regions, resulting in the phenomenon of “difficult medical
treatment” (38).

Secondly, through the analysis of SLM model, it is found
that the factors influencing the allocation of elite hospitals in
China include GDP per capita, city level, number of medical
colleges, urbanization rate and permanent population. All of the
variables have positive impacts on the number of elite hospitals.
As previous studies found, the registered residence population
has a positive effect on the allocation of medical resources
(36), which may be because the expansion of health service
demand caused by the increase of population size is one of the
factors considered by the government in the allocation of health
resources. In addition, a previous study confirmed the correlation
between population density and public service facilities, which
is also popularized for elite hospitals (39). Similar studies also
show that high-level cities with high-quality economic conditions
are easy to attract high-quality medical resources (34). Even in
the western region, the problem of “capital city concentration”
will be more prominent (40). Taking Beijing, Shanghai and
Guangzhou (the most developed cities in China) as examples,
numbers of elite hospitals in these three cities are the largest.
Among them, Beijing is the capital of China (also the economic
center of Beijing Tianjin Hebei), Shanghai is the economic center
of Yangtze River Delta, and Guangzhou is the economic center
of Pearl River Delta. The reasons for this phenomenon may
be as follows: (1) the financial capacity to implement the goal
of health resource allocation is different among regions, which
makes the allocation of high-quality health resources different
among different levels of cities or cities with different economic
conditions. (2) At the same time, it is very possible for medical
colleges and universities to be the important influencing factors
of elite hospitals in China. From the above examples, Beijing,
Shanghai and Guangzhou are also cities with the highest level of
medical education in China, with the largest number of medical
universities or colleges in China. Due to the unique training
mode of Chinese doctors, the medical college usually has at
least one affiliated hospital, and this hospital is often the best
local medical institution. As of the end of 2017, there were 84
medical universities or medical colleges in China, mainly in the
eastern region. On the one hand, these affiliated hospitals absorb
graduates from medical colleges and universities, on the other
hand, they serve as practice places to cultivate talents for medical
colleges and universities. This circulation mode makes it easier
for good medical colleges and universities to obtain high-quality
affiliated hospitals, and thus creates a centralized allocation of
high-quality medical resources.

Third, the MGWR-SAR model confirms that the factors
affecting the allocation of elite hospitals in China are spatially
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heterogeneous. Among them, GDP per capita and population
density can promote the number of regional elite hospitals,
but the spatial distribution of regression coefficient is just the
opposite. In some areas such as some cities in East and most
cities in West China, the regression coefficient of population
density is relatively high, while the regression coefficient of GDP
per capita is relatively small. The influence coefficients of the
number of medical colleges on the allocation of regional elite
hospitals are between 0.4346 and 0.4511. Its spatial difference
is small and its effect degree shows a trend of strong in the
West and weak in the East. The city level has the greatest
influence on the allocation of elite hospitals, and for different
prefecture-level city units, the degree of influence has obvious
spatial changes. For example, Hainan and some cities in
Northeast and Southwest are less affected, while Xi’an and
other provincial capitals, Shanghai and other high-level cities
have greater influence. The existence of spatial heterogeneity
indicates that there is no “one size fits all” in regulating the
spatial layout of China’s high-quality medical resources, and
targeted intervention measures should be implemented for
different cities.

Our research has its limitations. The first limitation is that
the number of elite hospitals in each city is adopted as the core
indicator to measure high-quality medical resources. Although
it is an intuitive indicator, it does not consider factors such as
the scale of elite hospitals and service quality. In the empirical
process, it is found that the GDP per capita and urbanization rate
have an impact on elite hospitals, but the regression coefficient
is small. Therefore, only using the number of elite hospitals
as the core variable of high-quality medical resources may
underestimate the impact of factors such as GDP per capita
and urbanization rate. The second limitation is that it does not
take into account the impact of floating patients or patients
seeking medical care across regions (9). Beijing, Shanghai, and
Guangzhou are the cities with the highest concentration of elite
hospitals in China with the most migrant patients. The high-
quality medical resources in these cities are often squeezed by
“outsiders.” Take Beijing as an example, the annual number
of migrant patients in Beijing is about 220 million, and more
than 600,000 out-of-town patients come to Beijing for treatment
every day. However, the large number of migrant patients or
patients seeking medical care across regions further proves the
imbalance in the spatial allocation of elite hospitals in China.
People have to move across regions to obtain high-quality
medical facilities/treatment. Finally, we noticed that the analysis
in this article is horizontal, only using the cross-sectional data
of China’s prefecture-level units in 2017, so it is impossible to
demonstrate the changing trends of economic and social factors
affecting elite hospitals. In summary, our research confirms
the reality of high spatial agglomeration of elite hospitals in
China, indicating that China’s high-quality medical resources
have unequal spatial allocation, especially the extreme shortage
of elite hospitals in the western region, which threatens the
realization of health equity. The fairness of the spatial allocation
of high-quality medical resources should be ensured, and the
rights of every citizen to enjoy high-quality medical resources
should be protected.

CONCLUSION

The current imbalance in the spatial allocation of high-quality
medical resources in China has become a severe constraint
to coordinate regional development and social equity and
justice. Based on the above analysis, we make the following
recommendations. First of all, attention should be paid to the
spatial governance of high-quality medical resources. At the
national level, it is necessary to formulate long-term plans for
the construction of elite hospitals in underdeveloped cities,
adjust the spatial layout of high-quality medical resources, and
recommend at least one elite hospital in a prefecture-level city
to alleviate the spatial imbalance in the allocation of high-
quality medical resources between regions. Secondly, attracting
outstanding medical talents to regions where elite hospitals
are scarce. A series of incentives such as high salaries, job
title evaluation, education and training can be used to attract
outstanding medical professionals to “sink” to regions where
elite hospitals are scarce. Third, increasing investment in medical
education in areas where elite hospitals are scarce. Relying on
universities and scientific research institutions in regions where
elite hospitals are scarce, it is necessary to increase investment
in medical education, improve the availability of local high-
quality medical resources and establish the affiliated hospitals.
Fourth, we should establish a benign competition elimination
mechanism for elite hospitals, improve their exit criteria, and
realize the dynamic planning of health resources based on
multiple influencing factors. Finally, developing the telemedicine
services. With the rapid development of 5G, AI, blockchain,
big data and other technologies, it provides technical support
for the establishment of a partial or even a whole system of
telemedicine networks. In the future, with the remoteization of
coremedical services and the systematization of telemedicine, the
issue of spatial accessibility of high-quality medical services will
be effectively resolved.
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