
BRIEF RESEARCH REPORT
published: 26 August 2021

doi: 10.3389/fpubh.2021.724239

Frontiers in Public Health | www.frontiersin.org 1 August 2021 | Volume 9 | Article 724239

Edited by:

Tongning Wu,

China Academy of Information and

Communications Technology, China

Reviewed by:

Mindi He,

Army Medical University, China

Guangdi Chen,

Zhejiang University, China

*Correspondence:

Yi Cao

yicao@suda.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Radiation and Health,

a section of the journal

Frontiers in Public Health

Received: 12 June 2021

Accepted: 04 August 2021

Published: 26 August 2021

Citation:

Xie W, Xu R, Fan C, Yang C, Chen H

and Cao Y (2021) 900 MHz

Radiofrequency Field Induces

Mitochondrial Unfolded Protein

Response in Mouse Bone Marrow

Stem Cells.

Front. Public Health 9:724239.

doi: 10.3389/fpubh.2021.724239

900 MHz Radiofrequency Field
Induces Mitochondrial Unfolded
Protein Response in Mouse Bone
Marrow Stem Cells
Wen Xie 1,2†, Rui Xu 1,2†, Caiyun Fan 1,2, Chunyu Yang 1,2, Haiyan Chen 1,2 and Yi Cao 1,2*

1Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China, 2 Jiangsu Key

Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China

Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC)

to 900 MHz radiofrequency fields used in mobile communication devices can induce

mitochondrial unfolded protein response (UPRmt).

Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields

(RF) at 120 µW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group

(SH) were cultured in RF exposure system, but without RF radiation. The positive control

cells were irradiated with 6Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the

upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were

also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes,

4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured

with flow cytometry, the expression levels of UPRmt-related proteins were detected using

western blot analysis.

Results: Compared with Sham group, the level of ROS in RF and XR group was

significantly increased 30min and 4 h post-RF/XR exposure (P < 0.05), however, the

RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared

with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF

and XR group increased significantly 30min and 4 h post-RF/XR exposure (P < 0.05),

however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed

24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could

not induce the increase of HSP10/HSP60/ClpP protein levels any more.

Conclusions: The exposure of 900 MHz RF at 120 µW/cm2 power flux density

could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial

homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure

to RF in our experimental condition did not cause permanent and severe mitochondrial

dysfunctions. However, the detailed underlying molecular mechanism of RF-induced

UPRmt remains to be further studied.
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INTRODUCTION

Non-ionizing radiofrequency fields (RF) are ubiquitous in the
environment. They are used in military, radio, and television

broadcasting, wireless communications systems, industry, and
medicine. The number of people exposed to RF increased
exponentially with the introduction of wireless communication

devices which transmit voice, data and images. The scientific
information on the biological and health effects of exposure to
RF is more extensive now than ever before (1). Nonetheless,

the unfolded protein response (UPR) in mitochondria in

cells exposed to RF received little attention of researchers.
Mitochondria is the organelle with the closed bilayer membranes
structure, which play a key role in cellular biosynthetic,

intracellular oxidative phosphorylation and the regulation of
calcium levels. Mitochondria contain specific heat shock proteins
(HSP) and protease, which help to fold, unfold, or degrade
other proteins for the protein equilibrium inside. When a large
number of unfolded or misfolded proteins are accumulated in
cells due to external stimulus, the reverse signaling pathway
from mitochondria to nucleus will be activated to increase the
expression of nuclear genes encoding mitochondrial proteins
(2). The newly-synthesized mitochondrial proteins include
chaperones HSP10 and HSP60 which facilitate the import and
correct folding of unfolded proteins, and proteases ClpP and
ClpX which help to degrade the unfolded andmisfolded proteins.
This process is called mitochondrial unfolded protein response
(UPRmt) (3–7).

Mitochondria are the main source and one of the targets of
RF-induced reactive oxygen species (ROS) (8). Electromagnetic
field (EMF) directly targets the electron transport chain, which
leads to mitochondrial dysfunction and overproduction of ROS.
EMF can cause a disturbance of mitochondrial proton motive
force, which then disrupts the balance between ROS production
and ROS clearance. The severe and long-lasting oxidative stress
may play a key role in mitochondrial damage that leads to some
human health problems (9). However, mild ROS increase could
lead to cellular defense mechanisms, including unfolded protein
response (10). Studies showed that during mild mitochondrial
dysfunction, UPRmt activation promotes development and
prolonging longevity, suggesting that UPRmt activation may
be a useful therapeutic approach for some mitochondria-
related diseases. However, prolonged or dysregulation of UPRmt

activation can exacerbate mitochondrial dysfunction caused by
external stimuli (11–13).

Currently, there are few reports on the effect of RF-induced
ROS on UPRmt. In view of the paucity of RF investigations
on UPR in mitochondria, we have conducted the present
study to investigate whether 900 MHz RF can induce UPRmt

in BMSCs. Mouse bone marrow stem cells (BMSCs) were
exposed to 900 MHz RF for 4 h/d for 5 d to examine if
RF exposure can induce UPR in mitochondria. Sham-exposed
(SH) control cells as well as those exposed to an acute dose
of ionizing/X-rays radiation (XR) as positive control cells
were included in the experiment. The expression levels of
HSP10/HSP60/ClpP proteins involved in UPRmt were examined.
To verify the induction of UPR in BMSCs, siRNA-JNK2 was

used to inhibit the known signal molecular JNK2 of UPRmt in
the study.

MATERIALS AND METHODS

Bone Marrow Stromal Cells
The collection and culture of BMSCs were described in detail in
our earlier paper (14). Single cell suspensions were prepared in
complete IMDMmedium (Iscove’s modified Dulbecco’s medium,
Hyclone, Suzhou, China) containing 10% fetal bovine serum
(FBS, Gibco, Shanghai, China), 100 units/ml penicillin and
100µg/ml streptomycin (Bio Basic, Hangzhou, China). From
each mouse, aliquots of 4 × 105 cells in 10ml medium were
placed in 100mm petri dishes cultured in an incubator (Heal
Force Bio-Meditech, Hong Kong, China)maintaining 37± 0.5◦C
with humidified atmosphere of 95% air and 5% carbon dioxide
(CO2). Cells in 3–6 passages from a single mouse were used for
different exposures described below.

Radiofrequency Fields/Sham Exposed
Exposure
The exposure system was built in-house and consists of a signal
generator (SN2130J6030, PMM, Cisano sul Neva, Italy), a power
amplifier (SN1020, HD Communication, Ronkonkoma, NY),
and a Gigahertz Transverse Electro-Magnetic (GTEM) chamber.
The RF signal was generated, amplified and fed through an
antenna (Southeast University, Nanjing, Jiangsu, China) and
detected by a field strength meter (PMM, Cisano sul Neva, Italy).
The specific operation principle and exposure protocols has been
discussed in detail by the previous studies of our lab (14–16). The
same GTEMwithout RF transmission, was used for SH-exposure
of cells. During the RF/SH exposure, the culture medium was
changed once and the external environment was maintained 37
± 0.5◦C with 87% relative humidity (without CO2). The peak
and average SARs could be computed by either frequency or time
domain method (17), and the estimated values were extremely
low: they were 4.1× 10−4 and 2.5× 10−4 W/kg, respectively.

X-Ray Radiation
Irradiations were performed with an X-ray apparatus (Rad
Source Technologies Inc., USA) operating at a dose rate of
1.103 Gy/min.

Group Design
Several 100mm petri dishes, each containing ∼4 × 105 cells/ml
(total 10ml medium), were used for the following exposure
conditions: (a) kept in GTEM without RF (Sham, SH); (b) 900
MHz RF, 120 µW/cm2 power intensity for 4 h/d for 5 d (RF);
(c) acute 6Gy X-ray radiation (XR); (d) kept in GTEM without
RF for 4 h/d for 5 d after siRNA transfection (si + SH); (e) 900
MHz RF for 4 h/d for 5 d after siRNA transfection (si + RF); (f)
acute 6Gy X-ray radiation after siRNA transfection (si + XR).
Cells in each group were collected at 30min, 4 h, and 24 h post
treatment for subsequent experiments. The entire investigation
was repeated 3 times.
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Measurement of Reactive Oxygen Species
ROS level was measured with reactive oxygen detection kit
(Beyotime, Shanghai, China). After different treatments, the
cells were gently washed twice with neutral phosphate buffer
after digestion and centrifugation. Serum-free IMDM medium
(Hyclone, USA) was used to prepare DCFH-DA solution with
a final concentration of 10µM. One mL of DCFH-DA solution
was added into the centrifuge tubes of each group and thoroughly
mixed. Centrifuge tube was incubated at 37◦C for 20min, mixed
upside down every 3min to promote maximum contact between
the cells and the probe. At the end of incubation, supernatant
was discarded, and the cells were washed with serum-free IMDM
medium for 3 times. Then, the intracellular fluorescence intensity
was measured at excitation wavelength of 488 nm and the
emission wavelength of 525 nm.

siRNA Transfection
Transfection with siRNA was used to inhibit JNK2 expression,
in a separate series of experiments, prior to sham, RF and
X-rays exposure, cells grown to 60–70% confluence were
transfected with 100 nM siRNA (ribo FECTTM CP, Guangzhou,
China) for 48 h, the target sequence used for JNK siRNA
were GGCATCAAGCATCTGCATT. Subsequently, siRNA was
washed out three times followed by the different exposure
conditions. Transfection was performed for 48 h, and then the
cells were collected. Quantitative real-time PCR was used to
verify the transfection efficiency.

Western-Blot Analysis
In this study, HSP60/HSP10/ClpP protein, known UPRmt

markers, were chosen as the indicators to verify whether
UPRmt occurred (18–20). The expression levels of the heat
shock protein HSP60/HSP10 and mitochondrial protease ClpP
were detected with Western-Blot Analysis. Protein extracts
were prepared by lysing the cells in lysis buffer containing
50mM Tris (pH 7.4), 150mM sodium chloride, 1%Triton X-
100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate,
and 1mM phenyl-methyl-sulfonyl fluoride (all obtained from
Beyotime, Shanghai, China). The cell lysates were centrifuged
at 14,000 × g for 5min at 4◦C and the supernatant containing
solubilized proteins was collected. The protein concentration
in all samples was determined using the BCA protein assay
kit (Beyotime, Shanghai, China). From each sample, equal
amount of protein (40 µg per lane) was loaded, separated
by 10% sodium dodecyl sulfate polyacrylamide gel (SDS–
PAGE) and then transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore Corporation, Billerica, MA,
USA). The membranes were blocked for 2 h in 5% fat-free
dry milk (Yili Industrial, Inner Mongolia, China) containing
Tris Buffered Saline with Tween (TBST). The membranes were
then incubated with primary antibodies (rabbit monoclonal
anti-HSP10 antibody, rabbit monoclonal anti-HSP60 antibody,
rabbit monoclonal anti-ClpP antibody, and rabbit monoclonal
anti-GADPH, Abcam, Cambridge, USA) overnight at 4◦C.
They were washed three times in TBST and incubated further
with horseradish peroxidase-conjugated antibodies (Beyotime,
Shanghai, China) for 1.5 h at room temperature. This was

followed by washing the membranes three times with TBST. The
immunoreactive proteins on the membranes were detected using
enhanced chemiluminescence reagents (Millipore Corporation)
and G-BOX Chemi XRQ (Syngene, UK). The blots were
quantified and normalized with the level of GADPH to
correct the differences in loading of the proteins in different
treatment cells.

Statistical Analyses
The results from three independent experiments were pooled
and analyzed using GraphPad Prism 8.0 (GraphPad Software,
San Diego, CA, USA). The results were subjected to One-
way analysis of variance (ANOVA) to test differences between
groups. A P < 0.05 was considered as significance difference
between groups.

RESULTS

Reactive Oxygen Species
The expression levels of ROS in different groups were shown
in Figure 1. The level of ROS in the RF group and XR group
was significantly increased at 30min and 4 h post-exposure (P <

0.05). The ROS level decreased to nearly those in SH cells 24 h
post-RF and XR exposure. Compared with the cells exposed to
RF, those exposed to XR showed significant increase in ROS at
30min, 4 h (P < 0.05). These results indicated that both RF and
X-ray could induce the production of ROS in BMSCs for a certain
period of time. The increase of ROS induced by X-ray was much
higher than that induced by RF.

siRNA Transfection Efficiency
After siRNA transfection for 48 h, the expression level of
JNK2 mRNA was shown in Figure 2. The expression level of
JNK2 mRNA decreased significantly compared to sham group
(P < 0.05). The knockdown efficiency of siRNA transfection
is 50%.

HSP10, HSP60, and ClpP Proteins (Western
Blot Analysis)
The expression levels of HSP10, HSP60, ClpP proteins in
different groups at 30min, 4 h, and 24 h were shown in
Figure 3. Compared to the cells in SH group, the expression
levels of HSP10, HSP60, ClpP proteins in the RF group
increased significantly at 30min and 4 h (P < 0.05), then
decreased gradually and returned to nearly those in SH cells
at 24 h. These results indicate that low-dose Radio-frequency
could induce UPRmt in BMSCs. After the interference of the
upstream molecular JNK2 of UPRmt with siRNA, the expression
levels of HSP10, HSP60, ClpP proteins in si + RF group
were significantly decreased compared to the RF group (P <

0.05), indicated that RF activates UPRmt through the JNK2
signaling pathway.

DISCUSSION

Mitochondria are organelles that play important functions in
cells and participate in a variety of physiological functions and
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FIGURE 1 | ROS levels in BMSCs at 30min, 4 h, and 24 h post exposure. SH, Sham; RF, RF-exposed; XR, X-rays irradiated. RF and XR vs. SH: *P < 0.05; XR vs. RF:
#P < 0.05.

biochemical reactions, including ATP production, iron-sulfur
cluster biosynthesis, nucleotide and amino acid metabolism,
and cell apoptosis (21–24). In order to maintain normal
cellular physiological activities and functions, mitochondria
have a complete set of molecular chaperone systems and
quality control proteases, which promote the correct folding of
proteins and degradation of misfolded/unfolded proteins (25,
26). Upon environmental stress, the accumulation of unfolded
protein in the mitochondria could reach a certain threshold or
severely damaged mitochondria appear in the cell, hence UPRmt

can enhance the overall function of cellular mitochondria by
upregulating protective molecular chaperones and proteases that
promote protein folding or clearance of defective proteins within
stressedmitochondria, restore andmaintainmitochondria steady
state, and ultimately prevent and/or reduce the damage of
environmental factors to the cells.

Non-ionizing radiofrequency fields (RF, 300MHz to 300GHz)
are ubiquitous in environment (27). 900 MHz RF is one of the
frequencies commonly used in mobile communication. High
doses or long duration of radiofrequency radiation will exert
harmful health effects on living organisms. The power density
of 120 µW/cm2 used in this study is below the exposure limit
stipulated by the International Commission on Non-Ionizing
Radiation Protection (ICNIRP), which is generally considered as
low dose radiation. The biological effects and health impacts of
long-term exposure to low-dose RF are a matter of widespread
concern, and also a scientific issue that needs to be studied (28).
In this study, we found that exposure to RF in our experimental
condition did not cause permanent and severe mitochondrial

FIGURE 2 | The expression level of JNK2 mRNA after siRNA transfection for

48 h. siRNA vs. Sham: *P < 0.05.

dysfunctions. Our findings may shed light on dark areas of health
effects of human exposure to radiofrequency radiation.

To the best of our knowledge, there have been very
few peer-reviewed scientific publications in which ROS and
mitochondrial UPR were examined in cells exposed to RF.
Studies have shown that RF radiation can induce oxidative
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FIGURE 3 | Protein levels of HSP10, HSP60, ClpP in BMSCs after exposure. (A) Western blot analysis of HSP10, HSP60, ClpP in BMSCs at 30min post exposure.

(B) Relative expression on level of HSP10, HSP60, ClpP protein at 30min post exposure. (C) Western blot analysis of HSP10, HSP60, ClpP in BMSCs at 4 h post

exposure. (D) Relative expression on level of HSP10, HSP60, ClpP protein at 4 h post exposure. (E) Western blot analysis of HSP10, HSP60, ClpP in BMSCs at 24 h

post exposure. (F) Relative expression on level of HSP10, HSP60, ClpP protein at 24 h post exposure. SH, Sham; RF, RF-exposed; XR, X-rays irradiated; si + SH,

siRNA + Sham; si + RF, siRNA + RF-exposed; si + XR, siRNA + X-rays irradiated. RF and XR vs. SH: *P < 0.05; si + RF vs. RF: #P < 0.05.

damage of mtDNA in cerebral cortical neurons of SD rats (29).
It is reported that mitochondrial UPR could inhibit oxidative
phosphorylation and ROS production (30). Increased protein
level of chaperones HSP10, HSP60, and protease ClpP are

considered to be the hallmark of UPRmt activation (2, 3). As
a mitochondrial chaperone protein encoded by the nuclear
genome, HSP60 mainly promotes the folding of relatively small
soluble monomeric proteins (31, 32), and plays an important role
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in protein transport and folding in the mitochondria. HSP10 is
widely present in a variety of mammalian tissues and can bind
to unfolded proteins, effectively reducing energy barriers that
occur during protein folding (33, 34). Mitochondrial ClpP is a
serine protease located in the mitochondrial matrix. ClpP forms
a proteolytic complex with AAA+ partner ClpX called ATP-
dependent unfolding enzyme (ClpXP), which degradesmisfolded
or denatured proteins to participate in the quality control of
mitochondrial proteins and maintain normal metabolic function
(35). In this study, the expression levels of HSP10, HSP60, and
ClpP in BMSCs were all upregulated within a certain period of
time upon radio-frequency and X-rays exposure, indicating that
both RF and X-rays could induce UPRmt in BMSCs, however, the
level of unfolded protein response induced by ionizing X-rays
radiation was much greater than non-ionizing radio frequency.
This phenomenon possibly be explained by the more severe
mitochondria damage and more misfolded protein aggregation
caused by X-rays radiation.

Many literatures have reported that ionizing radiation and
non-ionizing radiation could activate the JNK signaling pathway
(36–39). The activation of JNK2 is closely related to the induction
of UPR. Activation of JNK2 could trigger c-Jun binding to AP-1
elements to up-regulate CHOP and C/EBPβ transcription. Dimer
of CHOP and C/EBPβ transcription factors binds to specific
UPRmt promoter element and activates the target genes (40, 41).
In this study, after interfering with siRNA-JNK2, the RF/XR
exposures could not induce the increase of HSP10/HSP60/ClpP
protein level, suggesting that JNK2 is involved in 900 MHz RF-
induced UPRmt. Our results are in agreement with reported
investigations (36–41).

To further investigate an association between RF exposure
and activation of UPRmt, the level of ROS after RF and X-
rays exposure were measured. The rationale for the study is
that RF-induced ROS possibly causes mitochondrial damage,
and hence the accumulation of misfolded/unfolded proteins
which in turn activate UPRmt in BMSCs (2). One of the main
sources of cellular ROS is the mitochondrial respiratory chain,
when affected by external stimuli, ETC produces excessive ROS,
disturbing the mitochondrial environment homeostasis (42, 43).
When moderate ROS exists, it will play a beneficial physiological
role, but when excessive ROS content increases, it will cause
severe cell stress damage and even lead to cell death (44). For
decades, people have been focused on the RF effect on the health
of human body, many studies have tried to assess whether or not
the RF can affect the production of ROS in cells. However, due to

the differences in cell types, RF parameters and exposure time,
etc., the effects of RF exposure on ROS levels are inconsistent
(45). Some studies have shown that radio-frequency radiation
could induce the increase of intracellular ROS content (46, 47).
In this study, the increased ROS level are in line with the
increased level of UPRmt-associated mitochondrial chaperone
and protease. To date, very little is known about the mechanism
underlying RF-induced UPRmt. Some investigations found that
ROS increase is closely related to the induction of UPRmt, and
UPRmt is in turn an indispensable and complex response that
allows cells to buffer ROS (48, 49), suggesting that RF exposure
could induce the occurrence of UPRmt via ROS production (50).
The results of this research is consistent with the above reports.

Mitochondrial homeostasis determined the fate of cells. The
functioning of the mitochondria are in turn tightly aligned
to energy transduction and to the control of calcium and
redox stress homeostasis (51). The observations obtained in
our current study in BMSCs indicated that non-ionizing
900 MHz RF exposure at 120 µW/cm2 power density was
capable of inducing UPRmt in response to mitochondria
stress, increasing the expression of HSP10/HSP60/ClpP proteins,
restoring mitochondrial homeostasis. Although RF exposure has
already been demonstrated to activate UPRmt in this study, the
detailed underlying mechanism remains to be further studied.
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