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Since the outbreak of coronavirus disease-2019 (COVID-19), the whole world has taken
interest in the mechanisms of its spread and development. Mathematical models have
been valuable instruments for the study of the spread and control of infectious diseases.
For that purpose, we propose a two-way approach in modeling COVID-19 spread: a
susceptible, exposed, infected, recovered, deceased (SEIRD) model based on differential
equations and a long short-termmemory (LSTM) deep learning model. The SEIRDmodel
is a compartmental epidemiological model with included components: susceptible,
exposed, infected, recovered, deceased. In the case of the SEIRD model, official
statistical data available online for countries of Belgium, Netherlands, and Luxembourg
(Benelux) in the period of March 15 2020 to March 15 2021 were used. Based on them,
we have calculated key parameters and forward them to the epidemiological model,
which will predict the number of infected, deceased, and recovered people. Results
show that the SEIRD model is able to accurately predict several peaks for all the three
countries of interest, with very small root mean square error (RMSE), except for the mild
cases (maximum RMSE was 240.79 ± 90.556), which can be explained by the fact that
no official data were available for mild cases, but this number was derived from other
statistics. On the other hand, LSTM represents a special kind of recurrent neural network
structure that can comparatively learn long-term temporal dependencies. Results show
that LSTM is capable of predicting several peaks based on the position of previous peaks
with low values of RMSE. Higher values of RMSE are observed in the number of infected
cases in Belgium (RMSE was 535.93) and Netherlands (RMSE was 434.28), and are
expected because of thousands of people getting infected per day in those countries.
In future studies, we will extend the models to include mobility information, variants of
concern, as well as a medical intervention, etc. A prognostic model could help us predict
epidemic peaks. In that way, we could react in a timely manner by introducing new or
tightening existing measures before the health system is overloaded.
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INTRODUCTION

Wuhan was registered on December 19, 2019 as the epicenter of
the emergence of a new virus from the group of coronaviruses
that showed the characteristics of inter-human transmission,
causing a respiratory disease presenting with fever, dry cough,
and, often, severe pneumonia with acute respiratory distress
syndrome (ARDS) (1). The World Health Organization (WHO)
announced the pandemic disease Coronavirus Disease-2019 (2)
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and brought measures in order to interrupt
the spread of SARS-CoV-2 worldwide. Emerging and recurring
diseases have contributed to a renewed interest in infectious
diseases. Mathematical models have been valuable instruments
for the study of the spread and control of infectious diseases.
Understanding the dynamics of transmission of infectious
diseases in populations, regions, and countries will contribute to
better approaches to reducing the spread of these diseases (3–6).
Indeed, the number of infected people grows exponentially, and
many countries have decided to impose a complete lockdown of
affected cities in order to reduce the number of contacts and stop
the spread of the virus (7).

To this end, several approaches have been suggested to predict
the spread of COVID-19 in population. Compared with standard
statistical methods (8, 9), mathematicalmodels based on dynamic
equations (10–12) attract comparatively less consideration,
although they may provide more insight into the dynamics
of epidemics (11). Modeling of infectious diseases is most
conveniently performed using deterministic compartmental
models. Adjusting the parameters of the equations allows
better modeling of environmental characteristics, such as social
restrictions (7). These models are based on flow patterns between
compartments such as susceptible (S), exposed (E), infected (I),
and recovered (R); therefore, their names are often referred to
as SEIR, SIT, SIRS, etc. Among all these models, the classical
susceptible, expose, infectious, recovered (SEIR) model is the
most commonly used concept for characterizing the epidemic
of COVID-19 in both China and other countries (11). On the
basis of the SEIR model, the success of different interventions
after the epidemic can be assessed (13–16), which seems to be a
daunting challenge for general statistical techniques. One widely
used model is the SIR (susceptible, infected, recovered) model
for human-to-human transmission, which defines the migration
of persons through three mutually incompatible periods of
infection: prone, contaminated, and recovered (6). However,
Yi-Cheng et al. assert that the traditional SIR model neglects
time-varying properties, such as transmission and recovery rate
(17). They discuss that the time-independent SIR model is too
simple to precisely and effectively predict the trend of the disease.
Therefore, they suggested a time-dependent SIR model, where
both rates are functions of time t. Also, several models have
been developed for the COVID-19 pandemic. Lin et al. have
developed the SEIR (susceptible, released, infectious, deceased)
model taking into account some parameter estimates from the
1918 influenza pandemic (18). Anastassopoulou et al. suggested
a discrete SIR model with deceased individuals (19), Casella
developed a control-oriented SIR model that highlights the

consequences of delays and measures the results of various
containment policies (20), and Wu et al. used propagation
dynamics to measure the clinical magnitude of COVID-19
(21). Stochastic transmission models were also considered (22,
23). Giordano et al. suggest a new epidemiological mean-field
approach for the COVID-19 outbreak in Italy, expanding the
classic SIR model, close to that developed by Gumel et al.
for SARS (24). The mentioned expanded SIR model, named
SIDARTHE, considers eight stages of infection: susceptible,
infected, diagnosed, ailing, recognized, threatened, healed, and
deceased (6). The SIDARTHE model recognizes a difference
among infected individuals depending on whether they have
been diagnosed, and on the severity of their symptoms. The
difference between diagnosed and non-diagnosed individuals is
important, because the ones who have been diagnosed as positive
are isolated, and it is less probable they will spread the infection.
This delineation also helps to explain the incorrect interpretation
of the epidemic spread and the case fatality rate (6).

In addition to the aforementioned models and variations,
there are attempts in the literature to build agent-based models
(ABMs) with various purposes and goals. Indeed, ABMs have
long been used to simulate various illnesses (25, 26). As a result,
ABMs have grown in popularity for modeling the spread of
COVID-19 and analyzing alternative approaches to the problem
(27–29). Notably, several studies have investigated the effects
of contact tracing on the transmission of COVID-19 (30–33).
Two most distinct and complete software in this are COVID-
ABS and Covasim. Silva et al. (34) developed a methodology
for COVID-ABS, a novel SEIR (susceptible-exposed-infected-
recovered) ABM that seeks to mimic pandemic dynamics
by simulating individuals, businesses, and governments using
a society of agents (34). Seven different scenarios of social
distancing interventions were investigated, each with a different
epidemiological and economic impact: (1) do nothing, (2)
lockdown, (3) conditional lockdown, (4) vertical isolation, (5)
partial isolation, (6) use of facemasks, and (7) use of facemasks in
conjunction with 50% adhesion to social isolation. Kerr et al. (32)
developed a methodology of Covasim (COVID-19 agent-based
simulator) (35). Covasim, among others, supports a broad range
of interventions, namely, non-pharmaceutical interventions like
physical separation and protective equipment, pharmaceutical
interventions like vaccination, and testing interventions like
symptomatic and asymptomatic testing, isolation, contact
tracing, and quarantine. Delays, loss-to-follow-up, micro-
targeting, and other variables can all be incorporated into these
treatments. A use case was presented for Seattle/King County,
Washington, United States from January 27 to November 14,
2020, with projections until December 31, including additional
restrictions imposed on November 16. Its complexity proved
to be adequate to examine epidemic dynamics and inform
policy decisions.

Since epidemiological measures do not always give the
expected and desired results and a pandemic is constantly
changing its course, it is obvious that a new approach is necessary
to improve the existing measures to fight the epidemic. Deep
learning methods, such as recurrent neural networks (RNNs),
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are well-suited for modeling temporal sequences (36). However,
the main limitation of RNNs is reflected in learning of long-
term dependencies in large sequences that can involve hundreds
or thousands of steps. These limitations are addressed by long
short-termmemory (LSTM) networks (37). There are also several
studies that investigate LSTM as an approach to forecasting
future COVID-19 cases (38–42). LSTM was used for COVID-
19 forecasting in Canada and achieved an accuracy of 93.4%
for short-term and 92.67% for long-term predictions (39). For
COVID-19 forecasting in China, LSTM was also used, and
in comparison with the dynamic SEIR model, LSTM achieved
promising results (43). Results showed LSTM achieved good
forecasting performance because of its capacity to handle time-
dependent datasets. Ismail et al. modeled data from Denmark,
Belgium, Germany, France, the United Kingdom, Finland,
Switzerland, and Turkey using LSTM among several methods.
They stated that LSTM is the most accurate model in comparison
with the two other investigated algorithms, and they provided
LSTM in order to make predictions in a 14-day perspective
(44). This model is able to make realistic estimates based on the
current situation and predict accurately the number of confirmed
and recovered cases. Chandra et al. compared RNNs, LSTM
networks, bidirectional LSTM networks, encoder-decoder LSTM
networks, and convolutional neural networks (CNNs) with focus
on univariate time series for multi-step-ahead prediction. The
results showed that the encoder-decoder LSTM network, in
addition to bidirectional LSTM, provides the best performances
for given time series problems (37).

By predicting and preventing epidemiological peaks, we could
achieve a “flattened curve” of the spread of the disease in
order to prevent such a rapid spread of disease that could lead
to overloading of national health systems and their collapse
(45). Owing to the scarcity of the official data available and
many unknown parameters in COVID-19 epidemic spread,
development, and control, most early published models were
prone to over-fitting, or parameters were taken from literature/on
the basis of restricted and less precise evidence. This results in
ambiguous results, especially because many articles are published
ahead of peer review. Therefore, the main objectives of this study
are to:

• carefully collect, harmonize, and unify epidemiological data
from reliable sources, state, regional, and local levels, and
incorporate them into the proposed models,

• investigate and compare two approaches in modeling the
COVID-19 epidemiology, the SEIRD model and the deep
learning model based on LSTM networks,

• train and test the investigated models on the cases in
Benelux countries.

MATERIALS AND METHODS

We propose two main approaches, a standard compartmental
epidemiological SEIRD model and a deep learning model based
on LSTM networks, to describe the spread of COVID-19.
From the aspects of disease progression notations, it should
be emphasized that notation “severe cases” is equivalent to

“hospitalized cases,” and “critical cases” is equivalent to “ICU
cases” in our article. However, for the training of the LSTM
model, we have used the original data with the terms infected,
hospitalized, and ICU; and for the SEIRD model, taking into
account its definition, we have used subsequently derived terms
mild, severe, and critical. The term deceased is a common term
for both models.

The processing hardware included 64 GB of RAM, an
NVIDIA Quadro RTX 6000 GPU, and an Intel(R) Xeon(R) Gold,
6240R, CPU running at 2.40 GHz. Tensorflow and Keras were
used to implement the network in the Python 3.7.4, using the
Spyder 3.3.6 environment.

Compartmental SEIRD Epidemiological
Model
The basic structure of the SEIRD model is inspired by a number
of studies on the natural clinical progression of COVID-19
infection (46). The choice for compartments to be used in the
model depends on the features of the individual disease being
modeled and the intent of the model. Passively immune class
M and latent period class E are often ignored, because they
are not essential to susceptible-infective experiences (3). The
SEIRD model should more accurately reflect the progression
of the epidemic than the simpler SIRD model that does not
include an incubation period. The model used in this study
is given in Figure 1. Although the standard SEIRD model has
been used, to our knowledge, no previous models have included
the division of infected class into three subclasses, mild, severe,
and critical. Proposed SEIRD models, therefore, use a standard
definition of compartments with the extension of modeling three
infection stages. In addition, we have extended our model with a
transmission rate mitigation factor to simulate the introduction
of a variety of social measures (lockdown, etc.), mainly referring
to the methodology introduced by Bastos et al. (47) and Morato
et al. (48).

This yields to differential equations for the definition of
disease spread:

Ṡ = −(1− ψ) · (β1I1 + β2I2 + β3I3)S (1)

where S represents the susceptible individuals who are infected.
We have adapted the classical SEIRD model to include the
effect of isolation by including ψ(t), which represents a
transmission rate mitigation factor. This factor expresses the
observed social isolation ratio within the susceptible population.
This means that ψ = 0 is the case where there is no
control over viral load (no social measures introduced), while
ψ = 1 represents a complete lockdown, without any social
interactions (47).

Disease spread in the exposed (E) community is further
described as

Ė = (1− ψ) · (β1I1 + β2I2 + β3I3) S− aE (2)

The rate of development from the exposed stage to the infected
stage I, where the patient becomes symptomatic and contagious,
occurs at a pace a. Medical details of the various phases of
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FIGURE 1 | Compartmental epidemiological model, based on the classic susceptible, exposed, infected (1- mild, 2-severe, 3-critical), recovered, deceased
(SEIRD) model.

infection are given below. Infected individuals begin with mild
infection (I1),

İ1 = aE− (γ1+p1)I1 (3)

from which they either recover, at the rate of γ1 or advance to
severe infection (I2) at the rate of p1:

İ2 = p1I1 − (γ2+p2)I2 (4)

Severe infection subjects recover at rate γ2 or progresses to
critical stage (I3) at p2 rate:

İ3 = p2I2 − (γ3 + µ)I3 (5)

Recovered persons are defined by R class/compartment and are
supposed to be safe from re-infection for life:

Ṙ = γ1I1 + γ2I2 + γ3I3 (6)

Individuals with critical infection recover at a rate of γ3 and die
at a rate of µ.

Ḋ = µI3 (7)

Individuals can transmit the infection at any point, although
at different levels. The transmission rate at stage i is defined
by β1. This means that the used notation is: S: susceptible
individuals; E: exposed individuals, infected but not yet infectious
or symptomatic; Ii: infected individuals in severity class i,
where severity increases with the increase of i, and we assume
individuals must pass through all previous classes; I1: mild
infection; I2: severe infection; I3: critical infection; R: individuals
who have recovered from disease and are now immune; D:
deceased individuals. Total population size is assumed to be
constant in the form:

N = S+ E+ I1 + I2 + I3 + R+ D (8)

In order to describe the rates of disease progression
from one category to another (susceptible to infected,
infected to recovered or deceased, etc.), we use the
following notation:

• βi rate at which infected individuals in class Ii contact
susceptible and infect them,

• a rate of progression from the exposed to infected class,
• γi rate at which infected individuals in class Ii recover from

disease and become immune,
• pi rate at which infected individuals in class Ii progress to class

Ii+1 and
• µ death rate for individuals in the critical condition.

The effects of lockdowns are, therefore, introduced, but due to the
complexity of modeling that includes heterogeneity of policies in
lockdown and mobility contacts, we have decided to decompose
the modeling into shorter periods with respect to one consistent
lockdown measure, and perform independent modeling on each
of the sub-periods. In this study, we have adopted the value of ψ
based on the social measures of each of the investigated countries.

For Belgium (49), on March 12t, 2020, the Belgian federal
government announcedmultiple far-reachingmeasures to flatten
the curve of COVID-19 cases. The first measures included
obligatory weekend closures of restaurants, bars, and nightclubs,
as well as any non-essential stores until the end of the month.
Schools at all levels were forced to close as well. Belgiumwent into
its first lockdown on March 17. Non-essential shops had to close
completely, working from home became the normal method
of operation, and any non-essential movement or travel was
forbidden. On March 20, national borders were mostly blocked,
and most border traffic was halted. Despite the decision of the
government to implement an exit plan, i.e., gradually loosening
the restrictive restrictions, the measures remained in effect until
the beginning of May. Expectedly, infection rates rose again, and
by the end of July, the proclamation of new measures became
urgent. From October 16 onward, restrictions were introduced
again. A second full-fledged lockdown was in place until the
end of November. Based on this, we have defined a table of

Frontiers in Public Health | www.frontiersin.org 4 October 2021 | Volume 9 | Article 727274

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
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TABLE 1 | Adopted values for transmission rate mitigation factor based on social
measures (Belgium).

Time period ψ (t)

Before March 17th 2020 0

March 17th–May 31st 2020 0.9

June 1st−31st July2020 0.7

July 31st–October 16th 2020 0.4

October 16th–December 31st 2020 0.8

December 31st 2020–March 15th 2021 0.7

time-dependent factorψ(t) (Table 1). We have also incorporated
a delay effect on the social distancing measures. The values are
adopted based on the definition of finitely parametrized social
distancing measures defined by Morato et al. (48). We stress
that values of transmission rate mitigation factor should be taken
only as guidelines that do not affect the conceptual essence of
this study, since the proposed methodology is general and can
be applied with respect to the epidemic reality of any location
and population.

For Netherlands, after the introduction of lockdown at the end
of March, there was a visible decrease in the number of infected
people after this period. Strict measures were extended until
May 3, and public events were banned until August. Measures
were loosened at the beginning of August, resulting in another
peak (although smaller than the first one, that was a result of
no measures). This peak was also correctly predicted using the
SEIRD model. It should be emphasized that the model is able
to predict both increase and decrease in the number of cases,
however, we outline here only the first two predicted peaks,
as peaks are of greatest concern. Results on RMSE are given
in Table 4, taking into account modeling for the whole period
March 15, 2020 to March 15, 2021.

In Luxembourg, the measures of lockdown were introduced
similarly as in Belgium, and the first peak in the epidemic was
a result of previous viral load. Lockdown easing and protective
measures were gradually loosened with the opening of cinemas
and intra-European borders form June 15. This resulted in
another peak, which was correctly predicted using the SEIRD
model. It should be emphasized that the model is able to predict
both increase and decrease in the number of cases; however, we
outline here only the first two predicted peaks, as peaks are of
greatest concern. RMSE is given in Table 4, taking into account
modeling for the whole periodMarch 15, 2020 toMarch 15, 2021.

Time variables in the proposed model are adopted from
the literature:

• Average incubation period (in days),
• Average duration of mild infections (in days),
• Average duration of hospitalization (time to recovery) for

individuals with severe infection (in days),
• Average duration of ICU admission (until death or recovery)

(in days).

It should be mentioned that the average duration of
hospitalization and those of infective periods do not include the
incubation period, meaning that the total number of days from

exposure to recovery should be the sum of the incubation period
and average duration of hospitalization. The aforementioned
values of COVID-19 parameters adopted from the literature are
given in Table 2.

When it comes to the evaluation of model coefficients that
are compatible with current clinical evidence, we primarily
calculated certain parameters from real data available for the
countries of Benelux [Belgium (67), the Netherlands (68), and
Luxembourg (69)]. We focus on these countries because of the
fact that the data were available in a tabular format with division
into infection categories (ICU patients, hospitalized patients
etc.). Not many countries provide data in such a format to the
public. Available data for these countries that were important for
calculating the parameters are: the number of infected patients,
the number of hospitalized patients, the number of patients on
ventilators, and the number of deaths. From these data, it is
possible to calculate fraction of infections that eventually result
in death, given as

case fatality rate =
Total deceased cases

Total infected cases
(9)

In order to account for the delay with respect to the duration
from the onset of infection to death, we have used adapted
CFR (case fatality rate) based on definition from Shim (70).
The denominator of the crude CFR formula includes infected
persons whose fates are unknown, and those who have not yet
died from the disease but will do so in the future. As a result of
the time lag between infection and death, the CFR is skewed, a
phenomenon known as right censoring (71). Statistical methods
have been used to estimate the delay-adjusted CFR (70). The
factor of adjustment, ut , has been defined as

ut =

∑t
i=0

∑

∞

j=0 ci − jf j
∑t

i=0 ci
(10)

where ut represents the underestimation of the known outcomes
and is used to scale the value of the cumulative number of cases
in the denominator in the calculation of the CFR, ct is the daily
case incidence at time t, and ft is the proportion of cases with a
delay of t from onset to death.

Also, it is possible to calculate the average fraction of
infections that are mild, severe, and critical. People who are
infected but not hospitalized have a mild infection defined as

mild infections = 1−
Total hospitalized cases

Total infected cases
(11)

where total hospitalized cases and total infected cases were
taken from official reported data. Similar to adapting the CFR,
delay was incorporated in the formulae given in equations 11–
13. Therefore, in equations 11–13, we also include the time
of symptom onset to diagnosis, time of symptom onset to
hospitalization, as well as hospitalization stay. Overall, the delay
between symptom onset and hospitalization can be described by
a truncated Weibull distribution with a shape parameter 0.845
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Šušteršič et al. Epidemiological Predictive Modeling of COVID-19

TABLE 2 | Adopted parameters for COVID-19 clinical progression based on literature sources.

Parameter name Adopted literature value References

Average incubation period, days 5–6 days; 5 days (1, 2, 50–56)

Average duration of mild infections, days 7–12 days; 5 days (50, 57)

Average fraction of (symptomatic) infections that are mild 80 (50, 58, 59)

Average fraction of (symptomatic) infections that are severea 15 (50, 58)

Average fraction of (symptomatic) infections that are criticala 5 (50, 58)

Case fatality rate (fraction of infections that eventually result in death)a 2.27% (1, 60, 61)

Average duration of hospitalization (time to recovery) for individuals with severe infection, days 5–14; 10 days (50, 59, 62)

Average duration of ICU admission (until death or recovery), days 14 days; 12–17 days (50, 59, 62)

Reproduction numberb 2–2.5; 2 (50, 63)

Infective period mild infection (in days) 5 days (50, 57, 61, 64)

Infective period severe infection (in days) 7–12 days (50, 57, 65, 66)

Infective period critical infection (in days) 14 days (50, 57, 59, 61)

Transmission rate of mild infections 0.4 per day As a default we assume that the
dominant source of transmission
comesfrom individuals with mild
infections (e.g., β1 > β2 > β3 ),
who are likely to still be in the
community, as opposed to
isolated in the hospital.

Transmission rate of severe infections 0.2 per day

Transmission rate of critical infections 0.14 per day

aParameters marked with this footnote are calculated based on available official data, and we did not use the literature data stated in Table 1. Values used are given in these table.
bThe threshold for many epidemiological models is the specific reproduction number,R0, which is defined as the average number of secondary infections created when an infectious
organism is introduced into a host population where everyone is susceptible. In many deterministic epidemiological models, infection will begin in a completely susceptible population
only if an R0 > 1 is present.

TABLE 3 | Estimated parameters for COVID-19 clinical progression based on
real data.

Parameter name Estimated value

Belgium (%) Netherlands Luxembourg

Average fraction of
(symptomatic) infections
that are mild

95.96 96.89 98.65

Average fraction of
(symptomatic) infections
that are severe

4.04 3.11 1.35

Average fraction of
(symptomatic) infections
that are critical

0.86 1.05 0.2

and a scale parameter 5.506. The methodology was based on (72).
Severe infection refers to individuals who are hospitalized but not
on ventilators, and critical infection refers to those on ventilators,
both of which are defined as

severe infections

=
Total hospitalized cases− total cases on ventilators

Total infected cases
(12)

critical infections =
Total cases on ventilators

Total infected cases
(13)

Based on the described methodology, parameters calculated for
Belgium, Netherlands, and Luxembourg are given in Table 3.

TABLE 4 | Root mean square error between simulated and official statistical data
for Belgium, Netherlands and Luxembourg using SEIRD model.

RMSE Belgium Netherlands Luxembourg

mean ± std mean ± std mean ± std

Mild infected 240.79 ± 90.556 219.52 ± 20.49 198.54 ± 78.53

Severe infected
(hospitalized)

7.47 ± 2.64 2.49 ± 0.1 2.24 ± 0.83

Critical infected (ICU) 0.58 ± 0.49 0.05 ± 0.002 0.15 ± 0.1

deceased 49.09 ± 40.82 21.7 ± 6.4 4.98 ± 2.11

LSTM Epidemiological Model
Since the course of the epidemic is rapidly changing and the
mathematical SEIRD models have some limitations due to the
nature of partial differential equations, we implemented an
algorithm that is suitable for data fitting and forecasting based
on time-series data. For the problems of this category, adequate
architecture will be based on recurrent neural networks (RNNs).
The specificity of RNNs is reflected in the context layer, whose
purpose is to act as memory in order to merge the current state
and inputs for the propagation of information into latter states.
A method for training RNNs is backpropagation through time
(BPTT), which is a kind of extension of the backpropagation
algorithm. BPTT is characterized by a gradient descent where
the error is backpropagated for a deeper network architecture
that contains time-defined states. For this reason, there is the
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problem of learning long-term dependencies, which will lead
to vanishing and exploding gradients. In order to address the
vanishing gradient problem of RNNs, long short-term memory
(LSTM) neural network was developed. LSTM is a special kind
of recurrent neural network structure that can comparatively
learn the proposed long-term dependencies and overcome the
mentioned drawbacks of RNNs. LSTM contains memory cells
and gates that provide better capabilities in remembering the
long-term dependencies. An LSTM cell was introduced by
Hochreiter and Schmidhuber (73). Compared with the RNN
memory cell, the LSTM memory cell has two components to its
state: the hidden state and the internal cell state.

The LSTM cell consists of the gates shown in Figure 2, the
input gate It decides which information can be transferred to
the cell, then forgets gate ft decides which information from
the previously cell should be neglected. The control gate Ctis
controlling controls the update of the cell, and the output gate
Ot controls the flow of output activation information.

As it is shown in Figure 2, LSTM calculates hidden layerHt as

It = σ
(

Wi
× (Xt +Ht−1)+ bi

)

(14)

ft = σ

(

Wf
× (Xt +Ht−1)+ bf

)

(15)

Ot = σ
(

Wo
× (Xt +Ht−1)+ bo

)

(16)

Ct = tanh
(

Wc
× (Xt +Ht−1)+ bC

)

(17)

Ct = σ
(

ft∗Ct−1 + It∗Ct
)

(18)

Ht = tanh (Ct) ∗Ot (19)

The number of the input features is presented as Xt , and Ht is
the number of hidden units. Learning started with the zero initial
values of C0 and H0. Also, during the learning process, some
parameters were adjusted, such as bias given as b and weight
given asW. The internal memory of the unit is given as Ct , and it
should be emphasized that all the gates have the same dimension
as the size of your hidden state (74).

The encoder-decoder LSTM (ED-LSTM) network was
developed as a sequence-to-sequence neural network to
effectively map a fixed-length input to a fixed-length output.
The advantage of these neural networks is that the mentioned
two lengths of inputs and outputs do not have to be the same.
For that reason, this neural network achieved state-of-the-art
results in the field of automatic text translation. The ED-LSTM
network has two implementation phases: the first phase,
encoding, and the second phase, decoding. The purpose of the
first phase is to encode an input sequence into a fixed-length
vector representation and compute a sequence of hidden states,
and the purpose of the second phase is to decode the vector
representation and define a distribution of the output sequence.
The architecture of the ED-LSTM is presented in Figure 3.

RESULTS AND DISCUSSION

In this section, we present the results of the applied SEIRD
model and LSTM encoder-decoder model, and compare them
with the real situation of the COVID-19 outbreak and spread
in Benelux countries. Data were monitored during the 1-year

period, from March 15, 2020 to March 15, 2021. Values for
the numbers of people infected, hospitalized, in ICU as well as
deceased were taken from Infectious Diseases Data Explorations
& Visualizations (68) for Belgium (67) for Netherlands, and (69)
for Luxembourg.

Results for the SEIRD Model
The results for the SERID model showed that the model is
effective at predicting several peaks of the epidemiology. Due
to the fact that transmission rate mitigation factor was included
in the model to simulate the social measures (no isolation to
complete lockdown), the model is able to catch more than one
peak, but also captures the fall in the trend of epidemiological
situation. It should be emphasized that predicted numbers
represent current numbers (daily predictions) of the infected
cases (mild, severe, critical), but the number of deceased cases
is cumulative.

Figure 4 shows the comparison between the official data
and simulated curves for mild cases in the aforementioned
characteristic sub-periods. The match between the trends of the
real epidemiological situation and predicted progress shows that
the model is able to follow the course of epidemiology, whether
there is an increase or decrease in the number of infections.

Figure 5 shows the comparison between the official data
and simulated curves for severe cases in the aforementioned
characteristic sub-periods. The match between the trends of the
real epidemiological situation and predicted progress here is even
better than for the mild cases.

Figure 6 shows the comparison between the official data
and simulated curves for critical cases in the aforementioned
characteristic sub-periods. The difference between the trends and
peak positions of the real epidemiological situation and predicted
values is small, with an almost perfect fit.

Figure 7 shows the comparison between the official data
and simulated curves for deceased cases in the aforementioned
characteristic sub-periods. The difference between the trends and
peak positions of the real epidemiological situation and predicted
deceased values is small, with an almost perfect fit.

As it can be seen, tracking the number of people with severe
infection, critical infection, or deceased people shows a very
good match. The trend and peak value of predicted curves
show a promising match for all the monitored curves, mild,
severe, critical, and deceased. Some differences can be observed
in peak positions for some sub-periods between the simulated
and real cases. This is may be due to the initial conditions set
in simulation, or adopted values of certain parameters from
literature, which can be further optimized. Nevertheless, the
trend is adequate, showing that the methodology can be used to
describe the epidemiology.

The same methodology was performed for all the three
countries (Belgium, Netherlands, and Luxembourg), as well as
investigated groups (mild, severe, critical, and deceased). We
only present the complete figures for Belgium to demonstrate the
methodology, while for Netherlands and Luxembourg, we only
show the match for peaks, as they are of greatest interest.

Figure 8 shows the comparison between the official reported
data and simulated curves. Regarding the comparison of official
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FIGURE 2 | Architecture of one long short-term memory (LSTM) cell.

statistical and simulated values, for the case of Netherlands, the
trend in all four classes, infected critical, infected severe, infected
mild, and deceased are matching, as well as the position of the
peaks. It can be seen that in the cases of infected people with a
severe or critical condition, as well as deceased people, the curves
match perfectly with very small deviations between simulated
and official data.

For the case of Luxembourg, it can be seen that the trend
and fluctuations are matching for number of simulated and real
number of people with mild infections. For classes severe and
critical infections, as well as deceased, the trends and values of
the predicted simulation line match well with the official reports
(Figure 9).

Table 4 shows the root mean square error (RMSE) between
simulated and real values of investigated curves in time for
Belgium, Netherlands, and Luxembourg. The values are given
as mean ± standard deviation, because of the fact that we have
calculated RMSE for each modeled subperiod. We applied the
moving average smoothing technique to the real values in order
to remove the fluctuations between days and calculated RMSE
between the smoothed curve and simulated curve. The results
show very small RMSE for all three countries and classes of
infection. The only larger value of RMSE is for mild infections,
which can lie in the fact that mild cases were derived based on
other data (total cases and hospitalized cases), as there are no
available data on specific mild category.

All this shows that there are many factors involved in the
prediction of the epidemic spread, and that more factors can
be taken into account in order to account for decreasing and
increasing trends, etc. However, if looking at shorter periods
of time and modeling on such subperiods, number of deceased
and infected people (mild, severe, and critical), using official

statistics and simulated numbers shows good match, which
means that the models is showing promising results and can
be further upgraded to take into account different underlying
complex phenomena.

In comparison with the existing literature, Bastos et al.
(47) proposed an adapted susceptible-infected-recovered (SIR)
model, for the purpose of incorporating under-reporting in
Brazil and the response of the population to confinement
measures, widespread use of masks, etc. They discuss that the
most optimal method for epidemiological modeling should be
based on recurrent model tweaking (through identification),
with the uncertainty margins always taken into consideration
(47). Morato et al. (48) also investigated modeling using
the SIRD model, which includes time-varying auto-regressive
immunological parameters in the case of Brazil (48). Their
main contribution is adding analytical regressions, least-squares
optimization, and auto-regressive model fits. Köhler et al.
(75) studied adaptive techniques for resilient and optimum
management of the COVID-19 pandemic using social distancing
measures and applied them in the case of Germany (75).
Using the SIDARTHE model, they introduced key features that
distinguish between detected and undetected cases, symptomatic
and asymptomatic individuals, with the additional separate
state for patients with life-threatening symptoms. Similarly,
in the case of Germany, Kantner et al. (76) proposed
adjustments to traditional SEIR models by introducing the
optimal solution computed by minimizing the terminal cost
function. Alleman et al. proposed a discrete model predictive
controller for optimal government response to the COVID-19
outbreak that would not result in overloading the number of
ICU beds in Belgium (77). Their method mostly focused on
calibration of the social interaction parameter, which results
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FIGURE 3 | Proposed encoder-decoder LSTM structure.

in an improved model in comparison with the state-of-the
art models.

Our model introduces a traditional SEIRD model but with
improved methodology, classification of infected class into three
subclasses, mild, severe, and critical. It also takes into account
the transmission rate mitigation factor as a form of modeling
social measures (partial to full lockdown etc.). Time-related
parameters are considered with time delays. RMSE is competitive
with presented state-of the results, with space for additional
improvements. The added value of this study lies in the validation
of the proposed methodology using official data from national
authorities in Benelux countries. Despite the fact that some
aspects of epidemics are taken into account, there are certain
simplifications of the model. The main limitations of the SEIRD
model may come from different aspects:

• values of parameters estimated based on official statistics are
not correct, and official statistics are scarce or not reported

accurately: it has already been reported in other articles that
official statistics have underreported the real numbers in the
beginning, leading to the fact that initial conditions were
not taken correctly and, therefore, later simulated, and real
numbers were different. A predictive model by Imai et al.
used travel volumes from Wuhan and used the dates when
imported cases first arrived in cities within China to forecast
the size of the epidemic in Wuhan (78). They reported that
substantially more cases were present in Wuhan than were
reported in the official statistics (79). The same conclusion
was met in an article by Korolev (80). He asserts that even
though the fraction of all cases that are reported are not
identified, it can be effective to consider the underreporting.
If it is assumed that all cases are reported and the estimates
of R0 are based only on that, the value of R0 may be biased
downward. It may lead to overestimating the number of
deaths (80).
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FIGURE 4 | Comparison between the real and simulated values for mild cases in Belgium using the proposed SEIRD model.

• the complexity of the COVID-19 epidemic spread and
development is yet to be determined, and the current
SEIRD model does not take into account medical
interventions, number of hospital beds available, etc.
The real case is much more complex, with many
other additional phenomena included (behavioral
responses to the epidemic, re-infection, no immunization,
mutations of the virus, variants of concern, mobility of
people, etc.)

Although the model is showing promising results, and the match
between the curves between the simulated trends and values
calculated based on officially available data are well-matching,
there are some differences in peak values and positions. This
can primarily be due to the fact that modeling the spread of
the disease is complex and includes many phenomena, out of
which only several main are included in the current model.
Therefore, the main limitation of this study is limited number

of phenomena modeled (no reinfection, asymptomatic infection,
medical intervention, etc.). Therefore, we have investigated
models based on deep learning and further report the results for
one such LSTM-based model.

Results for the LSTM Encoder-Decoder
Neural Network
Unlike the mathematical model where the number of exposed,
susceptible, infected, and deceased were simulated, for the
LSTM-ED model, the focus is on univariate time-series data
of daily infected, hospitalized (but not in ICU), patients in
ICU, and deceased cases. We have used Tensorflow and Keras
to implement the neural network in Python 3.7.4. The Keras
function for the LSTM layer has an argument called the initial
state that includes a list of initial state tensors to be transferred
to the first cell call. We set this argument to the default value
that involves zero-filled initial state tensors. We have adopted
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FIGURE 5 | Comparison between the real and simulated values for severe cases in Belgium using the proposed SEIRD model.

grid search method for hyperparameter optimization, and we
iterate a different number of nodes that have been used in the
hidden layer, dropout rate, optimizer, epochs, and batch size. The
best number of neuron units in hidden layers is set to be 60,
with a dropout rate of 0.4. As optimizer, Adam has been selected
and batch size to be 32. The model has been trained during 100
epochs. We used the cross-validation process in order to get a
more realistic view of the error and predictions of the model.
It means that for the first iteration, we trained the LSTM-ED
model with the 50-day dataset from March 15, 2020 to May 3,
2020, then we used the trained model to forecast each variable
of the 50-day test dataset from May 4, 2020 to June 22, 2020.
The mentioned process is repeated in additional four iterations.
The second iteration implies training data from the beginning,
March 15, 2020 to June 22, 2020, and the test data from June
23, 2020 to August 12, 2020. The third iteration implies training
data up to August 12, 2020 and test data from August 13 2020

to October 2, 2020. It is clear that the training data in each
subsequent case will include all the data that were analyzed
in the previous iterations, including both the training and test
sets of the previous iterations. The test dataset in the fourth
iteration contains 62 samples instead of 50, and it means that
data from October 3, 2020 to December 4, 2020 are included.
The last iteration implies the training data from March 15, 2020
to December 4, 2020, and the test data from December 5, 2020
to March 15, 2021. In this case, the training set is larger than
in previous iterations; accordingly, the test set is also larger and
includes 100 days. The example of cross-validation process and
mentioned iterations is presented in Figure 10. In the following
example, the number of hospitalized cases in Belgium was used
as input data.

In order to estimate the error between real and predicted
values, mean squared error (MSE) has been set as a loss
function. Loss function during the training process is shown in
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FIGURE 6 | Comparison between the real and simulated values for critical cases in Belgium using the proposed SEIRD model.

Figure 11. Loss function is presented in each iteration of the
cross-validation process.

As evaluation metrics, root MSE (RMSE) mean absolute error
(MAE) and R2 score are used. The average values of the metrics
of all the five iterations for all the three countries is given in
Table 5. Due to large fluctuations in the real data, we compared
the forecasted curve with the smoothed version of the real
curve. We applied the moving average smoothing technique to
real values of the test dataset in order to remove the variation
between time steps. Actually, we created a new series where the
values comprised the average of 5 days of observations from the
real data.

During the validation process, we concluded that LSTM-ED
is capable of predicting when another peak of the epidemic will
occur, based on the position of the first peak. Therefore, we
decided to show for each variable individually how the network
will forecast the values for ∼100 days. In the case of Belgium,

in this 1-year period, only two peaks appeared, so the period
October 20, 2020 to March 15, 2021 was used for the testing
dataset. This means that the dataset is divided in the following
manner: 58% for training and 42% for the testing process. The
comparison between the official statistical data and simulated
curves is shown in Figure 12. Also, a smoothed curve is presented
in order to remove a noise and expose better a trend of the
official data curve. The trend of the predicted curve matches
well the smoothed curve from official data for all the monitored
curves, infected, hospitalized, ICU, and deceased. For the case of
Netherlands and Luxembourg, we made a different division and
returned to the original decision to take a test set consisting of 100
days, which includes the data from December 6, 2020 to March
15, 2021.

In Figure 13, comparison between the official statistical data
of Netherlands and simulated curves is shown. It can be seen
that in the cases of infected and deceased people, the trend is
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FIGURE 7 | Comparison between the real and simulated values for deceased cases in Belgium using the proposed SEIRD model.

matching with very small deviations between official statistical
and smoothed curves, as well as position of peaks. However,
for the cases of hospitalized and ICU, the position of peaks is
matching, but the height of the peaks differs a little more than
in previous cases.

In Figure 14, comparison between the official statistical data
of Luxembourg and simulated curves is shown. The trend of the
predicted curve matches well the smoothed curve from official
data for all the monitored curves, infected, hospitalized, ICU, and
deceased. However, in the last days of the test set, the simulated
curve tends to flatten, so we can conclude that soon there will be
no peak like the highest peak of the epidemic in Luxembourg.

The aim of our study was to establish the architecture of the
model and hyperparameter settings in order to forecast several
COVID-19 categories. Our model is able to forecast number
of infected patients per day, number of hospitalized patients
per day, number of patients in intensive care units, number

of patients with a fatal outcome. As far as we know, most
of the literature has been oriented toward predicting only the
total or cumulative number of infected (positive) cases per day.
Vadyala et al. (81) proposed K-means-LSTM neural network
to construct a prediction model for short-term forecasting of
confirmed COVID-19 cases in Louisiana, United States (81). As
a result, the proposed method achieved forecasting performance
with an RMSE value of 601.2. Ayyoubzadeh et al. (82) used
LSTM and linear regression models to estimate the number of
positive COVID-19 cases in Iran. To evaluate the robustness
of the model, 10-fold cross-validation was utilized, and, as
performance evaluation criterion, RMSE was used. According
to the experimental results, the LSTM model achieved an
RMSE value of 27.187 (82). Furthermore, Wang et al. (41)
proposed a model based on LSTM neural networks in terms of
daily and cumulative forecasting of infected patients in Russia,
Peru, and Iran (41). They stated that the existing forecasting
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FIGURE 8 | Comparison of real and simulated values for the four categories of interest (Netherlands), mild infection, severe infection, critical infection, and
deceased people.

LSTM model can only predict the epidemic trend within
the next 30 days accurately, so they included an additional
mechanism for the purpose of long-term forecasting. Taking into
account the limitations of previous studies, the aim from the
aspect of deep learning methodology was to use an encoder-
decoder LSTM model for long-term forecasting of the spread
of COVID-infections in the Benelux Union. We select the
countries with a reliable source of COVID-19 statistics, because
in these countries the situation with and without social measures

was present, with the aim to establish a model that will be
able to forecast in a long-term manner. Selection of different
countries as the test set does not affect the conceptual essence
of this study, since the proposed methodology is general and
can be applied with respect to the epidemic reality of any
location and population. Our results show that the LSTM
model proves to be promising for long-term forecasting, so
the established methodology can be applied for any country
or region.
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FIGURE 9 | Comparison of real and simulated values for the four categories of interest (Luxembourg), mild infection, severe infection, critical infection, and
deceased people.

Complex Phenomena to Be Included as
Possible Extensions of the Model
Modeling COVID-19 is very complex, and many phenomena are
yet to be included in future models. Although the initial analyses
from this study show promising results, some simplifications had
to be adopted. We plan to address them in future:

• by the definition of the infected compartments, it is being
assumed that asymptomatic cases are not infective. Although
this is an idealized case, and many studies suggest that people

infected with COVID-19 may be temporarily asymptomatic
and infectious before developing symptoms, there are also
studies that indicate that asymptomatic cases may not be
infectious (83). Future expansion of the model will deal with
infectious asymptomatic cases.

• stochastic formulation may be used to incorporate flexibility
(uncertainty) in the predictions and obtain improved
estimates of the parameters. In order to capture the stochastic
nature of the transitions between the compartmental
populations in such models, methods such as Markov Chain
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FIGURE 10 | Cross-validation process for hospitalized cases in Belgium.
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Šušteršič et al. Epidemiological Predictive Modeling of COVID-19

TABLE 5 | The regression metrics on test data of Belgium, Netherlands and Luxembourg using LSTM model.

Country Belgium Netherlands Luxembourg

Metrics RMSE MAE R2 score RMSE MAE R2 score RMSE MAE R2 score

Infected 535.93 440.47 0.76 434.28 362.96 0.82 25 20.59 0.76

Severe (hospitalized) 20.42 17.16 0.83 94.6 79.43 0.78 12.24 10.45 0.83

Critical (ICU) 38.97 28.15 0.6 37.61 30.06 0.65 3.17 2.63 0.66

Deceased 8.72 7.54 0.73 5.23 4.18 0.66 0.38 0.31 0.77

FIGURE 11 | Loss function in training set during the cross-validation process.

Monte Carlo can be used (84). Future discussion on improved
model parameters will include the stochastic nature of
epidemiological modeling.

• although LSTMs have proven efficient in terms of utilizing
time-series data for prediction, there is a gap in the existing
solutions that can combine both spatial and temporal aspects
of the dynamics of COVID-19. Melin et al. proposed self-
organizing neural networks and a fuzzy fractal approach in
order to bridge this gap and address the issue of spatial
variation (85). Although their results seem promising, the
validation of results is only shown on 10 days prediction,
which does not guarantee the accurate prediction of longer
periods. Khan et al. (86) proposed a hybrid convolutional
neural network (CNN) and long short-term memory (LSTM)
model in order to extract multi time-scale features from
convolutional layers of CNN and to learn short, medium,
and long time series dependencies (86). Their approach seems
promising, with results reported to be better in comparison
with LSTM networks. This is also the direction we will
investigate in the future.

• mobility-contact effects were not taken into account at this
point of model validation. During the first week of new
measures (starting on Friday, March 13) a steep drop in
mobility between many cities has been noted. Mobility in
March decreased to around 50%, 60% of January levels (87).
From the perspective of neighboring countries, the border
cities in Germany and in the Netherlands also noted less

traffic, but the drop happened a little bit slower than in
Belgium. In the border cities of Lille and Luxembourg,
traffic is significantly reduced, at the highest level, among
the considered regions. Furthermore, even though Dutch
and German border cities noticed slightly higher inner-city
mobility than the cities in Belgium, the drop in cross-border
traffic decreased to around 50%, 60% of January level of
traffic. If we consider Belgian inner-city traffic, the last week
of March was characterized by an even more drastic reduction
in overall mobility hovering just about 30% of January levels.
Traffic between cities dropped between 10 and 20% of their
January levels. If we take into account these statistics and
information that Belgium tightened measures after March
17 and introduced complete lockdown, this can imply that
cross-border mobility might not have a significant impact
on the spread of the virus and worsening of the current
situation in these countries. Different methods can be used to
improve the validation and verification processes in order to
find the parameters of the system dynamics model, meaning
the parameters of the pandemic (88) discussed that in their
study the effect of lockdowns can be tracked by a reduction
in mobility reported by Google (89). In this study, we are
focused on describing how the comparison between the
standard SEIRDmodel and the LSTMmodel has achieved high
accuracy results.

The SARS-CoV-2 virus already has hundreds of variations.
Pathogen surveillance is performed for each country by the
national authority. Although first identified on April 6 2021 in
Belgium, the delta (B.1.617.2) variant of concern in August 2021
is dominant lineage in the country, accounting for more than
95% of all the variants (90). According to preliminary findings,
this variation is also related with greater transmissibility and
quicker spread. For Netherlands, RIVM, The National Institute
for Public Health and the Environment is undertaking laboratory
research to determine which versions of the virus are present
and what this means for the spread of the virus in the country.
Out of the total number of samples, the most frequent variant
is the alpha (B.1.1.7) variant, after which the delta (B.1.617.2)
and beta (B.1.351) versions are less frequent (91). All the three
variants have had an estimated reproduction number higher than
that of the old variant of the virus. In Luxembourg, community
surveillance showed that the delta (B.1.617.2) variant represents
the dominant one (accounting for 99.1%), with low prevalence
of the gamma (P.1) variant (accounting for 0.9%) (92). This
major question of variants will help in terms of investigation
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FIGURE 12 | Comparison of real and simulated values for Belgium: (A) number of infected cases, (B) number of hospitalized cases, (C) number of ICU cases, (D)
number of deceased cases.
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FIGURE 13 | Comparison of real and simulated values for Netherlands: (A) number of infected cases, (B) number of hospitalized cases, (C) number of ICU cases, (D)
number of deceased cases.
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FIGURE 14 | Comparison of real and simulated values for Luxembourg: (A) number of infected cases, (B) number of hospitalized cases, (C) number of ICU cases,
(D) number of deceased cases.
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whether they are more easily spread, cause more illness, or if viral
variations do not react as well to immunization.

Additionally, at this point, there are very little publicly
available epidemiological data per day on patients with COVID-
19 with respect to variants, especially on the level of the
country. Results from genome-wide association studies (GWAS)
in terms of trait-associated genetic variants can be used
as control variables in epidemiology studies to account for
confounding genetic group differences (93). The harmonized
individual-level data of some participating cohorts from
Belgium (BeLCovid_2), Brazil (BRACOVID), Italy (COVID19-
Host(a)ge_4, GEN-COVID), Spain (COVID19-Host(a)ge_1,2,3,
INMUNGEN-CoV2, SPGRX), and Sweden (SweCovid) are
under preparation to be deposited at the European Genome-
phenome Archive (EGA) (94). This will be a future direction for
research and model update.

CONCLUSIONS

This study describes the modeling of COVID-19 spread
and development in the population, using two proposed
methodologies, the SEIRD model and the model based on
LSTM neural networks. The COVID-19 epidemic was declared
a pandemic by the WHO since the number of infected people
grows exponentially, and many countries have decided to impose
certain measures, such as a complete lockdown of affected cities
to reduce the number of contacts and stop the spread of the
virus. Our proposed method included the SEIRD compartmental
epidemiological model with included components, susceptible,
exposed, infected (we have divided the infected group into
three subgroups, mild, severe, and critical), recovered, and
deceased, with included effects of lockdownmodeling. In order to
calculate the parameters for the model, we have also investigated
official statistical data for the countries of Benelux (Belgium,
Netherlands, and Luxembourg). The results show that the SEIRD
model is able to accurately predict several peaks for all the three
countries, and increase and decrease in the number of infected
people, with only higher RMSE for mild cases. On the other
hand, the second proposed method, LSTM networks show that
they are capable to predict later peaks based on the position
of previous peaks with the low values of RMSE. Higher values
of RMSE are observed in the forecasting of daily infected cases
due the thousands of infected people per day in those countries.

The match between simulated and real values can be affected
by several things, such as underreporting of the number of
cases, estimating initial conditions, and setting parameters. In
general, if we take into account all the three countries, official
and simulated values show a good match, which means that
the model is showing promising results and can be further
upgraded to take into account different underlying complex
phenomena. Future research will include more phenomena,
especially medical intervention and asymptomatic infection,
mobility of people, population density, economic and social
aspects, variants of concern, etc., in order to better describe the
spread and development of COVID-19. We will also test the
model on a greater number of countries.
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